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• We provide a full extreme value theory for dynamical systems perturbed with instrument-like-error.
• Numerical experiments support the theoretical findings.
• Fractal dimensions can be recovered in perturbed systems.
• The theory allows for studying recurrences on finite time series.
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a b s t r a c t

In this paper we prove the existence of extreme value laws for dynamical systems perturbed by the
instrument-like-error, also called observational noise. Anorbit perturbedwith observational noisemimics
the behavior of an instrumentally recorded time series. Instrument characteristics – defined as precision
and accuracy – act both by truncating and randomly displacing the real value of a measured observable.
Here we analyze both these effects from a theoretical and a numerical point of view. First we show that
classical extreme value laws can be found for orbits of dynamical systems perturbed with observational
noise. Then we present numerical experiments to support the theoretical findings and give an indication
of the order of magnitude of the instrumental perturbations which cause relevant deviations from the
extreme value laws observed in deterministic dynamical systems. Finally, we show that the observational
noise preserves the structure of the deterministic attractor. This goes against the common assumption
that random transformations cause the orbits asymptotically fill the ambient space with a loss of
information about the fractal structure of the attractor.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In two previous works [1,2], we investigated the persistence
of Extreme Value Laws (EVLs) whenever a dynamical system is
perturbed throughout random transformations. We considered an
i.i.d. stochastic process (ωk)k∈N with values in the measurable
space Qε and with probability distribution θε . After associating to
each ω ∈ Qε a map Tω acting on the measurable space Ω into it-
self, we considered the random orbit starting from the point x and
generated by the realization ωn = (ω1, ω2, . . . , ωn):

Tωn := Tωn ◦ · · · ◦ Tω1(x).
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In this setting the transformations Tω are taken close to each other
and the suitably rescaled scalar parameter ε is the strength of such
a distance. We could therefore define a Markov process Xε on Ω

with transition function

P(x, A) =


Qε

1A(Tω(x))dθε(ω), (1.1)

where A ∈ Ω is a measurable set, x ∈ Ω and 1A is the indica-
tor function of a set A. We recall that a probability measure µε is
called a stationary measure if for any measurable A we have:

µε(A) =


Ω

Pε(x, A)dµε(x).

Moreover, we call it an absolutely continuous stationary measure
(acsm), if it has a density with respect to the Lebesgue measure
whenever Ω is a metric space.

In this work we consider a different type of perturbation, the
observational noise, which consists in replacing the orbit of the
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point x ∈ Ω at time i, namely T ix, with T ix + ωi. There are several
physical motivations to investigate the behavior of this kind of
perturbation. In fact, as Lalley and Noble wrote in [3]:

‘‘. . . In this model our observations take the form yi = T ix + ωi,
where ωi are independent, mean zero random vectors. In contrast
with the dynamical noise model (e.g.; the random transforma-
tions), the noise does not interact with the dynamics: the deter-
ministic character of the system, and its long range dependence,
are preserved beneath the noise. Due in part to this dependence,
estimation in the observational noise model has not been broadly
addressed by statisticians, though the model captures important
features of many experimental situations.’’

Judd [4], quoted in [5], also pointed out that:

‘‘. . . the reality is that many physical systems are indistinguishable
from deterministic systems, there is no apparent small dynamic
noise, and what is often attributed as such is in fact model error.’’

Moreover, a system contaminated by the observational noise raises
the natural and practical question whether it would be possible
to recover the original signal, in our case the deterministic orbit
{T ix}i≥1. In the last years a few techniques have been proposed
for such a noise reduction [6]: we remind here the remarkable
Schreiber–Lalley method [7–10], which provides a very consistent
algorithm to perform the noise reduction when the underlying
deterministic dynamical system has strong hyperbolic properties.
Another interesting work shows that in the computation of
some statistical quantities, the dynamical noise corresponding to
random transformations could be considered as an observational
noise with the Cauchy distribution [11]. Finally, the paper [12]
proves concentration inequalities for systems perturbed by
observational noise.

The present work tries to re-frame the previous findings in
termsof extremevalue theory (EVT) by adding a furthermotivation
driven by the applicability of the whole EVT for dynamical
systems to experimental data. It should be a general concern to
check the role of instrument-like-perturbations before applying
dynamical systems techniques to experimental datasets. In this
sense, the dynamical systems considered in this paper share
several properties with observed time series, as the observational
noise acts exactly as a physical instrument. The goal is to exploit the
recent advancements of the EVT for dynamical systems to define
in a more rigorous way the extremes of time series. A successful
application of the theory presented in this paper to experimental
datasets is given in [13], where temperature data are analyzed
with the algorithmic procedure presented in Section 4.2. More
specifically, our interest is to understand which way the results
obtained on deterministic dynamical systems are altered by the
addition of observational noise and in which cases one can recover
classical EVLs. We start the discussion by summarizing the main
findings of the EVT for dynamical systems.

The first rigorous mathematical approach to EVT in dynamical
systems goes back to the pioneer paper by Collet [14]. Important
contributions have successively been given in [15–17] and in [18].
Here we briefly recall the main findings deferring to the previous
papers for the full demonstrations.

Let us consider a dynamical system (Ω, B, ν, T ), where Ω is
the invariant set in some manifold, usually Rd, B is the Borel
σ -algebra, T : Ω → Ω is a measurable map and ν a probability
T -invariant Borel measure.

In order to adapt the EVT to dynamical systems, we follow [15].
We consider the stationary stochastic process X0, X1, . . . given by:

Xm(x) = w(dist(Tmx, z)) ∀m ∈ N, (1.2)

where ‘dist’ is a distance on the ambient space Ω , z is a given
point andw is a suitable functionwhichwill be specified later. This
particular functional form has been introduced first by Collet [14]
and allows for a direct connection between recurrence properties
around a point of the phase space z and the existence of EVLs.
The object of interest is the distribution of P(Mm ≤ um), where
Mm := max{X0, . . . , Xm−1};wehave anEVL forMm if there is a non-
degenerate distribution function H : R → [0, 1] with H(0) = 0
and, for every τ > 0, there exists a sequence of levels um = um(τ ),
m = 1, 2, . . . , such that

m P(X0 > um) → τ , as m → ∞, (1.3)

and for which the following limit holds:

P(Mm ≤ um) → 1 − H(τ ), asm → ∞.

The motivation for using a normalizing sequence um satisfying
(1.3) comes from the case when X0, X1, . . . are independent and
identically distributed (i.i.d.). In this setting, it is clear that P(Mm ≤

u) = (F(u))m, being F(u) the cumulative distribution function for
the variable u. Hence, condition (1.3) implies that

P(Mm ≤ um) = (1 − P(X0 > um))m ∼


1 −

τ

m

m
→ e−τ ,

as m → ∞. Note that in this case H(τ ) = 1 − e−τ is the stan-
dard exponential distribution function. By choosing the sequence
um = um(y) as one parameter families like um = y/am + bm,
where y ∈ R and am > 0, for all m ∈ N and w as above, we have
P(am(Mm − bm) ≤ y) → G(y) whenever the variables Xi are i.i.d.,
if for some constants am > 0, bm. When the convergence occurs
at continuity points of G (G is non-degenerate) then Gm converges
to one of the three EVLs rewritable in terms of the Generalized Ex-
treme Value (GEV) distribution as:

G(y; κ) = exp

[1 + κy]−1/κ . (1.4)

Here κ ∈ R is the shape parameter also called the tail index:
when κ → 0, the distribution corresponds to a Gumbel EVL; when
the tail index is positive, it corresponds to a Fréchet EVL; when
κ is negative, it corresponds to a Weibull EVL. The EVL obtained
depends on the kind of observable chosen. In particular, in [14,15]
the authors have shown that, once taken the observable:

w(y) = − log(y), (1.5)

one gets a Gumbel EVL, here y = dist(Tmx, z). In the next section
we prove the existence of Gumbel law for themaps perturbedwith
observational noise. It is in fact possible to introduce other observ-
ables than the one specified above in order to get convergence to-
wards Fréchet andWeibull EVLs. However, for any choice different
from w(y) = − log(y), the tail index can be written in terms of
the local dimension (see Eqs. (4.2)–(4.4) in [19]). For a sequence
(um)m∈N satisfying (1.3) we define:

Um := {X0 > um}. (1.6)

When X0, X1, X2, . . . are not independent, the standard expo-
nential law still applies under some conditions on the dependence
structure. These conditions are the following:

Condition (D2(um)). We say that D2(um) holds for the sequence
X0, X1, . . . if for all ℓ, t andm,

|P(X0 > um ∩ max{Xt , . . . , Xt+ℓ−1 ≤ um})

− P(X0 > um)P(Mℓ ≤ um)| ≤ γ (m, t), (1.7)

where γ (m, t) is decreasing in t for each m and mγ (m, tm) → 0
whenm → ∞ for some sequence tm = o(m).

Now, let (km)m∈N be a sequence of integers such that

km → ∞ and kmtm = o(m). (1.8)
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Condition (D′(um)). We say that D′(um) holds for the sequence
X0, X1, X2, . . . if there exists a sequence (km)m∈N satisfying (1.8)
and such that

lim
m→∞

m
⌊m/km⌋

j=1

P(X0 > um, Xj > um) = 0. (1.9)

By following Freitas and Freitas [20, Theorem 1], if conditions
D2(um) and D′(um) hold for X0, X1, X2, . . . , then there exists an EVL
for Mm and H(τ ) = 1 − e−τ .

In the paper [15], Freitas, Freitas and Toddmade the interesting
observation that the extreme value laws are intimately related to
the concept of local recurrence, in particular to the first hitting time
function in small sets. Their analysis has been brought to systems
perturbedwith random transformations in [1]. In Section 3wewill
show that this kind of results holds also for systems perturbed
with observational noise, first by adapting the definition of first
hitting time and then by showing that it follows an exponential
law tempered by the strength of the perturbation.

We remark that the analogy between extreme value laws and
local recurrences is possible for particular observables of the type
X0(·) = w(dist(·, z)), where z is a given point. As explained in [20],
the additional choice w(y) = − log(y), allows to get the Gum-
bel law (a direct proof of this fact is given after Proposition 2), and
moreover it brings information on the local structure of the invari-
ant measure, as we will explain in a moment. This fact represents
themainmotivation for using such observable although amore de-
tailed discussion and other motivations can be found in [2,19].

We conclude the introduction by stressing what we believe is
an interesting and very general result. The probability P, used to
rule out the distribution of the maxima, is the product between
the invariant measure ν and themeasure of the noise θ . Whenever
one is able to prove the existence of an extreme value law for the
process Xm with the observable (1.5), then Proposition 2 shows
how the two sequences am and bm appearing in the affine choice for
um, are related to the local behavior of themeasure ν at a local scale
given by the intensity of the noise. This local behavior is related to
the fine structure of themeasure ν. We have therefore a useful tool
to detect the fine geometric properties of the invariant measure by
calibrating the normalizing sequence um until we get the Gumbel
law at different scales for the noise.

2. Recurrences for time series: a theoretical approach

We now show how to adapt the EVT for orbits of dynamical
systems perturbed by instrument-like-error.

Although the paper is dedicated to the observational noise,
for completeness and in light of applications to time series, we
want remark also some relevant properties of truncations. Each
instrument introduces an effect related to the combined accuracy
andprecision of themeasure by replacing the real (unknown) value
with the biased indicated by the instrument itself. In general, if the
real dynamics can be represented by themap T , what one observes
is formally:

ϕ(i) = trunc(T ix + ϵξi, q),

where trunc(x, q) =
⌊10q·x⌋
10q is the truncation introduced by the in-

strument precision and ϵξi is a random displacement from the real
value. This displacement is what we have defined as observational
noise. Here it is rewritten as T ix+ ϵξi, with the parameter ϵ ∈ R+.

The role of the truncation, important also for numerical
computations, has been discussed in the book by Knuth [21] and
then analyzed, among others, by [22–24]. On the q digit, the
truncation acts essentially as a randomnoise of varianceσ = 10−q.
If q ≫ 1 the measure underlying ϕ(i) will match the one of the
original dynamics given by themap T , if not the supportwill appear
as a collection of Dirac’s deltas, precluding the convergence to the
GEV distribution [25].We defer to Section 4.1 for a numerical study
on the truncation error showing for which values of q one should
take truncations into account and whether q ≃ 7 (the common
truncation corresponding to a double precision representation) is
a good choice for representing the properties of a deterministic
dynamics.

We thus proceed to show that EVLs persist for chaotic dynam-
ical systems, whenever they are perturbed with the observational
noise [26,12]. The proofwe give is reminiscent of that of TheoremD
in [1]. We first point out that, in order to guarantee the stationarity
of the random process involved in the distribution of the maxima,
we need to evaluate the observable w at the point x + ξ , where
x ∈ Ω and ξ is a random vector. For this reason and in order
to avoid ambiguities, we will choose Ω as a torus. Another alter-
native would be to take Ω which is strictly sent into itself by T ,
TΩ ⊂ Ω , and with all the components of ξ small enough (see,
for instance, Proposition 4.5 in [1]). This choice is often invoked
for random transformation acting of bounded domains of Rn. The
paragraph below contains the assumptions on the systems which
allow us to prove our main results.

Assumption M. We consider maps T defined on the torusΩ = Td

with norm ∥ · ∥ and satisfying:
• There exists a finite partition (mod-0) ofΩ into open sets Yj, j =

1, . . . , p, namely Ω = ∪
p
j=1 Yj, such that T has a Lipschitz

extension on the closure of each Yj with a uniform and strictly
larger than 1 Lipschitz constant η, ∥T (x) − T (y)∥ ≤ η∥x −

y∥, ∀x, y ∈ Yj, j = 1, . . . , p.
• T preserves a Borel probability measure ν which is also mixing

with decay of correlations given by f ◦ Tmhdν −


fdν


hdν

 ≤ C∥h∥B∥f ∥1m−2 (2.1)

where the constant C depends only on themap T , ∥ ·∥1 denotes
the L1ν norm with respect to ν and finally B is a Banach space
included in L∞

L , where L denotes the Lebesgue (Haar) measure
on X: the corresponding norm will be denoted with ∥ · ∥∞. We
will also need ν to be equivalent to L with density in L∞

L .

Assumption N. We consider a sequence ξi of i.i.d. vector-valued
random variables which take values in the hypersphere S := Sd ⊂

Rd centered at 0 and of radius 1, S := {u ∈ Rd
; ∥u∥ ≤ 1}, and

with common distribution θ , which we choose absolutely contin-
uous with density ρ ∈ L∞

L , namely dθ(ξ) = ρ(ξ)dL(ξ), with
S ρ(ξ)dL(ξ) = 1.1

Remark 1. The paper [1] contains examples of endomorphisms
verifying the AssumptionM, in particular one-dimensional Rychlik
maps endowedwith bounded variation functions andmultidimen-
sional piecewise uniformly expanding maps endowed with quasi-
Hölder observables. In order to get the decay of correlations (2.1),
one needsmore regularity for T , usually C1+α . Our next proofs cru-
cially depend on the decay against L1ν functions2; we believe that
one could weaken such assumption and extend the theory to in-
vertible maps, but that would need a different approach: in order
to support this claim, Section 4 will contain numerical computa-
tions on examples which are not covered by our analytical results,
but which show similar behaviors. We will comment further on
these issues in Section 3—Consequence 3.

1 Each ξ is a vector with d components; all these components are independent
and distributedwith commondensityρ ′; the product of suchmarginalsρ ′ ’s givesρ.
2 Actually, wewill stress in Section 3 that what is really needed is the L1ν property

for characteristic functions which, for some systems, is easier to show.
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The random orbits T ix + ϵξi generates a new random process
when an observable is computed along them. Suppose that w
is a measurable real function defined on Ω; we take w(x) =

− log(∥x − z∥), where z is a given point in Ω . The process:

X0 = w(x + ϵξ0), X1 = w(Tx + ϵξ1), . . . , Xm = w(Tmx + ϵξm)

is endowedwith the probability P = ν×θN defined on the product
space Ω × SN with the product σ -algebra; a point in this space is
the couple (x, ξ := {ξ0, ξ1, . . . , ξm, . . .}) ∈ X × SN.3

Remark 2. Before checking conditions D2(um) and D′(um), we no-
tice that, contrarily to the random setting studied in [1], the ran-
dom variable X0 depends now not only on the initial condition x ∈

Ω , but also on the random variable ξ and this makes P stationary.

With the given choice of the observable w, the set Um is explicitly
given by

Um = {(x, ξ); ∥(x + ϵξ) − z∥ ≤ e−um}.

For convenience, we will also set Vm := B(z, e−um), the ball of
center z and radius e−um .

Proposition 1. Let us suppose that our dynamical systems verifies
the Assumption M and it is perturbed with observational noise
satisfying the AssumptionN. Then conditions D2(um) and D′(um) hold
for the observable w.

Proof. We will give the proof when T is continuous on the torus.
The extension to the piecewise Lipschitz case is straightforward
and it could be done as explained in the analogous extension proofs
of Propositions 4.2 and 4.5 in [1] to which we defer for further
details. We begin to check condition D2(um) by estimating the
contribution given by the first term on the l.h.s. of Eq. (1.7):

P (X0 > um ∩ max{Xt , . . . , Xt+ℓ−1 ≤ um})

=


dν dθN1{g(x+ϵξ0)>um}1{g(T t x+ϵξt )≤um}..

1{g(T t+l−1x+ϵξt+l−1)≤um}, (2.2)

the set of integration variables here being (x, ξ
(t+l)

) with ξ
(t+l)

=

(ξ0, ξ1, ξt+l−1). We apply Fubini’s theorem and factorize the
integrals by exploiting the independence of the variables ξl, so that
the previous expression becomes:

dν


1{g(x+ϵξ0)>um}dθ(ξ0)

l−1
i=1


1{g(T t+ix+ϵξi)≤um}dθ(ξi).

Let us introduce the measurable functions:

Hm(l, x) =

l−1
i=1


1{g(T ix+ϵξi)≤um}dθ(ξi);

Gm(x) =


1{g(x+ϵξ0)>um}dθ(ξ0)

3 With this final notation the random process is better defined as T ix + ϵΠi(ξ),
where Πi(ξ) projects onto the ith component ξi .
with Gm(x) ∈ L1ν and Hm(l, x) ∈ B. Then Eq. (2.2) can be rewritten
as

dν Gm(x)Hm(l, T tx). By the decay of correlations assumption,

we get dν Gm(x) Hm(T t(x)) −


dν Gm(x)


dν Hm(l, x)


≤ C ∥Gm∥1∥Hm∥∞t−2

≤ C t−2,

where C is a constant depending only on T . In the previous equa-
tion, the second term on the l.h.s. corresponds to P(X0 > um)
P(Mℓ ≤ um) which is the second term on the l.h.s. of the condition
D2(um). Let us note, and this will be useful later, that D2(um) holds
with γ (m, t) = γ (t) = C∗t−2 for some C∗ > 0 and tm = m−β ,
with 1/2 < β < 1.

In order to deal with Condition D′(um), we follow the same
strategy as in [1]. We begin to define the approximated first return
time of the point x in Vm in the following way: we fix the couple
(ξ , ξ ′) ∈ S2 and we set

rVm,ξ ,ξ ′(x) := min{j ≥ 1, T jx + ϵξ ′
∈ Vm; x + ϵξ ∈ Vm}.

Notice that we keep fixed the variables ξ, ξ ′ while iterating the
point x. Moreover, instead of x, we require the initial condition
x + εξ to be in Vm. Then we define the approximated first return
time of the set Vm into itself as:

RVm,ξ ,ξ ′ := min
{x,x+ϵξ∈Vm}

{rVm,ξ ,ξ ′(x)}.

We observe that ∥T j(Vm −ϵξ)+ϵξ ′
∥ ≤ ηj

∥Vm −ϵξ∥, where η > 1
is the highest rate of separations for the points. We use the sym-
bol ∥ · ∥ indifferently to denote distance and diameter. The nota-
tion z + B, where z ∈ M and B is a subset of M , stands for the set
(∪w∈B{z+w}).We now fix some sequences (αm)m∈N going to infin-
ity and such thatαm = o(log km), where km is the sequence defined
in (1.6). Therefore, whenever

∥T j(z − ϵξ) + ϵξ ′
− (z − ϵξ)∥ > 2ηj

∥Vm − ϵξ∥,

∀j = 1, . . . , αm, then

T j(Vm − ϵξ) + ϵξ ′
∩ (Vm − ϵξ) = ∅,

which in turn implies that RVm,ξ ,ξ ′ > αm. Since

{(ξ , ξ ′) ∈ S2; RVm,ξ ,ξ ′ ≤ αm}

⊂ ∪
αm
j=1{(ξ , ξ ′

∈ S2); ∥T j(z − ϵξ) + ϵξ ′
− (z − ϵξ)∥

≤ 2ηj
∥Vm − ϵξ∥},

we have

θ2
{(ξ , ξ ′) ∈ S2; RVm(ξ , ξ ′) ≤ αm}

≤

αm
j=1


dξρ(ξ)


dξ ′ρ(ξ ′)1

{ξ ′,∥ξ ′−
(z−ϵξ−T j(z+ϵξ))

ϵ ∥≤
2ηj
ϵ ∥Vm−ϵξ∥}

≤ O


∥ρ∥∞

αm
j=1

2d ηjd
∥Vm∥

dϵ−d


≤ O


∥g∥∞∥Vm∥

dϵ−dηdαm

.

We now have:

m


m
km


j=1

(ν × θN){(x, ξ); X0 > um; Xj > um}

= m


m
km


j=αm


dν


dθ(ξ)1{g(x+ϵξ)>um}
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×


dθ(ξ ′)1{g(T jx+ϵξ ′)>um}


+m

αm
j=1


1{(ξ ,ξ ′);RVm,ξ ,ξ ′≤αm}dθ(ξ)dθ(ξ ′) · A(j, ξ , ξ ′)

= I + II

where A(j, ξ , ξ ′) =


dν1{x+ϵξ∈Vm} 1{T jx+ϵξ ′∈Vm}


.

Again, the first term (I) on the l.h.s. can be estimated by us-
ing decay of correlations applied to the (same) observable H̃(x) =
dθ(ξ)1{g(x+ϵξ)>um}; we easily get:

I ≤ m


m
km


j=αm

{P(Um)2 + CP(Um)j−2
}

≤
(nP(Um))2

km
+ mCP(Um)


m
km


j=αm

j−2

= O

 τ 2

km
+ τ


m
km


j=αm

j−2

 −→
m→+∞

0

sincemP(Um) → τ .
For the second term (II) we use Hölder’s inequality and the fact

that ν is equivalent to L4 with essentially bounded density and L
is translationally invariant:

II ≤ O


m

αm
j=1

L(Vm)θ2
{(ξ , ξ ′) ∈ S2; RVm,ξ ,ξ ′ ≤ αm}



≤ O


m

αm
j=1

L(Vm)∥ρ∥∞∥Vm∥
dϵ−dηdαm


.

Since P(Um) ≈ L(Vm) and ∥Vm∥ ≈ L(Vm)1/d we finally have

II = O


m2

km
P(Um)2 ηdαm


= O


τ 2 ηdαm

km


,

which goes to zero with the prescribed assumptions for αm and
km. �

3. Generalizations and consequences

In this sectionwewould like to point out a few interesting prop-
erties of the observational noise. We start by an explicit calcula-
tion of the quantity τ defined in (1.3) for the observable (1.5). The
computation is done in d = 1, but the generalization to higher di-
mensions is trivial. As we have anticipated in Section 1, the follow-
ing proposition requires only the existence of the Gumbel law for
the process under investigation, which is of course true for systems
verifying Proposition 1.

Proposition 2. Let us suppose that the one-dimensional dynam-
ical systems (Ω, B, ν, T ) verifies a Gumbel law for the process
Xm(x, ξ) := − log(|Tmx + Πm(ξ) − z|) endowed with the proba-
bility P = ν × θN, and also that θ is the Lebesgue measure on S. Then
the linear sequence um := u/am + bm, defined by (1.3), verifies:

am = 1; bm = log

mν(B(z, ε))

ε


.

4 We will use the symbol ‘‘≈’’ to signify that equivalence, namely there exists
a positive constant ι such that for any measurable set A we have that ι−1L(A) ≤

ν(A) ≤ ιL(A).
Proof. We begin to observe that

m P(X0 > um) = m


dν(x)


dθ(ξ) 1
{ξ ; ∥ξ−

(z−x)
ε ∥< e−um

ε }


= m


dν(x)θ


B

z − x

ε
,
e−um

ε


∩ B(0, 1)


since the variable ξ must stay in the ball of center 0 and radius 1.

Let us now introduce

um := − log


ε τ

mν(B(z, ε))


= u/am + bm,

with u := − log τ ; am := 1; bm := log


mν(B(z,ε))
ε


; and observe

that

m θ


B

z − x

ε
,
e−um

ε


∩ B(0, 1)


≤ m

e−um

ε
≤

m
ε

ε τ

mν(B(z, ε))
.

This bound is independent fromm and integrable.5
We can apply the theorem of dominated convergence since

lim
m→∞

m θ


B

z − x

ε
,
e−um

ε


∩ B(0, 1)


= 1B(z,ε)(x)

τ

ν(B(z, ε))
.

Having passed the limit inside, the integral finally gives τ :

m P(X0 > u + bm) → τ

and therefore

P(Mm ≤ u + bm) → exp(−e−u)

which is exactly the Gumbel law.
Whenever d > 1 a similar computation immediately gives that the
linear sequence um := u/am + bm verifies:

am = d; bm =
1
d

log

mν(B(z, ε))

εd


. �

The following useful consequences will be exploited in the next
section:

• Consequence 1
The scaling parameter bm depends on the target point z via

the local density of the invariant measure in a ball of radius
given by the ε. Let us start by considering the case of absolutely
continuous invariant measures. If the point z is visited with less
frequency, the local density will be of lower order in ε, which
means that one should go to higher values ofm in order to have
a reliable statistics. This is the case, for instance, for the points
±1 for the map introduced by Hemmer [27]:

T (x) = 1 − 2


|x| (3.1)

and defined on the interval [−1, 1]. The invariant density ρ can
be computed directly by inspection and reads: ρ(x) =

1
2 (1−x).

Therefore ν(B(−1, ε)) ≈ ε2 and bm ≈ log(mε).
A complementary issue will appear whenever the map exhibits
a laminar behavior in some regions of the phase space and
therefore it will spend there a lot of time. This happens, for
instance, for the well-known map of Pomeau–Manneville [28],
which could be written as:
T1(x) = x + 2αx1+α, 0 ≤ x ≤ 1/2
T2(x) = T (x) = 2x − 1, 1/2 ≤ x ≤ 1. (3.2)

5 Here we use crucially the fact that θ is exactly Lebesgue, since its translational
invariance property allows us to get rid of the variable x in the center of the ball.
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The origin 0 is a neutral fixed point and, for 0 < α < 1,
the density of the absolutely continuous invariant measure
ν behaves like x−α in the neighborhood of 0 [29]. Therefore,
ν(B(0, ε)) ≈ ε1−α and bm ≈ log(mε−α). We will analyze in
the next section which finite size effects arise for these two ex-
amples.

Warning: strictly speaking the previous two maps do not fit
with the assumptions of Proposition 1. In fact, in both cases it is
not possible to prove a polynomial decay of correlations against
all L1ν functions as it was shown in [30]. On the other hand,
an inspection of the proof shows that we only require the L1ν
property for characteristic functions, so that, in principle, such
a decay could be obtained. This was achieved, for instance, in
the case of rotations by using a Fourier series technique [19].
An additional problem concerns the rate of decay. For the
Pomeau–Manneville map it is of order n−

1
α +1 [29], so that it

fits with our assumption whenever α < 1/3; for the Hemmer’s
map the situation isworse since the correlations decay as 1

n [31].
Nevertheless, we conjecture that Proposition 1 could be applied
to the latter case as well, as we will argue in Consequence 3, and
as we will show numerically in the next section.

• Consequence 2
Let us observe that, if we define the linear scaling factor as

above, we have convergence towards the Gumbel law e−e−u
for

any z. This shows that the extremal index defined and stud-
ied in [17,1] is 1 everywhere implying that there are no points
which behave like unstable fixed points of deterministic dy-
namical systems.

• Consequence 3
Although wewere able to prove Proposition 1 whenever the

invariant measure is equivalent to Lebesgue, we pointed out
that Proposition 2 is true for any invariant measure, provid-
ing that one can show the existence of an EVL. Let us therefore
suppose that a given dynamical systemwith invariant measure
µ, not necessarily equivalent to Lebesgue, admits an extreme
value law for the observable w under the observational noise.
Then we can apply Proposition 2, which only requires that θ is
Lebesgue. We remark that in the expression for bm we are con-
sidering a fixed positive size for the noise ε. We remind that the
scaling parameters bm are linked to the location parameter of
the EVLs. Therefore, the dependence of bm on the noise struc-
ture gives hint on how the extreme value distribution drifts by
changing the noise intensity. Let us suppose that at this scale
we have ν(B(z, ε)) ≈ εD, where D is usually an estimation of
the geometric and fractal properties of ν at the point z.6 In this
case, if the ambient space has dimension d, the linear scaling
parameter bm has the form:

bm ∼
1
d

log(mεD−d). (3.3)

Therefore, we have an useful technique to detect the local di-
mensions of the measure, with a finite resolution given by the
strength of the noise. This will also allow us to compute directly

6 We give an example: a measure ν on R+ is called Ahlfors upper semi-regular if
there is a constant C > 0 and a real number α > 0 such that for all non-empty open
intervals I ⊂ R+ ν(I)

(diam(I))α < C .
Ahlfors upper semi-regular measures include fractal measures like the mea-

sures of maximal dimension of dynamically defined Cantor sets, i.e. Cantor sets
that arise from smooth expanding repellors. More generally, given an invari-
ant measure µ and whenever the limit limr→0+

logµ(B(x,r))
log r exists x − µ-almost

everywhere, then this limit equals the Hausdorff dimension of the measure µ,
HD(µ) := inf{Hausdorff dimension of Y , µ(Y ) = 1} [32], also called information
dimension. In some cases HD(µ) is given by suitable relations between Lya-
punov exponents and entropies, formulae better known as Kaplan–Yorke and
Ledrappier–Young: see [33] for a detailed exposition of these issues.
the distribution of the maxima with the linearization, given the
explicit expression of the um. This would be particularly useful
whenever the invariant measure is singular and therefore the
GEV distribution does not admit a probability density function:
see Section 3.1 in [2] for a detailed discussion on this point.

• Consequence 4
As we said in the Introduction, another interesting prop-

erty of the observational noise is its direct relationship with the
statistics of first hitting times in small sets. We first define the
first hitting time of the set Vm in a slightly differentmannerwhich
respect to the quantity rVm introduced above. Given the triple
(Vm, x ∈ M, ξ ∈ SN), we set:

RVm(x, ξ) := min{j ≥ 1, T jx + ϵξj ∈ Vm}.

Let us notice that, contrarily to rVm , the error increment changes
at each step since we are now dealing with a true random orbit;
this easily implies that

P(Mm ≤ um) = P(RVm > m).

By using the expression of um found above and setting conse-
quently Vm = B(z; ετ

mν(B(z,ε)) ), in dimension 1, we could rewrite
the previous formula as, for t ∈ R:

P


t
m

RB(z; t
m ) > t


→ e−

tν(B(z,ε))
ε (3.4)

which shows that the first hitting time follows an exponential
law tempered by the strength noise ε.

4. Discussion and numerical results

In this section we discuss some important implications con-
nected to the introduction of observational noise in finite time se-
ries. In particular, through numerical experiments devised on low
dimensional maps, we show that the influence of truncations and
observational noise is related to the intensity of the perturbation
applied. Some of the theoretical findings presented in the previous
sections present a practical interest in a wide range of applications
namely the analysis of the role of truncation errors for instrument
with lowaccuracy, the statistics of points visited sporadically in the
analysis of recurrence of time series and the possibility of comput-
ing attractor dimension by using Eq. (3.3) as an alternative way to
other techniques. For eachmaps, we present and comment numer-
ical experiments and outline possible further applications.

Before introducing such examples, let us make a useful com-
ment. A close inspection to the proof of Proposition 1, shows that
the parameter ε appears in the denominator of one factor in the
r.h.s. of the term (II) at the end of the proof. This means that the
convergence gets better when ε is large, which is not surprising
since a large value of the perturbation implies a more stochastic
independence of the process. Moreover, if we want to use the form
of the linear scaling parameter bm to catch the local properties of
the invariantmeasure ν, we also need large values ofm. A judicious
balance of the value of ε between these two regimes is therefore
necessary when we pursue such numerical analysis.

4.1. Truncation

We perturb a ternary shift map with truncation error on the
different digits q:

ϕ(i) = trunc(3xi mod 1, q).

The experiment consists in producing 30 orbits starting from
different initial conditions taken on the support of the truncated
measure. The length of the orbit is fixed according to the results
presented in [25] to be such that n = 1000. In order to analyze
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Fig. 1. Shape parameter κ vs. q, the digit where the truncation has been applied.
Error-bars display the average of κ over 30 realizations and the standard deviation
of the samples for m = 300 (blue), m = 1000 (magenta) and m = 3000 (red).
The green line corresponds to the Gumbel law (κ = 0). n = 1000 for all the cases
considered. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

the effect of varying the bin length combined to the order of the
truncation, we consider three different values of m. Each series of
w is therefore divided in n bins and in each of them themaximaMj
are extracted and then fitted to the GEV model via the L-moments
procedure described in [19]. Note also that the points z are chosen
after applying the truncation. The results are shown in Fig. 1 where
the behavior of the shape parameter κ is compared to the asymp-
totic Gumbel law κ = 0. In the deterministic limit q ≫ 1 the usual
Gumbel EVL is recovered, whereas for q → 1 the discretization of
the invariant measure becomes relevant and the asymptotic EVL
appears as a collection of Dirac deltas thus producing a divergence
of the shape parameter from 0. This is exactly what is visible in
Fig. 1: the convergence gets worse when q < 6 and at q = 3 we
are already unable to fit the GEV distribution for all the z points
considered, although by increasing the bin length m the conver-
gence improves as one would expect. These results, as we tested,
are reproducible in othermaps and gives amore general indication
that computing asymptotic properties on truncated series leads to
estimation errors and divergence even at high order of truncation.

4.2. Highly recurrent and sporadic points

With the introduction of the observational noise, the scaling pa-
rameter bm depends on the target point z via the local density of
the invariant measure in a ball whose radius is given by the er-
ror ε. In Consequence 1 we said that if the point z is visited with
less frequency, the local density is of lower order with respect to
ε, which means that one should go to higher values of m in order
to have a reliable statistics. Here we want to test that the order of
m needed to get convergence to the asymptotic bm is lower for a
highly recurrent point then for a sporadic one. As highly recurrent
pointwe choose z = 0 for the Pomeau–Mannevillemap in Eq. (3.2)
and as sporadic one the point 1 of the map introduced by Hem-
mer and reported in Eq. (3.1). The experiment consists in comput-
ing 30 realizations of themaps perturbedwith observational noise.
Again, we fit the maxima of the observable w to the GEV distribu-
tion by using the L-moments procedure and compare the values of
bm obtained experimentally to the theoretical ones stated in Propo-
sition 2. We report here the results for three different bin lengths
m = 1000, 10 000, 30 000 in Fig. 2 for the Pomeau–Manneville
map and in Fig. 3 for Hemmermap. The figures showhow bm varies
as a function of the noise ϵ = 10−p, in terms of p. In both cases we
Fig. 2. Normalizing sequence bm vs. intensity of the noise in terms of p (we recall
that ϵ = 10−p) for the Pomeau–Manneville map (Eq. (3.2)). We recall that dashed
error-bars display the average of bm over 30 realizations and the standard deviation
of the sample. Solid lines indicate the theoretical values. The blue, red andmagenta
curves respectively refers to m = 1000, 10 000, 30 000, z = 0. n = 1000 for all
the cases considered. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

observe convergence towards the theoretical values (solid lines)
for high values of ϵ (low orders in p) whereas in the limit of weak
noise one must increase the bin lengths to get convergence. The
main result to be highlighted here is the better convergence of
highly recurrent points with respect to the ones visited sporad-
ically. This important property can be used to study time series
recurrences and identify extremes as the points visited rarely for
which the convergence towards the asymptotic parameters is bad.
The main advantage of studying recurrence properties in this way
over applying other techniques is due to the built-in test of conver-
gence of this method: even for a point rarely recurrent there will
be a time scalem such that the fit converges. For smallerm, we can
therefore consider such a z as a sporadically recurrent point of the
orbit as explained in [13]. There we show how to use this prop-
erty to define rigorous recurrences in long temperature records
collected at several weather stations. The convergence or diver-
gence of the fit allows us for discriminating between temperatures
belonging to the normal variability associated to the time scales
defined by the bin length (e.g. the seasonal cycle) or as extremes
temperature if there are no or few recurrences in m. In another
study [34], we suggested a quantitative way to discriminate be-
tween highly recurrent points and sporadic points of the dynamics
in a rather algorithmic way. Basically, one can assess theminimum
bin lengthm such that the fit to one of the EVL converges, that is the
value ofm such that a sporadic point becomes a normally recurring
one. For highly recurring points this typical value ofm is order 103,
whereas for quasiperiodic dynamics can be larger thanm = 109.

4.3. Attractor dimensions

As we have already said in Consequence 3, if the invariant
measure is not absolutely continuous, one could still perform the
previous analysis, but both the ambient space dimension d and
the local dimension D will enter in the computation of bm via Eq.
(3.3). This formula can be used in principle to test whether a map
has a fractal support by comparing the local dimensions with the
ambient space dimension: it is enough to check how the obtained
bm depend on the intensity of the noise ϵ = 10−p. We should point
out that, aswe said in the footnote 1,we are targeting theHausdorff
dimension of the measure. We test this idea on the classical
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Fig. 3. Normalizing sequence bm vs. intensity of the noise in terms of p (we recall
that ϵ = 10−p) for the Hemmer map (Eq. (3.1)). Dashed error-bars display the
average of bm over 30 realizations and the standard deviation of the sample. Solid
lines indicate the theoretical values. The blue, red and magenta curves respectively
refers to m = 1000, 10 000, 30 000, z = 1. n = 1000 for all the cases considered.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Iterated Function System {T1, T2} used to produce a Cantor set:
T1(x) = x/3 with weight q1
T2(x) = (x + 2)/3 with weight q2

(4.1)

where x ∈ [0, 1], and we set q1 = q2 = 1/2. Therefore, at each
time step, we have the same probability to iterate T1(x) or T2(x);
the balanced invariant measure associated to the map and the way
to construct the orbit to detect themaxima are described in [2]. The
results for different m are reported in Fig. 4 for an average among
30 different realizations and three different bin lengths n = 1000,
m = 1000, 10 000, 30 000. Experimental data follow the predic-
tion of Eq. (3.3) with D = log(2)/ log(3) as Hausdorff dimension
and d = 1 as ambient space dimension but only up to a certain
noise intensity p beyond which the values of bm reach a plateau.
A justification for this behavior is that when the noise intensity is
very small, the system needs longer trajectories – higher m – to
explore the ball of radius ϵ. This gives an implicit criterion for the
selection of the bin lengthm needed to observe reliable results and
it tells that one should be careful in applications where the inten-
sity of the observational noise is small compared to the scale of the
dynamics. This analysis is confirmed by the results obtained for the
Lozi map:

x(1)
t+1 = x(2)

t + 1 − a|x(1)
t |

x(2)
t+1 = bx(1)

t

(4.2)

for which we consider the classical set of parameter a = 1.7 and
b = 0.5. Young [35] proved the existence of the SRB measure for
the Lozi map and found the value D = 1.40419 for the Hausdorff
dimension of the measure by computing the Lyapunov exponents
and using a Kaplan–Yorke like formula. The experiments are ex-
actly the samedescribed for theCantor set and the results, obtained
by using the value of D found by York, are presented in Fig. 5 for
the values of m = 1000, 10 000, 30 000. Agreement with the the-
oretical behavior of bm, as expected from Eq. (3.3) represented in
Fig. 5 by the solid straight lines, is found for small values of pwhich
means for large ϵ. For the Lozi map the convergence is worse then
for the Cantor case. This phenomenon has been already observed
in [2] and, up to now, there is not a clear explanation for it. How-
ever, by scanning numerically the (m, p) space, one can infer the
intervals of such parameters such that the bm converge towards
Fig. 4. Normalizing sequence bm vs. intensity of the noise in terms of p (we recall
that ϵ = 10−p) for the Cantor IFS (Eq. (4.1)). Dashed errorbars display the average of
bm over 30 realizations and the standard deviation of the sample. Solid lines indicate
the theoretical values. The blue, red and magenta curves respectively refers to
m = 1000, 10 000, 30 000, the points z randomly chosen on the attractor. n = 1000
for all the cases considered. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Normalizing sequence bm vs. intensity of the noise in terms of p (we recall
that ϵ = 10−p) for the Lozi map (Eq. (4.2)). Dashed errorbars display the average
of bm over 30 realizations and the standard deviation of the sample. Solid lines
indicate the theoretical values. The blue, red andmagenta curves respectively refers
to m = 1000, 10 000, 30 000. The points z are randomly chosen on the attractor.
n = 1000 for all the cases considered. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

the asymptotic results: for example, whenm = 30 000, an order of
noise intensity p ≤ 3 is needed to get convergence to the predicted
theoretical values. Since there is only a limited range of p such that
the bm convergence to the prediction of Eq. (3.3), one has to take
extreme care on using the results obtained with this method to es-
timate fractal dimensions. A good strategy to overcome this prob-
lem is to discard the value of bm which show no dependence on
p and check that the remaining points are sufficient to perform a
linear fit of bm vs. p.

The possibility of computing fractal dimensions by using a ran-
dom perturbation of a dynamical system is an interesting fact:
when random perturbations are applied, one usually expects the
orbit to explore asymptotically the ambient space and this nor-
mally hide the fractal property of the measure. Instead, as we said
at the beginning of this section, for reasonable choices of m and p,
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one gets accurate information on the fractal dimension by fitting
the D parameter of Eq. (3.3). This finding opens new questions, for
instance if it is possible to get analogous formulas in the case of
random transformations. An application can be to adapt this theory
formulti-scale systemswhose description is usuallymade through
an approximation of a dynamic consisting of a deterministic and
a stochastic components. For example, by tuning the strength of
the stochastic components, one can study how the noise affects the
structure of the deterministic dynamics; these aspects will be ex-
plored in forthcoming works.
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