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We introduce an integral transform of wavelet type, which we call Dynamical Integral Transform, and we show that it 
can be used to compute the second Renyi entropy for a large class of invariant measures. The method is then generalized 
to the whole spectrum of the Renyi entropies and establishes a correspondence between thermodynamic formalism and the 
Dynamical Integral Transform of expanding strange sets. Numerical examples are presented. 

1. Introduction 

The wavelet  t ransform and the methods derived from it have revealed to be powerful tools to analyze 
fractal sets. In particular they give a complete description of multifractal measures in two different 
ways: by a local analysis of the scaling exponents of the measure [1-3] or through the computat ion of 
the spectrum of the generalized dimensions [4-6]. 

The same methods have been succesfully extended to extract histograms of scaling exponents  f rom 
fully developed turbulence data [7]. In this article we show that they can be extended to compute  the 
whole spectrum of the Renyi entropies. We recall in section 2 that the Renyi entropies completely 
characterize the dynamical properties of an ergodic measure;  we also indicate in section 5 how to 
per form a local analysis with a suitable integral t ransform in order to detect the entropy at a point x as 
given by the B r i n - K a t o k  theorem. 

The approach we follow is taken from our previous works [4,5]; there we defined the following 
integral transform: 

f f g(llx-Yll) 
J × J  

(1) 

where H is a probabili ty non-atomic measure,  a and p are positive numbers ,  J is the set suppor t ing/x  
and II-II is some distance on J. We called (1) Integrated Wavelet Transform for the close analogy with 
the usual wavelet  transform. Our  principal assumption for the function g [2,4,5] was that it is in C1(~)  
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and rapidly decreasing (more than any power) on the positive semi-axis, in particular: lima_,0+ a-Pg(r/ 
a) = 0 pointwise for r > 0 and p -> 0. 

When rigorous proofs are carried out on invariant sets J,  we showed that it is sufficient to assume g 
mono tone  on ~+;  we never need admissible analyzing functions g of zero mean (wavelets): we discussed 
this question in details in the introduction of [4,5]. There  are some other advantages using our  test 
functions: first, we are able to get some asymptotic local propert ies (see section 5 in [5] and section 5 in 
this paper)  which are not immediately recovered with admissible wavelets. Then we showed, in the 
context  of the generalized dimensions [5], that the montone  analyzing functions work numerically bet ter  
than the usual wavelets like the mexican-hat: they are also used in [8] #1 . Moreover  the choice for 
mono tone  wavelets was explicitly assumed by Falconer [9] ~2, in connection with order- two densities of  

certain fractal measures.  Despite  these facts and to avoid ambiguities, we think that the name wavelets 
could be reserved to the admissible wavelets introduced in the study of signals [10]. Therefore  we call 

our  g analyzing functions or test functions and the integral (1) Fractal Integral Transform or FIT. 
A basic concept in our method is that of adapted analyzing function. We say that g is p-adapted to 

sup for the FIT  if lima_,0+ ( i,f )lTp(a, tx)l are different from 0 and ÷oo. 
In this case, we proved in [4] that,  for the class of Gibbs measure /z~ on disconnected conformal  

mixing repellers, p is equal to the generalized dimensions of order 2 of the measure/zt3, denoted with 
D2(/~t3), defined by the usual partition function approach (as a root of the topological pressure or free 
energy).  This result has then been generalized to the whole spectrum of the generalized dimensions 
Dq(l~t3 ) [5] .  In [4,5] we checked the adaptedness for smooth sets in ~n, for the ternary Cantor  set and 
we presented an argument ,  relating the FIT  to the correlation integral introduced by Grassberger ,  
Hentschel  and Procaccia [11,12], which formally establishes the adaptedness of the FIT  for a large class 
of  multifractal sets. This last argument  is also illustrated in section 2 for the dynamical integral 
t ransform we are going to introduce. It  is useful to remark that if the adaptedness partially fails, in the 
sense that at least one, but not both, of the previous limits is zero or infinity, the equalities in the 
theorems in [4] and [5] and in those presented in the paper ,  must be replaced with bounds,  whose 
direction can be easily deduced f rom the proofs. 

The paper  is organized as follows. In section 2 we collect the definition and some basic propert ies  of 

the Renyi entropies and we introduce the Dynamical  Integral Transform. In section 3 we show how to 
use it to compute  the second Renyi entropy in the case of mixing repellers ( theorem 1) and then we 
generalize this result to any q-Renyi  entropy ( theorem 2). In section 4 we present some examples.  In 
section 5, we suggest a local analysis to detect the local entropy. The conclusions are in section 6. 

2. The Renyi entropies and the Dynamical Integral Transform 

We now briefly recall the definition of the Renyi entropies for invariant sets J (see for example  
[13-16]). Let  ~ be a /x -measurab le  partition of J and ~ n )  the dynamical partition obtained intersecting 

all the sets of the form P~0' T - I P ' ~ I  ' ' ' "  ' T - " P ~ ,  where P~i is an element  of ~ and T -i denotes  the 
pre image of order  i of the mapping T generating the invariant set J. If  the diameter  of  any e lement  

*1"As recently addressed in various theoretical studies (...), the wavelet analysis of singular measures do not require the 
analyzing wavelet g to be of zero mean. In the present study, we will use a Gaussian function g(r) = e -r2.'' [8], p. 4. 

'~2"Choice of a suitable (wavelet) w depends on the purpose for which the wavelet transform is used. There is considerable 
divergence between authors as to the conditions that w ought to satisfy-for example, some require certain moments of w to 
vanish, while other specify rapid decrease at infinity." [9], p. 781. 
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PI ") E ~ ( ' )  goes to zero when n---~ ~, we say that the partition ~ is generating and we define the q-order  
Renyi entropy of any invariant probability measure /z on J as 

Kq( / . l , )  = - l i m  1 1 - ~  n ( q -  1 ) log  ~ [/x(P~))] q . (2) 
p(an) E~(  n ) 

The Kolmogorov-Sinai  metric entropy Kl(/Z ) is recovered in the limit q---~ 1, while the topological 
entropy is recovered in the limit q ~ 0. For the class of Gibbs measures on the invariant sets of Markov 
maps and for the hyperbolic iterated function systems (IFS), the q-entropies can be expressed in terms 
of the topological pressure [14,17]. For the first class of systems we have [17] 

Kq(I, Zt~ ) ( q - 1) = q P ( / 3 )  - P (  q/3) , (3) 

where p~¢ and P(/3) are respectively the Gibbs measure and the topological pressure corresponding to 
the potential: - /3  logiIDT(x)l I [18], D T  being the derivative of the mapping generating the invariant 
set. For the IFS generated by linear mappings with contraction rates 11 . . .  A, equipped with a balanced 
measure /x of weights Pl • • • Ps, P~ + " " " + Ps = 1, we have [14,17] 

K q ( l ~  ) ( q  - 1) = - l o g ( p  q + . - .  + p q ) .  (4) 

These relations are important because they are the key of the proofs we give below; moreover  they 
can be generalized to larger classes of hyperbolic dynamical systems. The possibility to reconstruct the 
topological pressure from the Renyi entropies shows the importance of the latters in the investigations 
of the dynamical properties of strange sets. From the pressure one can extract the Lyapunov exponents 
and the metric entropy of any Gibbs measure [18]; moreover the Legendre transform of the pressure is 
the deviation function of the sum of the positive Lyapunov exponents. At this regard, the connection 
between the Renyi entropies and the large deviations for the Lyapunov exponents and the Kolmogorov 
entropy are made explicit in [19]. We also recall that in [15] a Legendre transform relates the set of 
Kq( l~)  to a scaling function S (y )  which is the topological entropy of the set of points for which the 
(positive) Lyapunov exponents converge to y. A similar Legendre transform has also been proposed by 
Paladin and Vulpiani in [19] with a different interpretation. The corresponding function S (y )  was in fact 
related to a set of local expansion parameters (LEP)  which are nothing but the local entropies given by 
the Br in -Katok  theorem. We will return to this point in section 5. 

There  are at least two formal useful characterizations for the second entropy K2( t z  ). The first is in 
terms of the so-called correlation integral introduced by Grassberger and Procaccia in [13], namely 

c.(t) = f / o(l-IIx- yll )d (x)d/z(y) , 

JxJ 

where O is the Heaviside function and IIx- yllo is the "dynamic norm":  

d-1 \1 /2  

II -,ll = (j 0  'ylt (5a) 

It is also possible to use the norm 
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IIIx--Yllld = m a x  IITJx - TJYll (5b)  
O ~ j < < _ d - 1  

which is equivalent to (5a) and even simpler to handle with in the proofs of the following theorems. We 
will use the norm (5a) and we will return to (5b) in the last section. With d = 1, we sometimes mean the 
usual norm. 

According to Grassberger and Procaccia [13], if Co(l ) scales like Co(l ) ~ U, where u = D2(ix ) is the 
correlation dimension, then Cd(l ) vanishes like Ca(l ) ~ Ufd(l ), where fd(O) ~ e -dK2u') for d---~ +o0. 

The second approach is in term of the d-order energy integral Cd(a), defined as 

dPd(a) = f f II x - -Y] Iz  dix(x)dix(y) .  
J × J  

It was proved in [20,21] that, for some expanding sets, Chd(a) is a meromorphic function with the 
smallest positive pole located at  D2(ix); moreover the residue at this pole behaves like D2(ix)e -dK2(~) 

for large d. 
We now introduce the Dynamical Integral Transform (DIT), defined as 

Tp(a, ix, d) = a -p f f g( ]Ix aYl ld)  dIx(x) dtz(Y) 

J × J  

(6) 

where I Ix  - Yl ld  is the dynamic norm (5): clearly a dynamics T must be defined on the set J and ix is 
meant to be invariant with respect to T. 

We say that the function g is p-adapted to ix for the DIT if for any d 

sup) 
lim ( I Tp(a, ix, d)l ~ (0, +~) 

~ 0  + \ i n f  

It is easy to relate the DIT to the correlation integral Cd(l ) defined above; we follow here the same 
method as presented in section 4 of [4]. A direct verification (an integration by parts), shows that 

A 

Tp(a, ix, d ) =  a - P [ g ( r )  C d ( l ) ] ~ - a  -(e+l) f ~ , ,  
0 

(7) 

where A is the diameter of J. We neglect the first term in the right hand side since it vanishes in the limit 
a---> 0 ÷, by the rapid decay of g at infinity. Assuming for Ca(l ) the scaling [13] 

U e -dK2(u) Cd(l) t_,o + 
d ~  + oo 

where u = De(IX ) is the correlation dimension, and substituting in (7), we immediately get 

f~ 
/ a  

[ Tp(a, /z, d)l ~ a ~-p e -aK2(') l"lg'(l)[ dl 

Since the integral in the r.h.s, surely converges by the fast decay of g at infinity, we finally have 
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ITp(a, Ix, d)l a~o+a ~-p e -dlq("l • (8) 
d----~ + ~ 

This heuristic argument shows that the class of test functions considered in this paper is adapted for 
the measures satisfying the preceding scaling for the correlation integral and therefore gives the correct 
value for the second Renyi entropy. We give now a rigorous proof of the scaling (8). 

3. Rigorous results 

In this section we restrict ourselves to disconnected conformal mixing repellers endowed with Gibbs 
measures and to the disconnected attractors of hyperbolic iterated function systems endowed with 
balanced measures (see [4] for a review of the properties of these systems). For these dynamical 
systems, we can prove the following result: 

T h e o r e m  1. If the function g is p-adapted to IX for the FIT, in which case p = D2(IX), then it is 
p-adapted to IX for the DIT, and moreover 

lim 1 1 a - - , + ~ -  -d l ° g l i m s u p l T p ( a ' _  Ix' d)l = d--,+~lim -- ~ logliminflTp(a,,_,o + IX, d)l = K2(IX ) . (9) 

P r o o f .  The p-adaptedness of g for the DIT follows from the equivalence of the dynamical norm with 
the original one. 

We prove the rest of the theorem in the particular case of a linear Cantor set with two scales A 1 and A 2 
equipped with a balanced measure of different weights Pl and P2; the general proof can be carried out 
quite easily using the techniques developed in [4,5] and the characterization of the Renyi entropies in 
terms of the pressure. We will indicate at the end of the proof how to perform these generalizations. 
Applying the balanced property of the measure, we can rewrite the DIT as (note that, by the previous 

assumptions, g is either positive or negative on the positive semi axis) 

T p ( a ,  tx, d )  = a -p  p 2  
L k l , . - . , k d _ l = l  

. . .  p2_, f f g ( A < k ~ [ x - Y l l ) d i x ( x ) d l , , ( y ) ]  
J × J  

+ a-Pcb(a), 

(10) 

where we have put for simplicity 

2 2 2 2 /2 
A k ~ . . . k d _ ~ = (1~ 21 . ° * l~ k d _ l -~- i~ k 2 " " " t~ k d _ l " J r ' ' ' "  -~- l~ k d _ l -}- 1) ~ ( 1 1 )  

and ~b(a) contains the integrals whose g have an argument strictly positive since x and y are i terated 
backward respectively on two sets at a finite distance (we use here the disconnectedness of J) .  
Therefore ,  when a---~0 +, the term a Prh(a) goes to zero by the rapid decrease of g at infinity and we 
neglect it. 

Then we can write the DIT as 

2 
2 - p  

T p ( a ,  IX, d )  = ~ ( p 2 1 .  . . pkd_~)Agv . . kd  1Tp(akx.. .ge , ,  IX ) ,  (12) 
k l , . . . k d _ l = l  

- 1  
where a k l . . . k d _  1 = a A k l . . . k d _  1. 
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By the adaptedness of g for the FIT for p = D2(/z), we have 

sup S1 ) 5 ;~ ( 0 ,  --boo) 

and therefore there are two positive constants Pl and P2 for which 

O <  s2 - P2 ~ [ Tp(a, t~)[ ~ Sl + Pl + o~ 

for a sufficiently small. 
Then we can take the lim~__,0+( ~p'~ inf J in (12) and get 

2 2 - p  ..  [ s u p )  
($2 - -  P2)  E ( P ~ I ' ' "  Pkd l )Akl '"kd 1 ~ l l m  / . .  [Tp(/Z, a ,  d ) [  

kl...ka_l= 1 - - a- ,0  + ' ,  l n I  

2 

-(s,+ol) E (p~, p2 -~ . . .  kd_,)Akl.. .kd_l" 
kl...kd-l=l 

(13) 

Taking the logarithm, dividing by d and finally sending d to infinity, we get (note that p is still equal 
to D2(P.)) 

lim 1 ( sup ) 1 2 - log lim [Tp(p., a, d)[ d~+® d-"~+~ d a---~0+\ inf = lim -- log 
kl...kd_l=l 

Since 
2 

l<- -A<--d  1/2 and ~ ( p 2  2 ] = (O2 ..1_ 2 \ d - 1  
• " " Pkd_l / \ r l  P2) , 

kl...kd_l=l 

we finally get 

( p~  2 _ - p  • . . .  pk~ ~)a,,,...,,d_~ (14) 

(15) 

lim 1 ( sup \ a-,+~-- d log lim in f )Tp( iX ,  a, d ) =  - log(p~ + p ~ ) ,  
a---, 0 + \ 

(16) 

where the r.h.s, is exactly the second Renyi entropy of the balanced measure of weights p~ and P2 (cf. 
(4)). 

To handle with the general case of a disconnected conformal mixing repeller endowed with a Gibbs 
measure /~ ,  we have to use the machinery developed in [4], that allows us to replace the left hand side 
of (14) with 

lim 1 e-E(d- 1)P(/3) A -p (17) 
a-~+®- d log ~ d-1 2/3 ~1 ~-1 IIDT (rlkl..k~_l)ll k,...k~_,, 

where 17kl...kd_l is an arbitrary point in the corresponding element of the Markov partition of J obtained 
iterating J backward (d - 1) times with the inverse branches of T. Besides, A k l . . . k  d l has the structure 

A k l . . . k d _ l  = [[ iDTa- l (nk l . . . kd_ l ) [ [ -2  + . . .  + IlDT(nkl)ll-2 + 111/2 

and can be bounded uniformly as in (15) by hyperbolicity. 
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Since, for d----~ +0% the term d -a log Z,1...k d ~11 d 1 -2/3 D T  ('Tkl converges to P(2/3) [14], we get 
from the limit (17) 

lim 1 l im÷(Sup)  d--,+~ -- d l°g inf [TP(~'a'd)I=2P(~)-P(2~)' 

which agrees with the second Renyi entropy for the Gibbs measure /x/3 computed with the thermo- 
dynamic formalism (cf. (3)). [] 

We now generalize the DIT in order to get all the Renyi entropies; we follow the same idea that 
leaded us to generalize the FIT to get the generalized dimensions, that is we define the q-Dynamical 
Integral Transform, q-DIT,  as 

Tp(a, tx, d , q ) = a  P{fd (x) 
J J 

If the function g is adapted for a certain p for the corresponding q-FIT, Tp(a, I~, q) (that is obtained 
setting d = 0) ~3, we proved that p is equal to the generalized dimension Dq(p,) when q > 1 and is a 
lower bound to it (eventually equal) for q < 1. The q-DIT behaves in a similar way; we still formulate 
the following theorem for the dynamical systems considered in theorem 1. 

Theorem 2. If g is p-adapted to ~ for the q-FIT, then it is p-adapted to ~ for the q-DIT and moreover  

1 ( sup \ 
a~+ - ~ l o g l i m  l i m ,  infJTp(a, lx, d, q)= Kq(tZ) for q > l ,  

a ~ 0  + \ 

1 { sup 
lim sup - a ~  +~ ~ log a~0 +lim \| inf } Tp(a,/z,d, q)<-Kq(tZ) for q < l  . (18) 

Proof. The p-adaptedness of g for the q-DIT follows from the equivalence of the dynamical norm with 

the usual norm. 
We specialize again the proof to the linear Cantor set with two scales h~, h 2 and two weights p~ # P:. 

The generalization is straightforward using the same suggestions as at the end of the proof of theorem 

1. 
Applying the balancement of the measure d -  1 times we get 

q - 1  Tp (a , l~ ,d ,q)  

f E = E P k l " ' "  P'a-1 d/.~(x) pk,...kd_la -p 
kl ' "kd-1  =1 j 

f i g (  Ak~''ke l ]lX-a Yll)ld/x(y) + ~ a ( X ) ]  q l , ( 1 9 )  

J 

where 4~a(x) is a positive functions uniformly bounded in x away from zero and going to 0 when a--* 0 + ; 
in fact it collects the integrals which g has the argument bounded away from zero; we also call 

#31n this case we also say that g is (p - q)-adapted to /~. 
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Fk,...kd_,(a, X) the first term in the square bracket in (19). Note that we cannot neglect 4~a(x) at this 
point since it can be of the same order as Fk,...k ~ ,(at x); therefore we need to integrate before.  As in 
the proof  of theorem 2 in [5], we can bound the integral in the sum in (19) by Minkowski's inequality 
from above and below for q > 1 by an expression of the type 

dp.(x) Fkl...kd_l(a, X) 1 + ( f ,  d/~(x) Fka...k~_,(a, X) (20) 
J q - 1  

where /3  is equal to 1 or 1 / (q  - 1). 
Whenever  q < 1, we can only keep the upper bound corresponding to the case 13 = 1 and this is the 

reason of the inequality in the statement of the theorem; in the following we consider the case q > 1. 
We observe that 

f q - 1  . - p ( q - 1 ) q r ,  q - l l  , q) dl~(X) Fq,7.l.kd , ( a , x ) = p q ( 1 . . .  p ,d_nk , . . . , a  - p  ktz, a,,...,a , , 
J 

- 1  + where akv..kd , = aAk,...kd_ ~. The second factor in (20) goes to 1 when a - + 0  , since the integral in the 
numerator  converges to zero and the denominator is bounded away from zero and infinity by the 

l(a, d, q) from above and below by adaptedness of g. Therefore  we can bound T q- /~, 

2 

E 
k l . . . k d _ l = l  

Pql _ q  ,i - p ( q -  1) q 1 Tp (/~, q) • , ,  IJkd l l l k l . . . k d _ l  a k l . . . k  d l~ • 

Using the same arguments as in the proof of theorem 1, we thus get 

lim 1 ( s u p ]  1 
a~+~ - a log a~0 +lim inf / Tp(a, I~, d, q) - (q  - 1) l°g(Plq + P q )  ' (21) 

which is just the q-Renyi entropy Kq(la, ) (cf. (4)). [] 

Under  the hypothesis of adaptedness for the q-FIT and for more general systems, we can define 

a  sop) 
"'q~ ' ~-~-t ~ log lim Tp(a, I~, d, q) 

a~O + \ inf 

where the lim SUPd__,+ ~ is taken in view of the special but important case of theorem 2. Apart  from the 
+ 

obvious bound Kq (tz) <-- Kq  ( P0, we can easily prove the following monotonicity property of the indices 
Kq (/~) as functions of q, which is consistent with the analogous property for the Kq solutions of eqs. (3) 
and (4). 

Proposi t ion 1. 

K ~ ( I ~ ) ~ K ) ( ~ )  for r<--q. 

Proof .  The proof  is similar to that of proposition l(iii) in [5] and relies on the structure of the q-DIT as 
a L q- l -norm and on Jensen's inequality. [] 
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Remarks. (A) To get the Kolmogorov-Sinai  entropy corresponding to q = 1, we have to take the 
logarithm of the q-DIT and differentiate it at the point q = 1. We are thus led to conjecture that 

y) dlim+=- ~ lim+ f d/z(x) d/z( = /1.) 
J J 

(22) 

whenever  p = DI(/Z) (the information dimension): this conjecture is numerically verified in example 3 
below. 

(B) Another  interesting question is how the limit (18) approximates the topological entropy, that is 
obtained setting q = 0 in the definition (2): by theorem 2, we expect in general this limit to be smaller 
than the topological entropy and this is not surprising since the topological entropy is defined 
independently of any measure. 

4. Examples 

Example 1. Ternary Cantor set 

In the case of the q-FIT, we considered in [5] the usual ternary Cantor set with equal scales 
A 1 = A 2 = A, 0 < A-< ½ endowed with the Gibbs measures/z~, /3 E ~; assuming g ( p  - q)-adapted to/Z~ 
for all q, we proved that p = log 2/log A-1 for all q. A result of the same type holds for the q-DIT.  We 
first observe that the left hand side of (18) is equal t o :  kq(/zo) = log 2 for q > 1 and is smaller or equal 
to log 2 for q < 1 (this easily follows from the expression for the pressure: P(/3) = log(2A~)). Then,  by 
Proposition 1 and passing to the limit for p = log 2/log A -], we have for r <  1 < q 

log 2 -> lim sup - 1 sup d~+~ ~ log lim ( I T  (a, /Z, d, r) 
~ o  + \ i n f  / p 

-> lira 1 ( sup \ d ~ + ~ - d l ° g  lim i n f , ) T p ( a ' / z ' d ' q ) = l ° g 2 '  
a ~ O  + \ 

The same argument holds by replacing lim sup with lim inf in the first limit and this shows that the 
limd~+~ exists for q < 1 and therefore the limit in (18) recovers the same entropy for all q @ R. 

Example 2. Irrational rotation 

We showed in [4] that, for the unit hypercube in R", the adaptedness of g to the Lebesgue measure 
implies p = n; moreover  we checked the adaptedness of the function g(r) = e- ' .  We now identity the 
unit interval [0, 1) with the torus Y and put on it the irrational rotation: T(x) = x + ~ mod 1, x E Y and 
a E R \Q;  Tleaves  invariant the Lebesgue measure. Then we define on q]- the norm Ilzll = i n f k ~ l z  + k[, 
z E N, I • [- being the Euclidean distance on N. It is easily seen that 

Ix - y l  f o r  Ix - Yl ½ ,  
Illx - Yllld = 1 - Ix - Yl f o r  Ix - Yl - >  1 ,  

so that the dynamic norm is independent of d. This and the preceding argument on the adaptedness 
imply that the second Renyi entropy is zero, which is consistent with the well known fact that the 
irrational rotations have zero entropy. 
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E x a m p l e  3. Numer ica l  

The  relat ions (9),  (18) and (22) give a precise me thod  to compu te  numerical ly the Renyi  ent ropies  

once  the cor responding  general ized dimensions are known,  and these can just be c o m p u t e d  by means  of  
the q - F I T  (see [5] for  examples).  

We now present  a few examples,  o thers  being in prepara t ion  [22]. First of  all, we compu te  the second 

Reny i  en t ropy  by means  of  formula  (9) in two cases: (i) the ternary  Can to r  set with scale A = ½ and 

equal  weights Pl = P2 = 1; (ii) the same Can tor  set with different weights pl  = 41- and P2 = 3; these 
examples  will also show the adaptedness  of  the test function g(r) = e -r2. In the fo rmer  case D 2 = log 2/  

l o g 3  and K 2 = l o g 2 =  0 . 6 9 3 1 . . .  ; in the latter D 2 = log( .~) / log3  and K 2 = l o g ( ~ ) =  0 . 4 7 0 0 0 4 . . . ,  as 

given by (4). The  integrals have been compu ted  by averaging over  the predecessors  of  o rder  n of  an 
arbi t rary  point  of  the unit interval as explained in [4]: the value of  n was taken equal to 14. We did not  

take into account  the values of  a comparab le  in size with the scales of  the Can to r  set de te rmined  by the 
n th  o rde r  of  i terat ion,  that  is (~ ) " -d :  in fact, for values of  a smaller than this threshold,  the D I T  goes 
down  abruptly.  

The  values of  the D I T  for  fixed d are given extrapolat ing the data  as a funct ion of  a and are repor ted  

in figs. 1 and 2. M o r e o v e r  a non-l inear  fitting was pe r fo rmed  on these data  with a funct ion of  type 

f ( d )  = C 1 + C2d -c3 , 

where  C 1 ,  C 2 and C 3 are constants  and C~ is just the expected value of  the D I T  in the limit d---> + ~ .  
For  the Can to r  set with equal  weights we found:  C~ = 0.6914 and for  the Can to r  with different  

weights:  C~ = 0.4669, in excellent ag reement  with the theoret ical  values. We note  that,  up to numerical  
errors ,  the convergence  is of  type 1/d.  

In figs. 3 and 4, we repor t  on  the computa t ion  of  the D I T  for the same sets but for  different values of  
( ! ~n-d a. As  explained before ,  when a becomes  comparab le  with ~ 3 ~ , the D I T  goes to zero and this is 

evident  form the figures: this means  that  we have to keep  the structure of  the set fine enough  (by taking 
n sufficiently large) when it is explored by the integral t ransform at decreasing values of  a. 

The  same p rocedure  has then been  applied to the computa t ion  of  the o ther  Renyi  entropies  for  the 
Can to r  set with weights Pl = 1 and P2 = 3, for  which the entropies  are different and given by eq. (4). In 
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Fig. 1. Dynamical integral transform as a function of d, after 
having extrapolated on a, for the ternary Cantor set with 
equal weights. Fitting the data with the function: f (d)= 
CI+C2d -c3, we found: C1=0.6914 (giving K2); C2= 
-0.5156; C 3 = 1.022. 
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Fig. 2. Dynamical integral transform as a function of d, after 
having extrapolated on a, for the ternary Cantor set with 
weights p] =1/4 and p2=3/4. Fitting the data with the 
function: f (d)= Ct + C2d c3, we found: C 1 = 0.4669 (giving 
/(2); C 2 =-0.3305; C 3 = 1.060• 
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Fig. 3. Dynamical  integral transform as a function of d for 
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Fig. 4, Dynamical  integral transform as a function of d for 
different values of a, for the ternary Cantor set with weights 

Pt = 1/4; P2 = 3 / 4 .  

fig. 5, we report on the numerical and analytical curves of the Kq in the range q E [ - 1 0 ,  10]; the precise 
values are quoted in table 1. Note that the entropy K~, as given by formula (22),  is in excellent 
agreement with the theoretical value and that, when q < 1, the numerical entropies are smaller than the 
theoretical ones,  as predicted by theorem 2. We also report in fig. 6 on the Legendre transform of the 
quantity Kq(q - 1). The interpretation of the corresponding curve will be given at the end of section 5. 

We conclude this section by computing the entropies for a non-hyperbolic invariant set, precisely the 
H6non attractor generated by the mapping: x ' =  1 -  ax:+ y; y ' =  bx with a = 1.4 and b = 0.3. The 
q-DIT was computed as usual by approximating the integral with the ergodic mean with respect to the 
physical measure. In figs. 7 and 8, we show the results for the entropies K 0 and K2: the extrapolated 
values are 0.443049 for K 0 and 0.298903 for K2, in agreement with the same entropies given, for 
example, in [13] and [24], where K 0 = 0.445 and K 2 = 0.325---0.02. 

Kq 1.4  

1.2 

1 

0.8 

0.6 

0.4 

0,2 

I J_l  I t I I 1 I I I I I I I L I I L I L - -  

~ R 2 ~  o ,,,,,,,.~,,, 
~ ~ x ..,..~, 

® 

r r I I I I I [ [ I f I I I I I I I I I I 

- 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 4 - 3 - 2 - 1  0 1 2 3 4 5 6 7 8 9 1 0 1 1  

Fig. 5. Numerical  and analytical spectra of the Renyi en- 
tropies Ku for the ternary Cantor set with weights p~ = 1/4; 

P2 = 3/4.  
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Fig. 6. Legendre transform S(7)  of Kq(q  - 1) for the ter- 
nary Cantor set with weights Pl = 1/4; P2 = 3/4. The maxi- 
m u m  of this curve is the topological entropy K,j and the curve 
intersects the bisectrix at the Kolmogorov entropy K,. 
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0 . 5 6  

0 . 5 4  

0.52 

0 . 5  

0.48 

Table 1 
Spectrum of the Renyi entropies Kq for the ternary Cantor  
set with weights pz = 1/4; P2 = 3/4.  Theoretical values are 
computed  according to eq. (4). Numerical  values are com- 
puted according to theorem 2. 

q Theoretical Numerical  

1 - 10.0000 1.26027 1.22908 
2 -9 .00000 1.24767 1.21732 
3 - 8. 00000 1.23228 1. 20292 
4 -7 .00000 1.21306 1.18487 
5 -6 .00000 1.18845 1.16166 
6 -5 .00000 1.15593 1.13081 
7 -4 .00000 1.11149 1.08840 
8 -3 .00000 1.04881 1.02828 
9 -2 .00000  0.959316 0.942217 

10 - 1.00000 0.836988 0.824508 
11 0.00000 0.693147 0.687757 
12 1.00000 0.562335 0.561277 
13 2.00000 0.470004 0.466932 
14 3.00000 0.413339 0.415246 
15 4.00000 0.379486 0.381576 
16 5.00000 0.358576 0.362189 
17 6.00000 0.344944 0.349063 
18 7.00000 0.335553 0.340080 
19 8.00000 0.328758 0.333629 
20 9.00000 0.323636 0.328805 
21 10.0000 0.319645 0.325072 
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Fig. 7. 0-Dynamical  integral t ransform as a function of d, 
after having extrapolated on a, for the H6non attractor. 
Fitting the data with the function: f (d )=  CI + C2d -c3, we 
found: C~ = 0.4430 (giving K0); C 2 = 0.7300; C 3 = 1.3885. 

0 . 5 2  
K 2 • 

0 . 5  

0.48 

0.46 

0 . 4 4  

0 . 4 2  

0.4 

8 \  i 

\ 

\ 

\ o  
\ 

\\• 
\ 

\ 
1 .  

\ 

J 

d i i n n n 

4 6 8 1 0  1 2  1 4  

Fig. 8. Dynamical integral transform as a function of d, after 
having extrapolated on a, for the H~non attractor. Fitting the 
data  with the function: f (d)  = C~ + C2d -c3, we found: C 1 = 
0.2989 (giving/(2) ;  C 2 = 0.5773; C 3 = 0.6682. 

5. A "multientropy" local analysis 

G i v e n  t h e  t r a n s f o r m  a t  t h e  p o i n t  x E J :  

J 

• s u p  
a n d  d e f i n e d  t h e  f u n c t i o n s  o f  p :  r2(., x)= hma__,0+ ( inf ) 1 T p ( a ,  i ~, x ) l ,  w e  s h o w e d  i n  [1 ,5 ]  t h a t :  
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(i) there are two transition points p±(x) such that Tp(/x, x ) = 0 ,  p <p-+(x) and T~(/x,x)= +~, 
p >p±(x) ;  (ii) these points are related to the local exponents of the measure /x, that is 

/3_(x)~p+(x)~p-(x)</3+(x), (23) 

where 

( sup  ~ log/x(B(x, r)) 
/3± (x) = lim t inf 1 

r ~ 0  + log r 
(24) 

B(x, r) being a ball of center x and radius r in the metric I1 II. We now introduce the Local Dynamical 
Integral Transform at x defined as 

Tp(a, /x, d,x)= a-P f g( lllXaY]lla) d/x(y) , 
J 

where the metric lit" II1~ is defined by (5b). By the equivalence of the norms, the transition points of the 
functions 

sup) 
Tp(/x,d,x)= lim ITp(a,/x,d,x)l 

~ o  + inf 

will be again p+-(x). We guess that if the following limits exist (note that the functions Tp are computed 
in their transition points): 

T +(x) = lim 1 + 1 d~+~ -- d log Tp+(x)(/x, d, x ) ,  T-(x) = d++~lim -- ~ log T~-(x)(/X, d, x) 

then they coincide respectively with the local entropies h±(x) defined by the Br in-Katok theorem [23] 
a s  
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5.1. Local entropies for the ternary Cantor set 

We performed a numerical analysis of the Brin-Katok formula for the ternary Cantor set endowed 
with the balanced measure/z of equal weights and we observed two facts: first, the limit for r--->0 ÷ is 
inessential, being the correct value for the entropy already reached when d----> +0% at fixed r. This is not 
surprising if one considers the following relations among the measures of a ball in the different metrics: 

/J.(B(x, ( 1 ) n + d - l r ) )  - - < / J . ( B ( x ,  d, (~)"r)) -< iz(B(x,  ( l ) .+d - , ) )  (26) 

for r - 1  and n E ~ .  
By suitably bounding r with power of ½ and recalling that the measure of the intervals generating the 

Cantor set at the ruth step is 2 -m, we immediately recover the entropy log2 in the limit d--* +o0. We 
show the numerical computation in figs. 9, 10 and 11. 

The second and not yet understood fact appears in figs. 10 and 11 and consists in the periodic 
oscillations with affect, for a particular choice of fixed r, the convergence of the limit for d---> +o0. 

In fig. 12, we report on the computation of the local entropy with the local DIT (the choice of the 
point x does not change the numerical results), after having taken the limit for a---> 0 ÷ ; what we found is 
in agreement with the expected value log 2. We want to point out that a rigorous proof of this result for 
the ternary Cantor set seems difficult to get. For example, the relation (26), which shifts the problem 
from the DIT to the FIT by replacing the measure of the dynamical ball with the measure of a ball in 
the ordinary metric, is apparently not sufficient. 

5.2. Topological distributions of the local entropies 

In [19], Paladin and Vulpiani considered the Legendre transform of the spectrum of the Kq(tX) = gq ,  
that is, 

g q ( q  - 1) = min(q7 - S(7))  (27) 

and they interpreted S(y)  as the topological entropy of the set 12(7), where x E g2(7 ) when, with our 
notation 
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Fig.  9. Local entropy given by Brink-Katok formula for the 
ternary Cantor set with equal weights. - (1 / d ) i~( B(x ,  d, r)) is 
plotted vs. d for fixed r = 0.012048. Fitting the data with the 
function: f ( d )  = C~ + C2d -c3, we found: C~ = 0.6931 (giving 
the local entropy); C 2 = 1.3863; C 3 = 1.0000. 
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Fig.  10. Local entropy given by Brink-Katok formula for the 
ternary Cantor set with equal weights. - (1 / d )l~ ( B(x ,  d, r) ) is 
plotted vs. d for fixed r=0.162105.  Note the oscillations 
which affect the convergence. 



296  J. M, Ghez et al. / Dynamical integral transform 

_ ~ _ . ( a ( = ,  d , , , ) l .6  - -  
0 .79  

0 .78 

0 .77 

0 .76  

0 .75  

0 .74 

0,73 

0 .72  

\ 

i 

t /o-~ 

t / \ 

i \ ) l  \ 
\ / 

\ / 

- - - v - - -  - -  d 

8 16  12  14  16  18  

Fig .  11. Local entropy given by Brink-Katok formula for the 
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plotted vs. d for fixed r = 0 .044194 .  Note the oscillations 
which affect the convergence. 
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Fig.  12. Local dynamical integral transform as a function of 
d ,  after having extrapolated on a, for the ternary Cantor set 
with equal weights. Fitting the data with the function: f (d )  = 
C~ + C2d-C~ we found: C~ = 0 . 7 0 0 1  (giving the local 
entropy); C 2 = - 0 . 5 6 6 0 ;  C 3 = 0 .9122 .  

Iz( B( Tkx, d, r)) ~ e -dr (28) 

for r---> 0 + and k - 0. They called 7 local expansion parameter (LEP): see also Eckmann and Procaccia 
[19] and [25] for similar interpretations. 

When k = 0, the scaling (28) is the physical way to write down mathematically the Brin-Katok 
formula. We think that the correct way of interpreting the function S(3,) is the following: let 12 ~(3') the 
sets of points x for which h+-(x) = 3'. Then S(3') is the common topological entropy for the sets/2±(3"). 
This assertions deserve to be proved analytically, probably using the large deviation techniques 
employed in the rigorous derivation of the a - f ( a )  theory for the generalized dimensions [26] and the 
Bowen characterization of the topological entropy in terms of the n - E spanning sets [27]. Apparently, 
the interpretation of the LEP's as the local Brin-Katok entropies, although implicit in (28), was at our 
knowledge not given before. Note that, according to this interpretation, the maximum of the concave 
curve ,¢(3') is the topological entropy K 0, while the same curve intersects the bissectrix at the 
Kolmogorov entropy K~. This is evident in fig. 6 for the linear Cantor set and follows also from the 
Legendre transform of (4). 

6. Conclusions 

We showed in this paper that a suitable integral transform of wavelet type, that we called Dynamical 
Integral Transform (DIT),  allows us to compute the spectrum of Renyi entropies. For mixing repellers, 
we gave rigorous results, that we can extend to non-hyperbolic invariant sets. 

Our method can be numerically implemented quite easily and compared to other techniques, like the 
correlation integral and the energy integral, shows some universality in the choice of the test functions 
that satisfy all the same asymptotic scalings. Moreover, our technique is intrinsically dynamic, that is we 
extract the entropies by (ergodically) averaging over orbits instead of partitionning the invariant sets as 
prescribed by formula (2), which is the most commonly used for the computation of the Renyi 
entropies. 

Finally, the local version of the DIT allows us to explore the local entropies of strange sets which 
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t o p o l o g i c a l  d i s t r i b u t i o n  we c l a i m e d  is g i v en  by  the  L e g e n d r e  t r a n s f o r m  of  t he  R e n y i  e n t r o p i e s .  T h i s  

ana lys i s  is t he  n a t u r a l  e x t e n s i o n  to  e n t r o p i e s  of  the  capab i l i t y  of  the  i n t eg ra l  t r a n s f o r m  o f  w a v e l e t  t y p e  

to  c a p t u r e  the  local  d i m e n s i o n s  of  f rac ta l  m e a s u r e s  a n d  s h o u l d  give a " m u l t i e n t r o p y "  d e s c r i p t i o n  o f  

s t r a n g e  sets .  
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