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On the Wavelet Analysis for Multifractal Sets 
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We establish a rigorous relation between the wavelet transform of a measure 
and its local scaling exponents. 
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The wavelet transform has been introduced and developed in the last few 
years(l 3) to study a large class of phenomena. Although very different, they 
have the common feature of showing a scale invariance. In particular, the 
wavelet transform has been recently applied to the invariant sets under 
smooth mappings in order to analyze the multifractal properties of the 
measures supported by them. (4-6) In this note we prove a rigorous result in 
this direction, which also explains the numerical results and the illustra- 
tions quoted in refs. 4-6. Let J be a subset of the metric space f2, with 
metric It'll, which supports a probabili ty Borel measure #. We recall that 
the wavelet transform of the measure # is defined a s  (4 6) 

l f j  ( I , x - b l , ) d # ( x )  (1) Tp( a, b ) = -~ g a 

where a and p > 0, b ~ J, J has a finite diameter L, and g: N ~ N satisfies: 

(i) g is ~-~1 o n  N. 

(ii) l ima~ot  a - P g ( r / a ) = O  pointwise for r~>0 and for any p > 0 .  

(iii) g ' ( r ) < 0  for r 6 ( 0 , ~ ) ;  g ' ( r ) > 0  for re(c~, +oo) ;  and r~g'(r) is 
summable on [0, + oo) for any 7 > - 1 .  
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A possible choice for g(r) is 

g(r) = ( d -  r2)e -r2/2 (2) 

where d is the dimension of g2, if it has a manifold structure. This wavelet 
is also called the "Mexican hat" and is used in the numerical computations 
of Tp(a, b). 

The above conditions are sufficient for the following. Of course, they 
can be weakened [for example, one could require that g(r) is of bounded 
variation on ~, with a fast decay at infinity], but this is not really impor- 
tant in view of the numerical computations of Tp(a, b) (see also Remark 2 
below). 

On the other hand, we want to point out that the proof of the theorem 
below does not need some usual properties of the wavelets, for instance, the 
fact that g(r) is of zero mean on ~ with respect to the Lebesgue measure. 

In refs. 4-6, the following nonrigorous scaling for the wavelet trans- 
form has been proposed: 

Tp(2a, Xo +2b)  ~.~+ 2(~(x~ Xo +b) (3) 

where 2 > 0, Xo and b e J c  ~ (which is also supposed to be a vector space), 
and c~(Xo) is the local scaling index of the point x 0 defined as 

U(xo) ,u(B(xo, l)) t,LO+ 

B(xo, l) is a ball of center Xo and radius I. It is clear from (3) that the 
wavelet transform has a transition point from zero to infinity for p = c~(Xo) 
and this point is numerically computable. So one has a very powerful tool 
to locate and evaluate the singularities of the measure #, whose only den- 
sity was obtained by means of the ~- f (e )  spectrum (ref. 7 and Remark 1 
below). The rigorous statement is a little bit different from (3). 

T h e o r e m .  Let J be a subset of f2 which supports a probability Borel 
nonatomic measure # and set for any point b e J 

fl_ = lira inf l~ l))] ~ l im  sup l~  - f l +  (4) 
l~o+ log l t~o+ log l 

Assume fl + < + oo. Then 

inf{p; lim sup [Tp(a, b)[ > O} ~> fl_ (5) 
a ~ O  + 

Remark 1. For  a large class of dynamical systems the limit (4) exists 
kt-almost everywhere and gives the so-called Hausdorff dimension of the 
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measure HD(#)=fl+ =fl , which is also related to some dynamical 
indices such as the metric entropy and the Lyapynov exponents of #.(81 

We also recall that, for a large class of expanding dynamical systems, 
it is possible to compute the Hausdorff dimension of the set of points for 
which the lira sup (resp. lim inf) is the same in (4): this leads to the so- 
called a-f(c~) theory, for which we refer to ref. 9 for rigorous results. 

Remark 2. The numerical computations of Tp(a, b) for multifractal 
sets(4 6,12) clearly show that the infimum ofp  given by (5) is finite. We want 
to remark that for a particular choice of the wavelet this infimum could be 
infinite. 

For example, let us consider the unit segment [0, 1] c ~, endowed 
with the Lebesgue measure, and consider the transform of the Mexican hat 
(2). A straightforward integration gives for each b e [0, 1] 

' F T p ( a , b ) : ~ - ~ { ( 1 - b ) e x p [ _ - 5 \ - - ~ j  ] + b e x p [  ' b 2 

which is zero for any finite, positive p in the limit a ~ 0 + 
This is easily seen to occur when the measure has a density which is 

dominated by the faster decay of the wavelet at infinity given by condition 
(ii) above. This is not the case, in general, for the measures supported by 
fractal sets which can be obtained as the weak limit of Dirac measures. 
However, the problem of adapting a wavelet to a measure (and vice versa) 
in order to find a finite transition point in (5) is open and very interesting 
(see refs. 10 and 11 for some rigorous results in this direction). 

Proof of the Theorem. For any positive 6 there exists an la < 1 such 
that for l <  16 one has 

I~'+~<~#(B(b, 1))<~l ~ ~ (6) 

We introduce the Borel measure, supported by a closed subset of [0, L],  
L being the diameter of J: 

mb(r)=p((B(b,r))~J), r~O 

and rewrite (1) as (r) 
Tp(a, b ) = ~  g dmb(r ) 

Making the change of variable r=r'a (and setting again r'=r) and 
integrating by parts, we get 

1 g'(r) mb(ra ) dr (7) b) = [ g ( r )  m (ra)  i 
AO - - a - ~  ~o 
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Now, since mb(L ) = 1, the first term in the rhs of (7) is simply a-Pg(L /a )  
and it converges to zero when a--+0 +, by the assumption (ii) on the 
wavelet. So we neglect this term in the following since it does not con- 
tribute to the final result. Then we rewrite the second term in the rhs of (7) 
as the sum of three pieces: 

f? - - a  - p  g ' ( r ) m b ( r a ) d r - - a  P g ' ( r ) m b ( r a ) d r  

~ L/a  

- a  -p  g'(r)  mb(ra ) dr (8) 
O le/a 

having chosen a < la/c~. 
The last term in (8) simply gives 

~ L/a  

O < a  - p  g'(r) mb(ra)dr<~a-P[g(r)] c/a 13/a 
~ l~/a 

and, as before, it converges to zero, so that we neglect it. Now we consider 
the second term in (8). By assumption (iii), g'(r) is positive for r~  (~, l Sa] .  
Then, using the bound (6), we get 

fj~l 
a 

- -a  p g'(r)  mb(ra) dr <. - -a  P + (13+ + a)0~(/~+ + ~) [-g(r)]~t~/a 

= a - -P  + (13+ + a)O~(fl+ + 6 ) g ( o ~ )  

- a  P+(13+ +*)e(~+ +~lg( lJa)  (9) 

In the following we neglect the second term in the rhs of (9), since it 
vanishes in the limit a--+ 0 + 

In the same way we have 

~/~ , >. p+(/3 -~) g '(r)  r/~- ~ dr (10) - - a  - p  g (r) rnb(ra ) dr ~ - a  

where the integral on the rhs is finite by the assumption (iii) on the wavelet 
and taking 6 < 1 (in view of the possible value/3_ = 0). 

Finally, the first term in (8) is easily bounded in the same way as 

- -C t  - p  g' (r )mb(ra)dr<~ - - a  - p + ( e - - a )  g'(r)  r ~ - - a  dr (11) 

and 

_ a - p  g ( r ) m b ( r a ) d r  _ a p+(13++a) g,(r) r13++~dr (12,) 
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Collecting (9)-(12), we get 

E f; 3 Tp(a,b)<~a-p+(~_ a) a2a+(~+-~_lcd3.+ag(~)_ g'(r) r ~- adr (13) 

and 

Tp(a,b)>~a p+(~_-a) 

[ ;: ;; ] x _a2a+(~+ 8 ) g,(r) rZ++adr_ g'(r) r z- adr (14) 

When a ~ 0 +, the first term into brackets of (13) and (14) tends to zero, 
so we get 

inf{p; lim sup rTp(a, b)[ >0} ~>fl - 6  
a ~ 0  + 

which gives the theorem, ~i being arbitrary. | 

We incidentally note that assuming for any point x o ~ J a scaling of 
the type 

~(B(xo ,  l ) )  ~ i ~x~ 

a formal application of the above arguments gives the (nonrigorous) 
scaling 

Tp(2a, b) ~.~o+ 2~(b) PTp(a, b) (15) 

which is different from (3), being more related to the fractal properties of 
the set than to the invariance properties of the wavelet. However, the two 
scalings can be numerically studied in the same way./12~ 

We note that this formula is obtained under the hypothesis that fl_ = 
fl+ = ~(b) in (4) and the wavelet transform of # has a transition point 
exactly for p = ~(b). This last fact could be true for the invariant sets with 
good hyperbolic properties as preliminary numerical investigations seem to 
suggest, but nevertheless it is not easy to prove [for example, the oscilla- 
tions exhibited by Tp(a, b) when a -* 0 § could prevent the existence of the 
limit in relation (5)]. 

We finally point out that, taking p in (1) greater than or equal to the 
Hausdorff dimension of the set (which is generally greater than any local 
scaling index fl), the relation (5) implies that the wavelet transform 
ITp(a,b)l will be in general different from zero when a - . O  +, and this 
explains the nice pictures obtained in refs. 4-6 and 12 by applying the 
scalings (3) and (15). 
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