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Abstract

It is known from the theorem of Shannon-McMillan-Breiman that the measure of cylinder
sets decays in the limit exponentially with a rate which is given by the metric entropy. Here
we prove that the measure of cylinders satisfies a Central Limit Theorem for a wide class of
mixing measures which do not have necessarily the Gibbs property. We moreover provide
the rate of convergence (which is algebraic). As a consequence we can then also prove that
the distribution of the first return time in cylinder sets is log-normally distributed and give
the speed of convergence. We also show that the weak invariance principle and the law of the
iterated logarithm hold for the convergence to the entropy in the Shannon-McMillan-Breiman
and for the distribution of the first return time.

1 Introduction

In [13] we studied a large class of invariant measures for dynamical systems that do not have
necessarily the Gibbs property and which we called (φ, f)-mixing maps (see Section 2 for defi-
nition). There we investigated in particular the statistics of multiple return times. Let’s recall
one of those results which motivated the present work. If (Ω, µ, T ) is a measurable dynamical
system, let x ∈ Ω be any point and An(x) ∈ An the cylinder around x belonging to the join
partition An =

∨n−1
j=0 T

−jA, where A is any measurable generating partition of (Ω, µ, T ). We

call τAn(x)(y) = min
{
k > 0 : T ky ∈ An(x), y ∈ An(x)

}
. We next introduce the distribution

µAn(x)

({
y : τAn(x)(y) >

t

µ(An(x))

})
where µAn(x) is the conditional measure on An(x). Inthe limit of n→∞ and for µ-almost every
x this distribution can be shown to converge to e−t for the class of (φ, f)-mixing maps (for
reasonable φ and f). We next consider the first return of the ‘center’ x of the cylinder An(x)
(which we call the repeat function in Sect. 7); for an ergodic measure of finite entropy h(µ)
Ornstein and Weiss [20] have shown that

lim
n→∞

1
n

log τAn(x)(x) = h(µ) (1)
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almost everywhere. It is a remarkable fact that in order to prove fluctuations in the convergence
of the limit (1) one needs the e−t-statistics for return times. This leads us to look at the
distribution

µ

({
x :

log τAn(x)(x)− nh(µ)
σ
√
n

> t

})
(2)

as n→∞, where (the variance) σ2 > 0 will be specified later on. It can be shown [27] and also
Sections 4 and 5, that the e−t-statistics of the first return times combined with a Central Limit
Theorem for the fluctuation to the entropy in the Shannon-McMillan-Breiman theorem (SMB),
will allow to get the convergence in law of (2) to the normal distribution. This kind of result
has been proved for Gibbsian sources [8], for some maps of the interval with topological covering
properties [21] and some non-uniformly hyperbolic maps on the interval [9, 4]. Kontoyiannis [18]
has some results in the setting of finite-valued stationary strongly mixing processes with some
sort of finite-order Markov chain approximation (the assumption on the coefficient ‘γ’ introduced
by Ibragimov [17]). (If σ = 0 then there are some examples when the limiting distribution is not
normal [8].) All these contributions (except that of Kontoyiannis), used explicitly a Gibbs type
characterization of the measure µ which allows to rephrase the CLT for the convergence to the
entropy in Shannon-McMillan-Breiman theorem in terms of a standard CLT for the involved
potential. For recent results on the CLT in various settings for potentials (and in particular for
Gibbs states) see [12, 19, 5]. Note that none of these results provide error terms.

Instead, the contribution of Kontoyiannis quoted above used a CLT directly for the pro-
cesses logµ(An(x)) (without requiring the Gibbs property) which was proven by Ibragimov in
the early sixties. In [17] Ibragimov worked on ‘strongly mixing systems’1 (see also Rosenblatt
[25]). He works in a classical probabilitstic setting of stationary random variables Xj (with
a finite number of states) where it is assumed that the function of conditional expectations
f0 = log p(x0|x−1x−2 . . .) is known. He assumes that this function is sufficiently well approx-
imable, that is the variation ψ(n) = E|f0 − log p(x0|x−1 . . . x−n)| decays sufficiently fast. In the
present paper we consider a typical dynamical systems setting: We assume mixing properties of
the measure with are stronger that the ‘strong mixing property’ of Rosenblatt and Ibragimov,
but in return do not make any assumption on the function f0 and its regularity. (Although we
suspect we have not been able to prove that the rate of decay of ψ as assumed by Ibragimov
and others implies the mixing property of Definition 1.) We moreover obtain error estimates
for the CLT. In fact our approach is more accessible to numerical exploitation that the purely
probabilistic framework.

The main result of this paper is to prove a CLT for the convergence to the entropy in the
SMB theorem for (φ, f)-mixing maps (Theorem 16). The proof uses characteristic functions
and a classical short/long splitting to estimate the distance to the characteristic function of the
normal distribution. A Berry-Esseen type argument then implies the main result. The central
part of the paper however is to provide an expression for the variance in terms of the dynamical
information function In(x) = − logµ(An(x)): It will be shown that the variance of the measure
is given by the linear growth rate of the difference of the second moment and the square of the
first moment (Proposition 14). The speed of convergence to the variance determines the error
terms in the CLT. These results were announced in [14].

1Meaning that
|µ(U ∩ T−m−nV )− µ(U)µ(V )| ≤ α(m)

for all n-cylinders U and, where V is as in Definition 1 where the decay function α(m) goes to zero.
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Our setting is rather general in that it does not require the invariant measure to be Gibbsian.
For Gibbs measures, A Broise [3] has proved error terms for the CLT for a large class of expanding
maps on the interval for which the Perron-Frobenius operator has a ‘spectral gap’ (previous
results had been obtained by Rousseau-Egele [26]). Moreover, for Gibbsian sources of dispersing
billiards Pène [22] has obtained similar estimates.

¿From section 4 to 7 we improve the CLT by showing some of its classical, although not
trivial, consequences either for the processes log µ(An(x)) and for log τAn(x)(x).

In the fourth section we prove the law of iterated logarithm and in the fifth the weak invari-
ance principle for the function logµ(An(x)). The latter follows easily from the CLT in the case
of transitive Gibbs states and can also be proved for a large class of non-uniformly hyperbolic
maps of the interval [9] and for the stationary strongly mixing processes studied in [18].

In the section 6 we prove the exponential law for the first return time and provide error
estimates which in section 7 are finally then used to derive a CLT with error terms and a Weak
Invariance Principle for the repeat time function.

2 Properties of (φ, f)-mixing measures

Let T be a map on a space Ω and µ an invariant probability measure on Ω. Moreover let A be
a finite measurable partition of Ω and denote by An =

∨n−1
j=0 T

−jA its n-th join which also is a
measurable partition of Ω for every n ≥ 1. The atoms of An are called n-cylinders. Let us put
A∗ =

⋃
nAn for the collection of all cylinders in Ω and put |A| for the length of an n-cylinder

A ∈ A∗, i.e. |A| = n if A ∈ An.
We shall assume that A is generating, i.e. that the atoms of A∞ are single points in Ω.

Definition 1 Assume
(i) f : A∗ → N0 so that f(A) ≥ f(B) if |A| ≥ |B|, A,B ∈ A∗. If C is a union of n-cylinders
Cj (some n) then f(C) = maxj f(Cj).
(ii) φ : N0 → R+ is non-increasing.

We say that the dynamical system (T, µ) is (φ, f)-mixing if∣∣µ(U ∩ T−m−nV )− µ(U)µ(V )
∣∣ ≤ φ(m)µ(U)µ(V )

for all m ≥ f(U), measurable V (in the σ-algebra generated by A∗) and U which are unions
cylinders of the same length n.2

Oftentimes the function f depends only on the length of the cylinders, that is f(A) = f(|A|).
The function φ determines the rate at which the mixing occurs and the separation function f
specifies a lower bound for the size of the gap m that is necessary to get a good mixing property.
In the special case when f is constant 0 (or some other constant) then (T, µ) is traditionally
called φ-mixing. There is a tradeoff between the decay function φ and the separation function
f . Typically one can achieve to have φ decay faster at the expense of f which as a consequence
will be increasing faster.

Examples
2Probabilists like to refer to this mixing property as ψ-mixing. In this paper however we adher to the notation

favoured by dynamicists and therefore use the letter φ.
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1. Classical φ-mixing systems (see, e.g. [8]): f = 0.

2. Dispersing billiards [22]: f is linear.

3. Gibbs measures for rational maps with critical points: f is linear, φ is exponential.

4. Multidimensional piecewise continuous maps [21]: f depends on the individual cylinders.

2.1 General properties

For r ≥ 1 and (large) N denote by Gr(N) the r-vectors ~v = (v1, . . . , vr) for which 1 ≤ v1 < v2 <
· · · < vr ≤ N . (The set Gr(N) is the intersection of a cone in Zr with a ball of radius N and
centre at the origin.) Let t be a positive parameter, put N = [t/µ(W )] (the normalised time)
and W ⊂ Ω. Then the entries vj of the vector ~v ∈ Gr(N) are the iterates at which all the points
in C~v =

⋂r
j=1 T

−vjW , hit the set W during the time interval [1, N ].

Lemma 2 [13] Let (T, µ) be (φ, f)-mixing, let r > 1 be an integer and let Wj ⊂ Ω, be unions
of nj-cylinders, j = 1, . . . , r.

Then for all ‘hitting vectors’ ~v ∈ Gr(N) with return times vj+1 − vj ≥ f(Wj) + nj (j =
1, . . . , r − 1) one has ∣∣∣∣∣∣

µ
(⋂r

j=1 T
−vjWj

)
∏r

j=1 µ(Wj)
− 1

∣∣∣∣∣∣ ≤ (1 + φ(d(~v, ~n)))r − 1,

and d(~v, ~n) = mink(vk+1 − vk − nk).

The following exponential estimate has previously been shown for φ-mixing measures in [11] and
for α-mixing measures in [1].

Lemma 3 [13] There exists a 0 < γ1 < 1 so that for all A ∈ A∗:

µ(A) ≤ γ
|A|
1 .

This lemma implies in particular that µ has positive entropy [13]. In remainder of this section
let us assume that µ is a (φ, f)-mixing probability measure on Ω for the map T : Ω → Ω where
f(A) for all A ∈ A∗ depends only on the length |A| of the cylinder A. Hence we shall now write
f(n) where n ∈ N is the length of the cylinders. For Lemmas 4 and 5 we assume that f grows
no more than linearly, that is, there exists a constant C0 so that f(n) ≤ C0n for all n.

We are interested in the cylinders that return within very short time to themselves. In
particular let us put

Sn = {A ∈ An : A ∩ T jA 6= ∅ for some 1 ≤ j < κ(n/2)},

where κ(m) =
[

m
1+C0

]
.

Lemma 4 There exists a 0 < γ2 < 1 so that for all large enough n:∑
A∈Sn

µ(A) ≤ γn
2 .
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Proof. If we put ∆ = f(κ(n
2 )), then f(j) + ∆ < n

2 for j = 1, . . . , κ(n
2 ) − 1. Let A ∈ An and

assume that A ∩ T jA 6= ∅ for some j < κ(n
2 ). For B ∈ Aj so that A ⊂ B one has by Lemma 3

µ(A) ≤ µ(B ∩ T−j−∆T j+∆A) ≤ (1 + φ(∆))µ(B)µ(T j+∆A) ≤ (1 + φ(∆))µ(B)γn−j−∆
1 ,

where T j+∆A is a cylinder of length n− j −∆. Therefore

∑
A∈Sn

µ(A) ≤ (1 + φ(∆))
κ(n

2
)−1∑

j=1

γn−j−∆
1

∑
B∈Aj

µ(B) ≤ c1γ
n−κ(n

2
)−∆

1 ,

for a suitable constant c1 ≤ 1+φ(∆)
1−γ1

. Put γ2 =
√
γ1. 2

Lemma 5 There exists a 0 < γ3 < 1 so that for all large enough n:

µ
({
x ∈ Ω : τAn(x)(x) < n

})
≤ γn

3 .

Proof. If for k < n put ρk = µ
({
x ∈ Ω : τAn(x)(x) = k

})
, then ρn ≤

∑
A∈An µ(A ∩ T−kA),

where in view of Lemma 4 it is enough to consider κ(n) ≤ k < n. Put ` = κ(k) and we get by
the mixing property

µ(A ∩ T−kA) ≤ µ(A`(A) ∩ T−kA) ≤ (1 + φ(k − `))µ(A`(A))µ(A) ≤ c1γ
`
1µ(A),

since k − ` ≥ f(`), where A`(A) is the `-cylinder that contains A. Hence

ρk ≤
∑

A∈An

µ(A`(A) ∩ T−kA) ≤ c1γ
`
1

and therefore, by Lemma 4

n−1∑
k=1

ρk ≤ γn
2 +

n−1∑
k=κ(n)

c1γ
k

1+C0
1 ≤ γn

2 + c2γ
κ(n)
1+C0
1 .

Now choose γ3 > max

(
γ2, γ

1
(1+C0)2

1

)
less than 1. 2

The metric entropy h for an invariant measure µ is h = limn→∞
1
nH(An), where, as usual,

H(An) =
∑

A∈An −µ(A) log µ(A).

Lemma 6 Assume that f(m) ≤ C1m
γ for some constant C1 and 0 ≤ γ < 1.

Then for every γ′ ∈ (γ, 1) there exists a constant C2 so that for all m:∣∣∣∣h− 1
m
H(Am)

∣∣∣∣ ≤ C2
1

m1−γ′
.

Proof. We shall first show that

H(An+m+∆) ≥ H(An) +H(Am)− φ(∆), (3)
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if ∆ ≥ f(min(n,m)). Let us assume that m ≤ n, f(m) < m and put ∆ = f(m), B = Am,
C = T−m−∆An and D = T−mA∆ we obtain (using the fact that T is (φ, f)-mixing in fourth
line)

H(An+m+∆) =
∑

B∈B,C∈C,D∈D
µ(B ∩D ∩ C) log

1
µ(B ∩D ∩ C)

≥
∑

B∈B,C∈C,D∈D
µ(B ∩D ∩ C) log

1
µ(B ∩ C)

≥
∑

B∈B,C∈C
µ(B ∩ C) log

1
µ(B)µ(C)(1 + φ(∆))

= H(Am) +H(An)− log(1 + φ(∆)).

This proves the estimate (3).
Let γ < γ′ < 1

2 and assume that u is large enough (so that uγ′ ≥ f(u)). Since∣∣∣H(Au)−H(Au−∆)
∣∣∣ ≤ H(Au|Au−∆) ≤ H(A∆) ≤ c1∆,

we get (with ∆ = [uγ′ ])

H(A2u) ≥ 2H(Au−[uγ′ ])− φ([uγ′ ]) ≥ 2H(Au)− φ([uγ′ ])− 2c1uγ′ ,

and by iteration the following lower bound:

H(A2iu) ≥ 2iH(Au)−
i−1∑
j=0

2i−1−j
(
φ([(2ju)γ′ ]) + 2c1(2ju)γ′

)
≥ 2iH(Au)− c2u

γ′2i, (4)

where the (small) terms φ([(2ju)γ′ ]) have been absorbed by the constant c2.
To get a lower bound for arbitrary integers n let m arbitrary (large enough) and let n be

some large number. We have n = km+ r where 0 ≤ r < m and consider the binary expansion
of k: k =

∑`
i=0 εi2

i, where εi = 0, 1 (ε` = 1, ` = [log2 k]). We also put kj =
∑`−j

i=0 εi2
i (k0 = k).

Obviously kj+1 < 2`−j . If we put a(u) = H(Au) then a(u) ∼ u. We separate the ‘first’ block of
length kj+1m from the ‘second’ block of length ε`−j2`−jm by a gap of length (kj+1m)γ′ which
we cut away from the first block)

a(kj) = a(ε`−j2`−jm+ kj+1m)

≥ a(ε`−j2`−jm) + a(kj+1m− [(kj+1m)γ′ ])− φ([(kj+1m)γ′ ])

≥ a(ε`−j2`−jm) + a(kj+1m)− c1(kj+1m)γ′ − φ([(kj+1m)γ′ ])

≥ a(ε`−j2`−jm) + a(kj+1m)− c12(`−j)γ′mγ′ − φ([(kj+1m)γ′ ]),

for j = 0, 1, . . . , `− 1. Iterating this formula and summing over j yields (c3 ≤ max(c1, c2))

a(km) ≥
∑̀
j=0

(
ε`−j2`−ja(m)− c3

(
mγ′2`−j + (2`−jm)γ′

)
− φ([(kj+1m)γ′ ])

)
≥ ka(m)− c4m

γ′2`,
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where we used (4) in the first inequality and had the the φ-term absorbed by the constant c4.
As above we estimate the contribution made by the remainder r as follows

|a(n)− a(km)| ≤ σ
(
An|Akm

)
≤ c1r ≤ c1m.

Therefore, if we use the fact that 2` ≤ k, divide

a(n) ≥ ka(m)− c4m
γ′k − c1m

by n and let n go to infinity (k →∞), we obtain

h = lim inf
n→∞

a(n)
n

≥ a(m)
m

− c4m
γ′−1

for all m large enough. This proves the lemma since h ≤ a(m)
m . 2

2.2 The variance of the information function

For a partition P let us define K(P) =
∫
Ω log2 µ(P (x)) dµ(x) where P (x) is the atom of P that

contains the point x (the function K will be needed to express the variance in Theorem 16).
Note that

K(P) =
∑
P∈P

ψ2(µ(P )),

where ψ2(t) = t log2 t. Similarly, for two partitions B and C, one has the conditional quantity

K(C|B) =
∑

B∈B,C∈C
µ(B)ψ2

(
µ(B ∩ C)
µ(B)

)
=

∑
B∈B,C∈C

µ(B ∩ C) log2 µ(B ∩ C)
µ(B)

.

Lemma 7 For any two partitions B, C for which µ(B∩C)
µ(B) ≤ 1/e ∀ B ∈ B, C ∈ C:

(i) K(C|B) ≤ K(C)
(ii)

√
K(B ∨ C) ≤

√
K(C) +

√
K(B).

Proof. (i) The function ψ2(t) = t log2 t is convex on the interval [0, 1/e], that is
∑

i αiψ2(xi) ≤
ψ2(

∑
i αixi) for numbers xi ∈ [0, 1/e] and positive αi for which

∑
i αi = 1. Hence with αi = µ(B)

and xi = µ(B∩C)
µ(B) one has

K(C|B) =
∑
B,C

µ(B)ψ2

(
µ(B ∩ C)
µ(B)

)
≤
∑
C

ψ2(µ(C)) = K(C).

(ii) Minkowski’s inequality on L2 spaces yields

√
K(B ∨ C) =

 ∑
B∈B,C∈C

µ(B ∩ C) log2 µ(B ∩ C)

 1
2

≤

∑
B,C

µ(B ∩ C) log2 µ(B ∩ C)
µ(B)

 1
2

+

∑
B,C

µ(B ∩ C) log2 µ(B)

 1
2

≤
√
K(C) +

√
K(B)
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(as K(C|B) ≤ K(C)), where in the last estimate we used the inequality from part (i) of this
lemma. 2

Let us note that for w ≥ 1 one can define the

Kw(P) =
∑
P∈P

µ(P )| logµ(P )|w

(K1 = H and K2 = K) for which one proves the following result in the same way as Lemma 7.

Lemma 8 For any two partitions B, C for which µ(B∩C)
µ(B) ≤ e1−w ∀ B ∈ B, C ∈ C:

(i) Kw(C|B) ≤ Kw(C)
(ii) Kw(B ∨ C)1/w ≤ Kw(C)1/w +Kw(B)1/w.

Let us note that Lemma 8(ii) implies that the sequence am(w) = Kw(Am)1/w is subadditive
which implies that limm→∞

1
mKw(Am)1/w exists and equals the lim inf. In particularKw(Am) ≤

c1m
w for all m and some constant c1 which depends on w (we shall use this fact at the end of

the proof of Theorem 16).

For m = 1, 2, . . . denote by Am(x) the atom in Am which contains the point x ∈ Ω. If we put
Xm, m = 1, 2, . . ., for the function (random variable) given by Xm(x) = − logµ(Am(x)) then
it’s expected value is

µ(Xm) =
∑

B∈Am

−µ(B) logµ(B) = H(Am).

The variance of Xm is

σ2(Xm) = µ ((Xm −H(Am))2) = K(Am)−H2(Am).

For a partition D let us write σ2(D) = K(D)−H2(D)) and similarly for conditional variance.
The function In(x) = − logAn(x) is often called the nth “information function” on Ω. With

this notation we have H(An) =
∫
Ω In dµ and σ2(An) is the variance of In.

Lemma 9 Let B and C be two partitions. Then

σ(B ∨ C) ≤ σ(C|B) + σ(B).

Proof. By Minkowski’s inequality

σ(B ∨ C) =

 ∑
B∈B,C∈C

µ(B ∩ C)
(

log
µ(B)

µ(B ∩ C)
−H(C|B) + log

1
µ(B)

−H(B)
)2
 1

2

≤

 ∑
B∈B,C∈C

µ(B ∩ C)
(

log
µ(B)

µ(B ∩ C)
−H(C|B)

)2
 1

2

+

 ∑
B∈B,C∈C

µ(B ∩ C)
(

log
1

µ(B)
−H(B)

)2
 1

2

= σ(C|B) + σ(B).
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This completes the proof. 2

The remainder of this section will be devoted to prove that 1
nσ

2(An) is bounded uniformly in n
(Lemma 12) and then to show that it converges (Proposition 14). For this purpose we will need
the following pair of arithmetic lemmas.

Lemma 10 Let γ′ ∈ (0, 1/2) and define for integer x ([.] denotes the integer part) :

T (x) =

[
x

2
−
(
x

2

)γ′
]

S(x) = x− 2T (x).

Then there exists an x0 so that T (x)γ′ ≤ S(x) ≤ 3T (x)γ′ for all x > x0.

Proof. Put x′ = T (x) and y = x− 2x′ = S(x), then

y = x− 2

(
x

2
−
(
x

2

)γ′
)

+ ε

= ε+ 2
(
x

2

)γ′

= ε+ α(x′)

(
x

2
−
(
x

2

)γ′
)γ′

= ε′ + α(x′)x′γ
′

where 0 ≤ ε ≤ 2, 1 ≤ α(x′) ≤ 3, for all x large enough and 0 ≤ ε′ ≤ 5. Hence x′γ
′ ≤ y ≤ 3x′γ

′

for all x larger than some x0. 2

Lemma 11 Let 0 < γ′ < 1 and c2 ≥ 1 be given. For any integer n0 ≥ 1 and any sequence of
integers m0,m1,m2, . . ., for which 0 ≤ mj ≤ 3nγ′

j , where recursively nj+1 = 2nj +mj, one has

n02j ≤ nj ≤ pjn02j ,

where pj = exp
∑j−1

`=0
3

2`(1−γ′) (p∞ <∞).

Proof. The lower bound is obvious. The upper bound is shown by induction. Since pj ≥ 1, we
get

nj+1 ≤ 2nj + 3nγ′

j

≤ 2pjn02j + 3(pjn02j)γ′

= 2j+1pjn0

(
1 +

3
(pjn02j)1−γ′

)

≤ 2j+1pjn0

(
1 +

3
2j(1−γ′)

)
≤ pj+12j+1n0.
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Lemma 12 Assume that φ is summable and that f(m) ≤ C3m
γ, m ∈ N, for some C3 and

γ ∈ [0, 1
2).

Then there exists a constant C4 so that

0 ≤ K(An)−H2(An) ≤ C4n.

Proof. The lower inequality follows from Schwarz’s inequality:

H(An) =
∑

A∈An

µ(A)(− logµ(A)) ≤
( ∑

A∈An

µ(A) log2 µ(A)

) 1
2

=
√
K(An),

which implies K(An)−H2(An) ≥ 0 for all n.
Let γ′ ∈ (γ, 1

2). Let n be some (large) integer and n′ = 2n+m, where nγ′ < m < 3nγ′ (for
n large enough so that nγ′ ≥ 3f(n) where the factor 3 is needed in the footnote). Put B = An,
C = T−m−nAn. Then

H(B ∨ C) =
∑

B∈B,C∈C
µ(B ∩ C) log

1
µ(B ∩ C)

=
∑

B∈B,C∈C
µ(B ∩ C)

(
log

1
µ(B)

+ log
1

µ(C)
+ ρ1(B,C)

)
= H(B) +H(C) + ρ1.

Here we used the mixing property µ(B ∩ C) = µ(B)µ(C)(1 + ρ2(B,C)), where |ρi| ≤ φ(m), i =
1, 2. We thus obtain

σ2(B ∨ C) =
∑

B∈B,C∈C
µ(B ∩ C)

(
log

1
µ(B ∩ C)

−H(B ∨ C)
)2

=
∑

B∈B,C∈C
µ(B ∩ C)

(
log

1
µ(B)

+ log
1

µ(C)
−H(B)−H(C) + ρ3

)2

where the absolute value of ρ3 = ρ2 − ρ1 is bounded by 2φ(m). By Minkowski’s inequality :√
E(B, C)− 2φ(m) ≤ σ(B ∨ C) ≤

√
E(B, C) + 2φ(m),

where

E(B, C) =
∑

B∈B,C∈C
µ(B ∩ C)

(
log

1
µ(B)

+ log
1

µ(C)
−H(B)−H(C)

)2

=
∑

B∈B,C∈C
µ(B ∩ C)

(
log

1
µ(B)

−H(B)
)2

+
∑

B∈B,C∈C
µ(B ∩ C)

(
log

1
µ(C)

−H(C)
)2

+ 2F (B, C)

= σ2(B) + σ2(C) + 2F (B, C).
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We estimate the last term, 2F (B, C), as follows

F (B, C) =
∑

B∈B,C∈C
µ(B ∩ C)

(
log

1
µ(B)

−H(B)
)(

log
1

µ(C)
−H(C)

)

=
∑

B∈B,C∈C
µ(B)µ(C)(1 + ρ2(B,C))

(
log

1
µ(B)

−H(B)
)(

log
1

µ(C)
−H(C)

)
.

By Schwarz’s inequality

|F (B, C)| ≤ ‖ρ2‖
∑

B∈B,C∈C
µ(B)µ(C)

∣∣∣∣log
1

µ(B)
−H(B)

∣∣∣∣ · ∣∣∣∣log
1

µ(C)
−H(C)

∣∣∣∣
≤ φ(m)σ(B)σ(C).

Hence
σ(B ∨ C) ≤

√
σ2(C) + σ2(B) + 2φ(m)σ(C)σ(B) + 2φ(m), (5)

and since σ(B) = σ(C) = σ(An), we get

σ(B ∨ C) ≤ σ(An)
√

2
√

1 + φ(m) + 2φ(m).

Next we fill the gap of length m for which we use Lemmas 9 and 73:

|σ(A2n+m)− σ(B ∨ C)| ≤ σ(Am|B ∨ C) ≤
√
K(Am) ≤ c1m ≤ c2n

γ′

(c2 ≤ 3c1). Then (if φ(m) ≤ 1)

σ(An′) ≤
√

2σ(An)(1 + φ(m)) + c3n
γ′

≤
√

2σ(An)

(
1 +

c4
nγ′

+
c3n

γ′

σ(An)

)
, (6)

(c3 ≤ 2 + 2c2), where we used that φ(m) ≤ c4
m for all m and some c4 (as φ is summable).

Moreover let us note that if σ(An′) >
√
n′, then

σ(An) ≥ σ(An′)− c3n
γ′

√
2 (1 + φ(m))

≥ 1
3

(√
n′ − c3n

γ′
)
≥ c5

√
n′

3We are allowed to use Lemma 7 because µ(A)/µ(B∩C) ≤ 1/e. To see this consider the gap which is of length
m and let D ∈ T−n−[m/3]A[m/3] so that A ⊂ B ∩D ∩ C. Then since m/3 ≥ f(n) we get by Lemma 2

|µ(B ∩D ∩ C)− µ(B)µ(D)µ(C)| ≤ const.µ(B)µ(C)µ(D)φ(m/3)

and by the (φ, f)-mixing property

|µ(B ∩D ∩ C)− µ(B ∩ C)µ(D)| ≤ const.µ(B ∩ C)µ(D)φ(m/3).

This implies then that

µ(A)

µ(B ∩ C)
≤ µ(B ∩D ∩ C)

µ(B ∩ C)
≤ const.µ(D)φ(m/3) ≤ const.γ

m/3
1

which is < 1/e if m is large enough.

11



for some positive c5 and for all n larger than some N . By Lemma 11 we thus obtain

nγ′

σ(An)
≤ nγ′

c5
√
n′
≤ nγ′

c5
√

2n
≤ c6n

−( 1
2
−γ′).

We apply this estimate in (6) as follows:

σ(An′) ≤
√

2σ(An)
(
1 + c4n

−γ′ + c3c6n
−( 1

2
−γ′)

)
≤

√
2σ(An)

(
1 + c7n

−α) , (7)

where α = min(γ′, 1
2 − γ′). Let us assume that N ≤ x0, where x0 is from Lemma 10. Then for

j = 1, 2, 3, . . . we define qi = c8 exp
∑j−1

`=−1 c72
−α`, where c8 ≥ 1 is so that σ(Aj) ≤ c8

√
j for

j ≤ 3x0.
Let n be an arbitrary (large enough) integer and construct a finite sequence of integers

n̂0, n̂1, n̂2, . . . , n̂r, so that n̂0 = n and n̂j+1 = T (n̂j), j = 0, 1, 2, . . . , r − 1, where T was defined
in Lemma 10 and r is such that x0 ≤ n̂r ≤ 3x0 < n̂r−1. If we put nj = n̂r−j , mj = nj+1 − 2nj

(j = 0, 1, . . . , r), then by Lemma 10 nγ′

j ≤ mj ≤ 3nγ′

j .
We will now show that σ(Anr) ≤ qr

√
3p∞x0nr. Suppose σ(Anj ) ≤ qj

√
3p∞x0 2j/2 for j ≤ k

(k < r). If σ(Ank+1) ≤ 2(k+1)/2 then obviously σ(Ank+1) ≤ qk+1
√

3p∞x0 2(k+1)/2 (induction step
is trivial) and if σ(Ank+1) > 2(k+1)/2 then we complete the induction step with (7) as follows:

σ(Ank+1) ≤
√

2 qk
√

3p∞x0 2k/2
(
1 + c72−kα

)
≤ qk+1

√
3p∞x0 2(k+1)/2.

Since σ(An0) ≤ q0
√

3p∞x0 2n0/2 by choice Lemma 11, we conclude that σ(Anj ) ≤ qj
√

3p∞x0 2j/2

holds for all j ≤ r and in particular σ(Anr) ≤ qr
√

3p∞x0 2r/2 ≤ qr
√

3p∞x0nr. Since n was
arbitrary we thus have shown that σ(An) ≤ c9

√
n for all n and some c9 ≤ q∞

√
3p∞x0. Put

C4 = c29. 2

Corollary 13 The limit

k = lim
n→∞

1
n2
K(An)

exists and is equal to h2.

Proposition 14 The limit

σ2
∞ = lim

m→∞
1
m
σ2(Am)

exists and is finite. Moreover∣∣∣∣∣σ2
∞ − σ2(Am)

m

∣∣∣∣∣ ≤ C5

(
φ(mγ′) +m−( 1

2
−γ′)

)
,

where γ < γ′ < 1
2 and C5 depends on γ′.

Proof. By Lemma 12 we only know that 1
mσ

2(Am) is bounded uniformly in m. As in the proof
of Lemma 12 let γ < γ′ < 1

2 and assume that u is large enough (so that uγ′ ≥ f(u). We have
that ∣∣∣∣σ(Au)− σ(Au−[uγ′ ])

∣∣∣∣ ≤ σ

(
Au|Au−[uγ′ ]

)
≤
√
K
(
A[uγ′ ]

)
≤ c1u

γ′ .

12



By (6) we get

σ(A2u) ≤
√

2σ(Au−[uγ′ ])
(
1 + φ([uγ′ ]) + c2u

−( 1
2
−γ′)

)
≤

√
2σ(Au)

(
1 + φ([uγ′ ]) + c2u

−( 1
2
−γ′)

)
+ 3uγ′

≤
√

2σ(Au)
(
1 + φ([uγ′ ]) + c3u

−( 1
2
−γ′)

)
,

and by iteration we obtain the following upper bound:

σ(A2iu) ≤ 2i/2σ(Au)
i−1∏
j=0

(
1 + φ([(2ju)γ′ ]) + c3(2ju)−( 1

2
−γ′)

)
≤

2i/2σ(Au)
(
1 + c4

(
φ(uγ′) + u−( 1

2
−γ′)

))
,

where we used that φ([(2ju)γ′ ]) ≤ const.2−jγ′φ(uγ′).
To get an upper bound for arbitrary integers n we proceed as in the proof of Lemma 6. We

let n = km + r (0 ≤ r < m) and consider the binary expansion of k: k =
∑`

i=0 εi2
i (εi = 0, 1,

ε` = 1, ` = [log2 k]). Put kj =
∑`−j

i=0 εi2
i (k0 = k) and a(u) = σ(Au), then a(u) ≤ C4

√
u (by

Lemma 12) and using the inequality (5) yields

a2(kj) = a2(ε`−j2`−jm+ kj+1m)

≤ a2(ε`−j2`−jm) + a2(kj+1m− [(kj+1m)γ′ ])

+3φ((kj+1m)γ′)C2
4

√
ε`−j2`−jm

√
kj+1m− [(kj+1m)γ′ ]

≤ a2(ε`−j2`−jm) + a2(kj+1m) + c1(kj+1m)γ′

+c5(kj+1m)−γ′
√
ε`−j2`−jm

√
kj+1m

≤ a2(ε`−j2`−jm) + a2(kj+1m) + c12(`−j)γ′mγ′ + c5m
1−γ′2(`−j)(1−γ′)

≤ a2(ε`−j2`−jm) + a2(kj+1m) + c62(`−j)βmβ

(0 ≤ j < `), where β = max(γ′, 1− γ′) < 1. Iterating this formula and summing over j yields

a2(km) ≤
∑̀
j=0

(
a2(ε`−j2`−jm) + c62(`−j)βmβ

)

≤
∑̀
j=0

ε`−j2`−ja2(m)
(
1 + c4

(
φ(mγ′) +m−( 1

2
−γ′)

))
+ c72`βmβ

≤ ka2(m)
(
1 + c4

(
φ(mγ′) +m−( 1

2
−γ′)

)
ht) + c8(km)β ,

where we used (8) in the second inequality. Since (by Lemma 9) |a(n)− a(km)| ≤ σ
(
An|Akm

)
≤

c1r ≤ c1m we get

lim sup
n→∞

a2(n)
n

≤ lim sup
k→∞

ka2(m)
(
1 + c4

(
φ(mγ′) +m−( 1

2
−γ′)

))
+ c8n

β + c1m

km

≤
(
1 + c4

(
φ(mγ′) +m−( 1

2
−γ′)

)) a2(m)
m

13



for all m large enough. Hence as m→∞ the right hand side can be replaced by a lim inf. This
proves that the limit σ∞ = limn→∞

a2(m)
m exists. We moreover have proven the upper bound

σ2
∞ ≤ a2(m)

m
+ C5

(
φ(mγ′) +m−( 1

2
−γ′)

)
.

The lower bound is obtained in the same way. 2

2.3 Higher order moments of the information function

In the proof of Theorem 16 we will need and estimate on some higher order moment of the
information function. In the following lemma we shall estimate the third order. Below it will
become clear that indeed we can estimate all orders although we will not need any of the
estimates here.

In the following lemma we shall in fact estimate the quantity

Nw(P) =
∑
P∈P

µ(P )
∣∣∣∣log

1
µ(P )

−H(P)
∣∣∣∣w .

Lemma 15 Assume that φ is summable and that f(m) ≤ C3m
γ, m ∈ N, for some C3 and

γ ∈ [0, 1
2).

Then there exists a constant C6 so that

N3(An) ≤ C6n
3/2 log n.

Proof. Let γ′ ∈ (γ, 1
2), n be some (large) integer and n′ = 2n + m, where nγ′ < m < 3nγ′

(nγ′ ≥ f(n)). Put B = An, C = T−m−nAn. With ρi, i = 1, 2, 3, 4 as in the proof of Lemma 12,
we obtain (as H(B ∨ C) = H(B) +H(C) + ρ2) with Minkowsky’s inequality (on L3 spaces)

N
1
3
3 (B ∨ C) =

 ∑
B∈B,C∈C

µ(B ∩ C)
∣∣∣∣log

1
µ(B ∩ C)

−H(B ∨ C)
∣∣∣∣3
 1

3

≤ E
1
3
3 (B, C) + 2φ(m)

where

E3(B, C) =
∑

B∈B,C∈C
µ(B ∩ C)

∣∣∣∣log
1

µ(B)
+ log

1
µ(C)

−H(B)−H(C)
∣∣∣∣3

≤
∑

B∈B,C∈C
µ(B ∩ C)

∣∣∣∣log
1

µ(B)
−H(B)

∣∣∣∣3

+
∑

B∈B,C∈C
µ(B ∩ C)

∣∣∣∣log
1

µ(C)
−H(C)

∣∣∣∣3 + 3F12(B, C) + 3F21(B, C)

= N3(B) +N3(C) + 3F12(B, C) + 3F21(B, C).
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We estimate the term F12(B, C) as follows

F12(B, C) =
∑

B∈B,C∈C
µ(B ∩ C)

∣∣∣∣log
1

µ(B)
−H(B)

∣∣∣∣ (log
1

µ(C)
−H(C)

)2

≤
∑

B∈B,C∈C
µ(B)µ(C)(1 + ‖ρ3‖)

∣∣∣∣log
1

µ(B)
−H(B)

∣∣∣∣ (log
1

µ(C)
−H(C)

)2

≤
∑

B∈B,C∈C
µ(B)σ2(C)(1 + φ(m))

∣∣∣∣log
1

µ(B)
−H(B)

∣∣∣∣
≤ (1 + φ(m))σ2(C)σ(B).

(in the last line we used Schwarz’s inequality). Hence, by Lemma 12

F12(B, C) ≤ c1n
3
2

and similarly
F21(B, C) ≤ c1n

3
2 ,

for some c1. Hence

N
1
3
3 (B ∨ C) ≤ 3

√
N3(C) +N3(B) + 6c1n

3
2 + 2φ(m).

To fill in the gap of length m we use Lemma 9 and the estimate on K3:∣∣∣N3(A2n+m)−N3(B ∨ C)
∣∣∣ ≤ N3(A2n+m|B ∨ C) ≤ K3(Am) ≤ c2n

3γ′ .

Hence

N3(An′) ≤ N3(B ∨ C) + c2n
3γ′ ≤ N3(C) +N3(B) + c3n

3
2 = 2N3(An) + c3n

3
2 .

Let n be an arbitrary (large enough) integer and construct as in the proof of Lemma 12
numbers nj , mj (j = 0, 1, . . . , r) satisfying nj+1 = 2nj +mj and nγ′

j ≤ mj ≤ 3nγ′

j . By induction
one then shows that

N3(Anr) ≤ c4rn
3
2
r ,

for some c4 chosen so that N3(An0) ≤ c4rn
3
2
0 . As r ∼ log nr we get that N3(An) ≤ C6n

3
2 log n

for a suitable constant C6 and all n. 2

In fact, in general we get
Nw(An) ≤ C6(w)nw/2 logw−2 n.

where the constant C6(w) depends on the order w.

3 The Central Limit Theorem for Shannon-McMillan-Breiman

We are interested in the limiting behaviour of the function

Ξn(t) = µ

({
x ∈ Ω :

− logµ(An(x))− nh

σ
√
n

≥ t

})
for real valued t and a suitable σ, where h is the metric entropy of µ. The Central Limit Theorem
states that this quantity converges to the normal distribution N(t) = 1√

2π

∫∞
t e−s2/2 ds as n goes

to infinity if there exists a suitable σ which is positive. Indeed:
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Theorem 16 Assume that φ is summable, |A| < ∞ and that there exists a γ ∈ [0, 1
2) so that

f(n) ≤ C1n
γ (for some C1) for all n.

Then the limit which defines the variance σ converges:

σ2 = lim
m→∞

K(Am)−H2(Am)
m

,

and moreover
|Ξn(t)−N(t)| ≤ C7

1
nδ

for all t and all δ < min(1
4 ,

1
2 − γ), provided σ 6= 0.

Proof. The proof proceeds in two stages. We first represent logµ(An(x)) by a sum of ‘random
variable’ that have some independence property. In its course we obtain a representation by a
shorter sum of random variables and estimate the error we make in adjusting the cutoff value t.
In the second part we reduce to the case where we have independent random variables to which
we can apply Berry-Esseen’s estimate.

By Lemma 14 |σ∞ − σm| ≤ C5(φ(∆) +m−( 1
2
−γ′)) where σ2

m = σ2(Am)
m .

Assume that n = rm′ −∆ where m′ = m + ∆ (∆ = f(m)) and j = 0, 1, . . . , r put Zj(x) =
− logµ(Ajm+(j−1)∆(x)) −H(Ajm+(j−1)∆). In particular Zr(x) = − logµ(An(x)) −H(An) and
Z1(x) = − logµ(Am(x))−H(Am). Let ϕ(λ) =

∫
eiλZ1 dµ and define

Dn(λ) =
∣∣∣∣∫ eiλZr dµ− ϕ(λ)r

∣∣∣∣ .
Then

Dn(λ) ≤
r−1∑
j=0

|ϕ(λ)|j
∣∣∣∣∫ (eiλZj+1 − ϕ(λ)eiλZj

)
dµ

∣∣∣∣ .
For every j (note that µ is T -invariant):∫ (

eiλZ̃j+1 − ϕ(λ)eiλZj

)
dµ =

∫ (
eiλZ1eiλ(Z̃j+1−Z1−Zj◦T m′

) − ϕ(λ)
)
eiλZj◦T m′

dµ

where

Z̃j+1(x) = − logµ(Cj+1(T jm′
x))−H(A(j+1)m+j∆)

Cj+1(x) = Am(x) ∩ T−m′
Ajm+(j−1)∆(Tm′

x).

Then∣∣∣µ(Cj+1(x))− µ(Am(x))µ(Ajm+(j−1)∆(Tm′
x))
∣∣∣ ≤ φ(∆)µ(Am(x))µ(Ajm+(j−1)∆(Tm′

x)).

Next, for α > 0 let us define

Gj =
{
A ∈ A(j+1)m+j∆ : µ(Cj+1(A)) ≤ en

α
µ(A)

}
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and Fj = A(j+1)m+j∆ \ Gj . Since the (disjoint) union over all possible sets Cj covers the whole
space Ω (and thus has measure 1) and there are no more than M∆ (M = |A|) different ways to
fill the ‘gaps’ we obtain (for large enough n)

µ(Fj) ≤ e−nα
M∆

∑
Cj+1∈Am∨T−m′Ajm+(j−1)∆

µ(Cj+1) ≤ e−nα
M∆,

where Fj =
⋃

A∈Fj
A. Similarly, if for ϑ ∈ (0, 1) we define the disjoint ‘slices’ of Fj :

Fj,k =
{
A ∈ A(j+1)m+j∆ : µ(A) < ϑke−nα

µ(Cj+1(A)) ≤ ϑ−1µ(A)
}

(obviously Fj =
⋃∞

k=0Fj,k), then

µ(Fj,k) ≤ ϑke−nα
M∆,

k = 0, 1, . . ., where Fj,k =
⋃

A∈Fj,k
A. Otherwise, if A ∈ Gj then

1 ≤ µ(Cj+1(A))
µ(A)

≤ en
α

and thus
0 ≤ Zj+1 − Z̃j+1 ≤ nα.

as logµ(Cj+1(A)) − logµ(A) = Zj+1 − Z̃j+1. (Similarly |Zj+1 − Z̃j+1| ≤ log(ϑken
α
) on Fj,k.)

Moreover, since ∣∣∣∣∣ µ(Cj+1(A))
µ(Am(A))µ(Ajm+(j−1)∆(Tm′A))

− 1

∣∣∣∣∣ ≤ φ(∆)

we get ∣∣∣Z̃j+1 − Z1 − Zj ◦ Tm′
∣∣∣ ≤ φ(∆) + hj , (8)

where hj =
∣∣∣H(A(j+1)m+j∆)−H(Am)−H(Ajm+(j−1)∆)

∣∣∣. Next notice that∣∣∣∣∣
∫

Fj

(
eiλZj+1 − eiλZ̃j+1

)
dµ

∣∣∣∣∣ =

∣∣∣∣∣
∫

Fj

eiλZj+1

(
1− eiλ(Z̃j+1−Zj+1)

)
dµ

∣∣∣∣∣
≤ λ

∞∑
k=0

∫
Fj,k

|Z̃j+1 − Zj+1| dµ

≤ λ
∞∑

k=0

| log(ϑke−nα
)|µ(Fj,k)

≤ c1λe
−nα

M∆

for some constant c1, and therefore (where Gj = Ω \ Fj)∣∣∣∣∫ (eiλZj+1 − eiλZ̃j+1

)
dµ

∣∣∣∣ ≤
∣∣∣∣∣
∫

Fj

(
eiλZj+1 − eiλZ̃j+1

)
dµ

∣∣∣∣∣+
∣∣∣∣∣
∫

Gj

(
eiλZj+1 − eiλZ̃j+1

)
dµ

∣∣∣∣∣
≤ c1λe

−nα
M∆ +

∣∣∣∣∣
∫

Gj

eiλZj+1

(
1− eiλ(Z̃j+1−Zj+1)

)
dµ

∣∣∣∣∣
= c1λe

−nα
M∆ +

∣∣∣∣∣
∫

Gj

eiλZj+1O(λnα) dµ

∣∣∣∣∣
17



(as Z̃j+1 − Zj+1 = O(nα) on the ‘good set’), provided λnα is small.
Hence ∣∣∣∣∫ (eiλZj+1 − eiλZ̃j+1

)
dµ

∣∣∣∣ ≤ c2λ(M∆e−nα
+ nα).

Since by (8) eiλ(Z̃j+1−Z1−Zj◦T m′
) = 1 +O(λ(φ(∆) + hj)) we thus obtain (for all j)∣∣∣∣∫ (eiλZj+1 − ϕ(λ)eiλZj◦T m′
)
dµ

∣∣∣∣
≤

∣∣∣∣∫ (eiλZj+1 − eiλZ̃j+1

)
dµ

∣∣∣∣+ ∣∣∣∣∫ (eiλZ̃j+1 − ϕ(λ)eiλZj

)
dµ

∣∣∣∣
≤ c3λ(M∆e−nα

+ nα + φ(∆) + hj) + |ψ1j(λ)|

where

ψ1j(λ) =
∫
eiλ(Z1+Zj◦T m′

) dµ−
∫
eiλZ1 dµ

∫
eiλZj dµ

=
∞∑

n=0

(iλ)n

n!

µ((Z1 + Zj ◦ Tm′
)n)−

∑
p1+pj=n

n!
p1!pj !

µ(Zp1
1 )µ(Zpj

j )


=

∞∑
n=0

(iλ)n

n!

∑
p1+pj=n

n!
p1!pj !

(
µ
(
Zp1

1 (Zpj

j ◦ Tm′
)
)
− µ(Zp1

1 )µ(Zpj

j )
)

=
∞∑

n=2

(iλ)n
∑

p1+pj=n

1
p1!pj !

×
∑

B1∈B1,Bj∈Bj

∏
k=1,j

(
log

1
µ(Bk)

−H(Bk)
)pk

(µ(B1 ∩Bj)− µ(B1)µ(Bj))

=
∞∑

n=2

(iλ)n
∑

p1+pj=n

1
p1!pj !

×
∑

B1∈B1,Bj∈Bj

∏
k=1,j

(
log

1
µ(Bk)

−H(Bk)
)pk

ρ(B1, Bj)µ(B1)µ(Bj)

where (by definition) Zk(B) = log 1
µ(B) − H(Bk), B ∈ Bk and where we have put B1 = Am,

Bj = T−m′Ajm+(j−1)∆. By Lemma 2 we have µ(B1 ∩Bj)−µ(B1)µ(Bj) = ρ(B1, Bj)µ(B1)µ(Bj)
where |ρ| ≤ c4φ(∆). A rearrangement of the sums yields

ψ1j(λ) =
∑

B1∈B1,Bj∈Bj

ρ(B1, Bj)µ(B1)µ(Bj)

×

 ∞∑
p1,pj=0

1
p1!pj !

(iλZ1(B1))p1(iλZj(Tm′
Bj))pj − iλZ1(B1)− iλZj(Tm′

Bj)− 1


=

∑
B1∈B1,Bj∈Bj

ρ(B1, Bj)µ(B1)µ(Bj)
(
eiλZ1(B1)eiλZj(T

m′
Bj) − 1

)

and thus
|ψ1j(λ)| ≤ 2‖ρ‖.
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To get an estimate for small λ differentiation yields

d

dλ
ψ1j(λ) =

∑
B1∈B1,Bj∈Bj

ρ(B1, Bj)µ(B1)µ(Bj)

×
(
iZ1(B1)eiλZ1(B1)

(
eiλZj(T

m′
Bj) − 1

)
+ iZj(Tm′

Bj)eiλZj(T
m′

Bj)
(
eiλZ1(B1) − 1

))
and therefore by Lemma 124

|ψ′1j(λ)| ≤ 2‖ρ‖(µ(|Z1|) + µ(|Zj |))
≤ 2‖ρ‖(σ(|Z1|) + σ(|Zj |))

≤ c5‖ρ‖
√
jm+ (j − 1)∆

≤ c6‖ρ‖
√
n,

and consequently
|ψ1j(λ)| ≤ c7φ(∆) min(|λ|, 1) ≤ c7φ(∆)|λ|

since we shall assume that |λ| = |t|/sn ≤ 1, where sn is defined below (sn ∼ σ∞
√
n).

This gives us (h = maxj hj)

Dn(λ) ≤ c8|λ|
r−1∑
j=0

|ϕ(λ)|j
(
M∆e−nα

+ nα + φ(∆) + hj

)
≤ c8

|λ|
1− |ϕ(λ)|

(
M∆e−nα

+ nα + φ(∆) + h
)

≤ c9|λ|
(
M∆e−nα

+ nα + φ(∆) + h
)

Let us approximate the variable Zr by the sum Ũ of r independent variables Z̃1 ◦ T jm′
,

j = 0, . . . , r − 1, each of which has the same distribution as Z1. Denote by φZr(λ) =
∫
eiλZr dµ

the characteristic function of Zr and by ϕŨ the characteristic function of Ũ (i.e. φŨ (λ) = φ(λ)r).
Lemma 9.4.1 of [6] applied to the sum Ũ yields (for δ = 1)∣∣∣∣ϕŨ

(
t

sn

)
− e−t2/2

∣∣∣∣ ≤ 16Γ3

( |t|
sn

)3

e−t2/3,

provided |t| ≤ s3
n

36Γ3
, where Γ3 =

∑r−1
j=0 µ(|Z̃1 ◦ T jm′ |3) and s2n =

∑
j σ

2(Z̃1 ◦ T jm′
) = rσ2(Z1) =

rmσ2
m ∼ rmσ2

∞. By Lemma 15 Γ3 ≤ c10rm
3/2 logm.

By the triangle inequality (λ = t/sn and assuming t ≥ 0)∣∣∣ϕZr(λ)− e−t2/2
∣∣∣ ≤ Dn(λ) + 16Γ3

(
t

sn

)3

3e−t2/3

≤ c9
t√
n

(
2M∆e−nα

+ nα + φ(∆) + h
)

+ c11
t3

r1/2
e−t2/3 logm

4also note that for any partition P one has

∑
P∈P

µ(P )

∣∣∣∣log 1

µ(P )
−H(P)

∣∣∣∣ ≤
(∑

P∈P

µ(P )

(
log

1

µ(P )
−H(P)

)2
) 1

2

=
√
K(P)−H(P) = σ(P).
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(for t ≤ c12r
3/2/ logm). Berry-Esseen’s estimate yields with some τ∣∣∣∣µ(x :
Zr(x)
sn

> t

)
−N(t)

∣∣∣∣
≤ 2

π

∫ τ

0

∣∣∣ϕZr(λ)− e−t2/2
∣∣∣ dt
t

+
c13
τ

≤ c14

(
τ√
n

(2M∆e−nα
+ nα + φ(∆) + h) + logm

∫ τ

0

t2

r1/2
e−t2/3dt

)
+
c13
τ

≤ c14
τ√
n

(2M∆e−nα
+ nα + φ(∆) + h) + c15

logm
r1/2

+
c12
τ

where c13 ≤ 24√
2 π3/2 . Let β ∈ (0, 1) and r ∼ nβ. This implies that m ∼ n1−β and for γ′ > γ we

then have ∆ ∼ nγ′(1−β). Moreover for α > γ′(1− β) we put α′ = 1
2(α− γ′(1− β)) which can be

made arbitrarily small with a suitable choice of α. Hence M∆e−nα ≤ const.e−nα′
. Hence if we

choose τ ∼ n
1
4
−α

2 , then∣∣∣∣µ(x :
Zr(x)
sn

> t

)
−N(t)

∣∣∣∣ ≤ c16 max
(
n

α
2
− 1

4 , n−
β
2 log n

)
≤ c17n

−δ (9)

where δ < 1
4 (independent of the value of γ where we choose β < 1 arbitrarily close to 1) and

c17 depends on δ. Here we also used that according to Lemma 6 |h| ≤ C2m
γ′ ≤ const.nγ′(1−β)

(which implies |h|τ/
√
n ≤ const.n

α
2
− 1

4 ).
One has

µ

(
x :

Zr(x)
sn

> t

)
= µ

(
x :

Zr(x)√
nσ∞

> t′
)

where by Proposition 14 σm − σ∞ = O
(
m−( 1

2
−γ′)

)
(recall that φ(k) ≤ const. 1k ). Since in

equation (9) the principal term becomes smaller than the error term for |t| ≥ c18 log n for some
c18, we get

|t− t′| ≤ c19m
−( 1

2
−γ′) log n

for all |t| ≥ c18 log n. Moreover, since by Lemma 6 |Zr − (| logµ(An)| − nh)| ≤ C2n
γ′ and γ′ can

be chosen arbitrarily close to γ, we thus obtain (c20 ≤ c17 + c19)∣∣∣∣µ(x :
| logµ(An(x))| − nh√

nσ∞
> t

)
−N(t)

∣∣∣∣ ≤ c20n
−δ

for all δ < min
(

1
4 ,

1
2 − γ

)
where γ ∈ [0, 1

2). 2

φ-mixing maps: Here γ = 0 and thus we get the bound δ < 1
4 independent of the decay of φ

(φ summable).

4 The Law of the Iterated Logarithm

The Central Theorem only establishes the convergence of the distribution of the quantity
logµ(An))/σ

√
n. We can now use the rate of convergence to conclude the Law of the Iter-

ated Logarithm applies to the Shannon-McMillan-Breiman theorem.
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Theorem 17 Assume that φ is summable, A a finite partition and f(n) ≤ C1n
γ for some C1

and γ ∈ [0, 1
2).

If σ > 0 then

lim sup
n→∞

| logµ(An(x))| − nh(µ)
σ
√

2n log logn
= 1

almost everywhere.

A similar statement is true for the lim inf where the limit is then equal to −1 almost ev-
erywhere. This theorem follows from Theorem 16 and [23] where it is proven that the LIL is
implied if the CLT converges at least at the rate 1

(log n)1−ε for some ε > 0.

5 The Weak Invariance Principle for Shannon-McMillan-Breiman

The central limit theorem could be improved to get what is called the weak invariance principle
(WIP). Such a principle has been obtained for a large class of observables and for a large class of
dynamical systems by Chernov in [5]. We prove here the WIP for the function − logµ(An(x)).
Let us first recall what the WIP says.

For each x ∈ Ω we construct the random variable Wn,x(t) for t ∈ [0, 1] by putting

Wn,x(k/n) =
− logµ(Ak(x))− kh

σ
√
n

(h = h(µ) is the metric entropy of µ) extending linearly on each of the subintervals
[

k
n ,

k+1
n

]
.

For each x, Wn,x is therefore an element of the space C = C∞([0, 1]) of the continuous function
on [0, 1] topologised with the supremum norm. If we denote with Dn the distribution of Wn,x

on C, namely
Dn(H) = µ ({x ∈ Ω : Wn,x ∈ H})

where H is a Borel subset of C, then the WIP asserts that the distribution Dn converges weakly
to the Wiener measure. This means that logµ(An(x)) − nh is for large n, and after a suitable
normalization distributed approximately as the position at time t = 1 of a particle in Brownian
motion [2]. Recently there has been a great interest in the WIP in relation to the mixing
properties of dynamical systems (see also [10, 9, 24]). In the following we assume that |A| <∞.

Theorem 18 The information function − logµ(An(x)) satisfies the Weak Invariance Principle
provided the variance σ2 is positive.

Proof. Let S̃i = − logµ(Ai(x)) − ih(µ). We have verify two conditions ([2] Theorem 8.1),
namely
(i) The tightness condition (10): We have to show that there exists a λ > 0 so that for every
ε > 0 there exists an N0 so that

µ

(
max
0≤i≤n

|S̃i| > 2λ
√
n

)
≤ ε

λ2
(10)

for all n ≥ N0.
(ii) That the finite-dimensional distributions of S̃i converge to those of the Wiener measure.
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(i) Proof of tightness: Let us put Si = − logµ(Ai(x)) −H(Ai). By Lemma 6 Si − S̃i = O(iγ).
In the usual way (cf. e.g. [2]) we get

µ

(
max
0≤i≤n

|Si| > 2λ
√
n

)
≤ µ

(
|Sn| > λ

√
n
)
+

n−1∑
i=0

µ
(
Ei ∩ {|Si − Sn| ≥ λ

√
n}
)
,

where Ei is the set of points x so that |Si(x)| > 2λ
√
n and |Sk(x)| ≤ 2λ

√
n for k = 0, . . . , i− 1.

Note that Ei lies in the σ-algebra generated by Ai. Also the sets Ei are pairwise disjoint.
To estimate µ (Ei ∩ {|Si − Sn| ≥ λ

√
n}) let us put Cn,i(x) = Ai(x) ∩ T−i−∆An−i−∆(T i+∆x)

(i < n−∆) where ∆ = f(i) is the length of the gap, and use the mixing property

µ(Cn,i(x)) ≤ µ(Ai(x))µ(An−i−∆(T i+∆x)) (1 + φ(ta)) .

Similar to the proof of Theorem 16 we say an n-cylinder An is ‘good’ if µ(An) ≤ µ(Cn,i(An)) ≤
en

α
µ(An), where α < 1

2 will be determined later. The set Bn,i of cylinders that are not good
has total measure µ(Bn,i) ≤ e−nα

M∆, where M = |A| (cf. Thm 16). To estimate |Si − Sn| let
us first do the upper estimate:

Sn = log
1

µ(An)
−H(An)

≥ log
1

µ(Cn,i)
−H(An)

≥ log
1

µ(Ai)µ(An−i−∆)(1 + φ(∆))
−H(Ai)−H(An−i−∆)−H(A∆)

= Si − Sn−i−∆ −H(A∆)− φ(∆).

Hence Si − Sn ≤ Sn−i−∆ + c1∆. To get the lower bound we estimate as follows:

Sn ≤ log
1

e−nαµ(Cn,i)
−H(An)

≤ nα + Si − Sn−i−∆ −H(A∆)− φ(∆).

Since for the gap ∆ = f(i) ≤ c2i
γ ≤ c2n

γ and γ < 1
2 we get

|(Si − Sn)− Sn−i−∆| ≤ c3n
α (11)

where γ ≤ α < 1
2 . In particular we thus get µ(Bn,i) ≤ e−c4nα

for some 0 < c4 < 1 and all n
large enough.

Now, using the mixing property, we get by the Central Limit Theorem 16 µ
(
|Sn−i−∆| ≥ λ

2

√
n
)
≤

2N(λ
2 ) + c5n

−δ (c5 <∞) and therefore

µ
(
Ei ∩ {|Si − Sn| ≥ λ

√
n}
)

≤ µ
(
Ei ∩ T−i−∆ {|Sn−i−∆| ≥ λ

√
n− c3n

α})+ µ(Bn,i)

≤ µ(Ei)µ
(
|Sn−i−∆| ≥

λ

2
√
n

)
(1 + φ(∆)) + µ(Bn,i)

≤ µ(Ei)
(

2N
(
λ

2

)
+ c5n

−δ
)

(1 + φ(∆)) + e−c4nα

≤ c6µ(Ei)
(
e−λ + n−δ

)
+ e−c4nα
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(c6 > 0), for all i < n− c2n
γ and all n large enough (so that λ

√
n− c3n

α ≥ λ
2

√
n).

For n−c2nγ ≤ i < n let us consider those cylinders Ai for which µ(An) ≤ µ(Ai) ≤ en
α
µ(An).

The total measure of those cylinders that don’t satisfy the inequality is bounded by e−nα
M∆ ≤

e−c4nα
. This implies that

Sn = log
1

µ(An)
−H(An) ≥ log

1
µ(Ai)

−H(Ai)−H(An−i) ≥ Si − c7∆,

and on the other hand also (by Lemma 6)

Sn ≤ log
1

enαµ(Ai)
−H(Ai)−H(An−i) + C2n

γ .

For large i we thus obtain (for some positive c8)

|Si − Sn| ≤ nα + c∆ + C2n
γ ≤ c8n

α

except on a set of measure ≤ e−nα
M∆. Since c8nα ≤ λ

√
n for all large enough n we get

µ(|Si − Sn| ≥ λ
√
n) ≤ e−nα

M∆ ≤ e−c4nα

for n− c2n
γ ≤ i < n.

Finally we obtain (as µ (|Sn| > λ
√
n) ≤ 2N(λ) + c5n

−δ)

µ

(
max
0≤i≤n

|Si| > 2λ
√
n

)
≤ 2N(λ) + c5n

−δ + (n+ c2n
γ)e−c4nα

+ c6e
−λ

n−c2nγ∑
i=0

µ(Ei)

≤ c9
(
n−δ + e−λ

)
.

This proves the tightness condition (10), since for every ε > 0 one can find a λ > 1 so that the
quadratic estimate holds.

(ii) Proof of the finite-dimensional distribution convergence: Let us put

Xn(t, x) =
1

σ
√
n

(
S̃[nt](x) + (nt− [nt])

(
S̃[nt]+1(x)− S̃[nt](x)

))
for t ∈ [0, 1]. Xn is a random variable defined on Ω and with values in C.

We have to show that the distribution of (Xn(t, x), Xn(t, x)−Xn(s, x)) converges to (N (0, t),N (0, t−
s)) (0 ≤ s < t) as n→∞, where N (0, t) is the normal distribution with zero mean and variance
t2. To prove this as well as the convergence of higher finite dimensional distributions it is suf-
ficient ([2], Theorem 3.2) to show that Xn(t, x)−Xn(s, x) converges to N (0, t− s). We obtain
by Lemma 6 and (11)

S̃[nt] − S̃[ns] = S[nt] − S[ns] +O ((nt)γ)
= S[n(t−s)]−∆ +O ((c3 + 1)(nt)γ)

and by the Central Limit Theorem 16

µ

(
x ∈ Ω :

S̃[nt] − S̃[ns]

σ
√
n

≥ λ

)
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= µ

(
x :

S[n(t−s)]−∆

σ
√
n

≥ λ+O
(

(nt)γ

√
n

))
+O(µ(B[nt],[ns]))

= µ

(
x :

S[n(t−s)]−∆

σ
√

[n(t− s)]−∆
≥ λ

√
n

[n(t− s)]−∆
+O

(
nγ− 1

2

))
+ e−c4(nt)α

= N

(
λ

√
n

[n(t− s)]−∆

)
+O

(
nγ− 1

2

)
= N

(
λ√
t− s

)
+O

(
nγ− 1

2

)
as ∆ ≤ c2n

γ and where the implied constants are uniformly in n (for all n large enough). Hence
S̃[nt]− S̃[ns] and therefore Xn(t, x)−Xn(s, x) converges in distribution to N (0,

√
t− s) as n→∞

.
2

6 Some Results on the First Return Time

Let W ⊂ Ω and define the return time function

τW (x) = min{k ≥ 1 : T kx ∈W}.

τW measures the first entry time for points outside W and (for the first return time for points
in W . This function is finite almost everywhere with respect to ergodic measures and satisfies
by a theorem of Kac the identity

∫
W τW (x) dµ(x) = 1 for any ergodic probability measure µ and

measurable W . Let us also define the shortest return time function

τ(A) = min
x∈A

τA(x)

which measures the shortest return time within the set A (see [15, 16]). By definition A∩T−kA =
∅ for k = 1, 2, . . . , τ(A)− 1.

In this section we deduce better error estimates for the distribution of the first return time, in
particular, compared to the results of [13] we want to remove the factor et in the error estimate
for the distribution of the first return. We follow a very successful scheme developed by Galves
and Schmitt [11].

For an n-cylinder A let us define OS = {y ∈ Ω : τA(y) ≥ S}.

Lemma 19 Let A be an n-cylinder so that τ(A) ≥ κ(n/2). Then there exists a constant C8

and γ4 ∈ (0, 1) so that
Sµ(A) ≥ 1− µ(OS) ≥ Sµ(A) (1− C8γ

n
4 ) .

Proof. The upper bound is obvious. To prove the lower bound put B0 = A and define for
j = 1, . . . , S

Bj = T−jA \
j−1⋃
k=0

(T−jA ∩ T−kA) ⊆ T−j

A \ j−κ(n/2)⋃
k=0

(A ∩ T−k+jA)

 ,
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since by assumption A ∩ T−kA = ∅ for k < κ(n/2). As the complement of OS is the disjoint
union of Bj , we get by invariance of the measure µ(Bj) ≥ µ(A)−

∑j
k=κ(n/2) µ(A ∩ T−kA). For

k ≥ n, we get by the mixing property

µ(A ∩ T−kA) ≤ µ(A`(A) ∩ T−kA) ≤ c1µ(A)µ(A`(A)) ≤ c1µ(A)γ`
1,

by Lemma 3, where ` = κ(k) =
[

k
1+C0

]
. Thus, for j ≥ 1:

µ(Bj) ≥ µ(A)− c1

j∑
k=κ(n/2)

µ(A)γ`
1 ≥ µ(A)

(
1− C8γ

n
(1+C0)2

1

)
,

(for some C8), and since µ(B0) = µ(A):

1− µ(Or) =
S∑

j=0

µ(Bj) ≥
S∑

j=0

µ(A)
(

1− C8γ
n

(1+C0)2

1

)
≥ Sµ(A)

(
1− C8γ

n
(1+C0)2

1

)
.

Put γ4 = γ
1

(1+C0)2

1 . 2

Lemma 20 Assume that φ is summable and f(m) ≤ C1m
γ (0 ≤ γ < 1).

Then there exists a constant γ5 < 1 so that for all r > 0, all n large enough and all n-cylinders
A for which τ(A) ≥ κ(n/2): ∣∣∣µ (O[r/µ(A)]

)
− e−r

∣∣∣ ≤ (r + 1)γn
5 .

Proof. We use the decomposition

OR = OS−∆ ∩ T−(S−∆)O∆ ∩ T−SOR−S ,

where ∆ ≥ f(S) the length of the ‘gap’ (assuming that S < R and S − ∆ are large enough).
Thus, by T -invariance of µ and the mixing property:∣∣∣µ(OR)− µ(OS−∆ ∩ T−SOR−S)

∣∣∣ ≤ µ
(
T−(S−∆)Oc

∆ ∩ T−2SOR−2S

)
≤ (1 + φ(S))µ(Oc

∆)µ(OR−2S)
≤ c1∆µ(A)µ(OR−2S) (12)

since µ(Oc
∆) ≤ ∆µ(A) (Oc denotes the complement of O) , and similarly∣∣∣µ(OS−∆ ∩ T−SOR−S)− µ(OS−∆)µ(OR−S)

∣∣∣ ≤ φ(∆)µ(OS−∆)µ(OR−S). (13)

Moreover
|µ(OS)− µ(OS−∆)| ≤ c1∆µ(A). (14)

Equations (12), (13) and (14) combined yield (by twice applying the triangle inequality)

|µ(OR)− µ(OR−S)µ(OS)| ≤ c1∆µ(A) (µ(OR−2S) + µ(OR−S)) + φ(∆)µ(OS−∆)µ(OR−S).

Let α′ ∈ (0, 1), r = µ(A)1−α′ , R = [r/µ(A)] ∼ µ(A)−α′ , m = R/S ∼ µ(A)α′(α−1) where
S = [Rα] ∼ µ(A)−αα′ for α ∈ (0, 1) to be chosen below. Then, since φ(∆) ≤ c4∆−1 (summability
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of φ), ∆ ≤ C1S
γ ∼ µ(A)−αγα′ , µ(OS) ≥ 1− Sµ(A) ∼ 1− µ(a)1−αα′ ≥ 1

2 say. If we assume the
induction hypothesis µ(OR−2S)/µ(OR−S) ≤ c2 for some c2 > 1 then if γαα′ = 1

2 one has∣∣∣∣ µ(OR)
µ(OR−S)µ(OS)

− 1
∣∣∣∣ ≤ c1∆

µ(A)
µ(OS)

(
µ(OR−2S)
µ(OR−S)

+ 1
)

+ φ(∆)
µ(OS−∆)
µ(OS)

≤ c3

√
µ(A),

where we used that µ(OS−∆)
µ(OS) ≤ const.. Since µ(OR)

µ(OS)m =
∏m−1

k=1
µ(O(k+1)S)

µ(OkS)µ(OS) we get∣∣∣∣ µ(OR)
µ(OS)m

− 1
∣∣∣∣ ≤ c4

m−1∑
k=1

∣∣∣∣∣ µ(O(k+1)S)
µ(OkS)µ(OS)

− 1

∣∣∣∣∣ ≤ c4c3m
√
µ(A) ≤ c5µ(A)β

where β = 1
2(1 − 1

γ ( 1
α − 1)) is positive for suitable α′ and α = 1

2γα′ ). Since µ(A) decays

exponentially fast in n, we obtain in particular that µ(OR−S)
µ(OR) ≤ 1

µ(OS)(1 + c6c5µ(A)β) (for some
universal constant c6) satisfying the induction hypothesis for the next iterate.

By Lemma 19 ∣∣∣eSmµ(A) − µ(OS)m
∣∣∣ ≤ m

∣∣∣eSµ(A) − µ(OS)
∣∣∣

≤ c7mmax
(
C8γ

n
4 Sµ(A), (Sµ(A))2

)
≤ c8µ(A)β′ ,

for some β′ > 0, and therefore by Lemma 3 (Smµ(A) = r)∣∣µ(OR)− e−r
∣∣ ≤ |µ(OR)− µ(OS)m|+

∣∣µ(OS)m − e−r
∣∣ ≤ c9γ

n
5 ,

for some γ5 < 1. 2

Lemma 21 Let a > 0. Then there exist γ6 < 1 and a constant C9 so that for all A ∈ An

(τ(A) ≥ κ(n/2)) and s ≥ ean:∣∣∣µ ({x ∈ A : Rn(x) ≥ s})− µ(A)e−µ(A)s
∣∣∣ ≤ C9µ(A)γn

6 (µ(A)s+ 1) .

Proof. If φ is summable then we have by Lemma 20 for every n-cylinder A for which τ(A) ≥
κ(n/2): ∣∣∣µ(Os − e−sµ(A)

∣∣∣ ≤ c1γ
n
5 (sµ(A) + 1) (15)

for some positive β. We can assume that t > κ(n/2) + ∆, ∆ ≥ f(κ(n/2)), which then gives us

|µ(A ∩ {x : Rn(x) ≥ s})− µ(A)µ(Os)|
≤ E + µ(A) |µ(Os−n−∆)− µ(Os)|+

∣∣∣µ(A ∩ T−n−∆Os−n−∆)− µ(A)µ(Os−n−∆)
∣∣∣

≤ E + (n+ ∆)µ(A)2 + φ(∆)µ(A)µ(Os−n−∆),

where (κ(j) =
[

j
1+C0

]
) by Lemmas 4 and 3 (as τ(A) ≤ κ(n/2))

E =
∣∣∣µ(A ∩ Os)− µ(A ∩ T−n−∆Ot−n−∆)

∣∣∣
≤

n+∆∑
j=κ(n/2)

µ(Aκ(j)(A) ∩A)

≤ µ(A)
n+∆∑

j=κ(n/2)

(1 + φ(κ(j)))µ(Aκ(j)(A))

≤ c2γ
′nµ(A).
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for some c2. We put γ′ = γ
1

(1+C0)2

1 (i.e. γ′n = γ
κ(κ(n/2))
1 ) and A`(A) for the `-cylinder that

contains A.
If we choose ∆ = [min(γ−n/2

1 , ean)] then

|µ(A ∩ {x : Rn(x) ≥ s})− µ(A)µ(Os)| ≤ c3γ
n
6 µ(A),

for any γ6 > max(γ′,
√
γ1, e

−a) (γ6 < 1 and c3 chosen suitably) as φ(∆) < 1/∆ for all large
enough ∆. With equation (15) we get the statement. 2

7 The CLT and WIP for Repeat times

For x ∈ Ω and n = 1, 2, . . ., we denote by An(x) the (unique) atom in An which contains x. The
‘repeat function’ Rn which is then given by Rn(x) = τAn(x)(x).

Theorem 22 Assume that φ is summable and that there exists a γ ∈ [0, 1
2) so that f(n) ≤ C1n

γ

for all n.
Then, if σ > 0: ∣∣∣∣µ({x ∈ Ω :

logRn(x)− nh

σ
√
n

≥ t

})
−N(t)

∣∣∣∣ ≤ C10
1
nδ
,

where σ = limm→∞
σ(Am)√

m
and δ < min(1

4 ,
1
2 − γ).

By a general result of B Saussol [27] the CLT for log µ(An(x)) and the exponential law for the
first return time implies the Central Limit Theorem for the repeat time. Here however we are
interested in the rate of the convergence, which in particular required us to obtain in the last
section error estimates for the well-know exponential limiting statistics of the first return time.

Proof. For sn = enh+t
√

n then we get by Lemma 21 (with a = h/2)∣∣∣µ ({x ∈ A : Rn(x) ≥ sn})− µ(A)e−µ(A)sn

∣∣∣ ≤ C9µ(A)γn
6

(
µ(A)enh+t

√
n + 1

)
.

Let ε = n−δ, where according to Theorem 16 δ < min(1
4 ,

1
2 − γ). If η is so that N(η) < ε

(η < const.| log ε| ∼ log n) then Ωη =
{
x ∈ Ω : log µ(An(x))+nh

σ
√

n
> η

}
(Ωη is a union of n-cylinders)

has measure less than c1n−δ for all n large enough. Hence, if Yn is the random variable defined
as

Yn =
∑

A∈An

e−µ(A)enh+t
√

n
χA

(χA is the characteristic function of A) we obtain by Lemma 5∣∣∣∣µ ({x ∈ Ω : Rn(x) ≥ sn})−
∫
Yn(x) dµ(x)

∣∣∣∣
≤ c1n

−δ + C9γ
n
6

∑
A∈An,A⊂Ωc

η

µ(A)
(
µ(A)enh+t

√
n + 1

)
+ γn

3

≤ c1n
−δ + C9γ

n
6 (eησ

√
n+t

√
n + 1)

≤ c1n
−δ + γ

n/2
6 ,
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if t ≤ η (assuming γ6 ≥ γ3) for all large enough n, since µ(An(x))enh ≤ eησ
√

n for all x 6∈ Ωη

and large n. By Markov’s inequality∫
Yn(x) dµ(x) ≥ e−e−ε

√
n
µ
({
x : log Yn(x) ≥ −e−ε

√
n
})

≥ (1− e−ε
√

n)µ
({

x ∈ Ω :
| logµ(An(x))| − nh

σ
√
n

≥ t− ε

σ

})
≥ N

(
t− ε

σ

)
− C7

1
nδ

− e−n
1
4

≥ N(t)− c2
1
nδ

by Theorem 16. For t > η note that N(t) ≤ N(η) ≤ const.n−δ and

µ
({
x ∈ Ω : Rn(x) ≥ enh+t

√
n
})

≤ µ
({
x ∈ Ω : Rn(x) ≥ enh+η

√
n
})

.

For the upper bound we estimate as follows:

µ(Yn) ≤ e−e−ε
√

n
µ
({
x : log Yn(x) < −e−ε

√
n
})

+ µ
({
x : log Yn(x) ≥ −e−ε

√
n
})

≤ N(t) + c3
1
nδ
,

for t ≤ η where we used that log Yn(x) = −µ(An(x))enh+t
√

n and hence Yn ≤ 1 on Ωη. For t > η
we do as above. This proves the theorem. 2

Theorem 23 The WIP holds for the repeat time Rn(x).

Proof. We shall show that
lim

n→∞
log(Rn(x)An(x))

nβ
= 0 (16)

almost everywhere for all positive β. Let r(n) = νnβ and

Zn = {x : log(Rn(x)µ(An(x))) ≤ −r(n)} .

Lemmas 4 and 21 (with t = e−r(n)/µ(A) and using the fact that µ(A) ≥ e−an for some a > 0)
then yield

µ(Zn) =
∑

A∈An

µ(A)µA({x ∈ A : Rn(x)µ(A(x)) ≤ e−r(n)})

≤
∑

A∈An

µ(A)
(∣∣∣µA({x ∈ A : Rn(x)µ(A(x)) ≥ e−r(n)})− e−e−r(n)

∣∣∣+ (
1− e−e−r(n)

))
≤

∑
A∈An,τ(A)<κ(n/2)

µ(A) +
∑

A∈An,τ(A)≥κ(n/2)

C10γ
n
6 µ(A)

(
µ(A)e−r(n) + 1

)
+ e−r(n)

≤ γn
2 + c1γ

n
6 + e−r(n)

≤ c2e
−r(n)

for some c2. Hence
∑

n µ(Zn) is finite and by Borel-Cantelli there exists a function N(x) which
is almost everywhere finite so that log(Rn(x)An(x)) > −r(n) for all n ≥ N(x). Therefore

lim inf
n

log(Rn(x)An(x))
nβ

> −ν
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for any positive ν. In a similar way one shows that lim supn
log(Rn(x)An(x))

nβ ≤ 0. Hence (16) has
been proven. By standard measure theoretical arguments it then follows that

µ

({
x : max

`≤n

| logµ(Am(x)) + logRn(x)|
σ
√
n

≥ ε

})
−→ 0

and by Theorem 18 and Theorem 4.1 of [2] the WIP for the repeat time Rn follows. 2
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1996

[4] H Bruin and S Vaienti: Return times for unimodal maps; Fundamenta Mathematicae 176
(2003), 77–94

[5] N. Chernov Limit theorems and Markov approximations for chaotic dynamical systems;
Prob. Th. Rel. Fields 101 (1995), 321–362

[6] Y S Chow and H Teicher: Probability Theory, Independence, Interchangeability, Martin-
gales, Springer, 2nd edition 1988

[7] P Collet and A Galves: Repetition times for Gibbsian sources; Nonlinearity 12 (1999)
1225–1237

[8] P Collet, A Galves and B Schmitt: Fluctuations of repetition times for Gibbsian sources;
Nonlinearity 12 (1999) 1225–1237

[9] P Ferrero, N Haydn and S Vaienti: Entropy fluctuations for parabolic maps; Nonlinearity,
16, (2003), 1203–1218

[10] M Field, I Melbourne and A Török: Decay of Correlations, Central Limit Theorems and
Approximations by Brownian Motion for Compact Lie Group Extensions; Ergod. Theor. &
Dynam. Syst. 23 (2003), 87–110

[11] A Galves and B Schmitt: Inequalities for hitting times in mixing dynamical systems; Ran-
dom and Computational Dynamics 5 (1997), 337–347

[12] M Gordin: The central limit theorem for stationary processes; Soviet Math. Doklady 10
(1969), 1174–1176

[13] N T A Haydn and S Vaienti: The limiting distibution and error terms for return times of
dynamical systems; Discrete and Continuous Dynamical Systems, 10, (2004), 584–616

[14] N T A Haydn and S Vaienti: The distribution of the measure of cylinder sets for non-
Gibbsian measures; in Complex Dynamics and Related Topics, International Press 2003,
147–162

29



[15] M Hirata: Poisson law for the dynamical systems with the “self-mixing” conditions; Dy-
namical Systems and Chaos, Vol. 1 (Worlds Sci. Publishing, River Edge, New York (1995),
87–96

[16] M Hirata, B Saussol and S Vaienti: Statistics of return times: a general framework and
new applications. Commun. Math. Phys. 206 (1999), 33–55

[17] I A Ibragimov: Some limit theorems for stationary processes; Theory Prob. Appl. 7 (1962),
349–382

[18] I Kontoyiannis: Asymptotic Recurrence and Waiting Times for Stationary Processes; J.
Theor. Prob. 11 (1998), 795–811

[19] C Liverani: Central Limit theorem for deterministic systems; Intern. Congress on Dyn.
Syst., Montevideo 1995 (Proc. Research Notes in Math. Series), Pitman (1996), 56–75

[20] Ornstein and Weiss; Entropy and Data Compression Schemes; IEEE Transactions on In-
formation Theory 39 (1993), 78–83

[21] F Paccaut: Propriétés Statistiques de Systèmes Dynamiques Non Markovian; PhD Thesis
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