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We prove a power-law upper bound for the decay of the correlations for H61der 
observables in the case of a nonuniformly hyperbolic map of the interval 
introduced by Gaspard and Wang as a piecewise linear approximation of the 
intermittent map of Manneville-Pomeau. The result is then applied to compute 
the Central Limit Theorem for the same class of observables. 
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1. I N T R O D U C T I O N  

We compute  the decay of the correlations and the Central  Limit Theorem 
(CLT)  for H61der cont inuous  functions in the case of  the 1D nonuniformly 
hyperbolic  map  of the unit interval int roduced by Gaspard  and Wang  (1'2) 
as an approximat ion  of  the Mannevi l le -Pomeau intermittent system(3); see 
also ref. 7 for recent studies on this map,  in particular, on the occurrence 
time of long laminar  periods. As pointed out  in ref. 1, this map exhibits 
long-range temporal  correlations; in fact, it admits  the origin 0 as an indif- 
ferent fixed point  and whenever an orbit  enters the ne ighborhood  of  the 
origin, then it will take a long time before getting out. This kind of 
behavior  is paradigmatic  of other, more  complex, dynamical  systems, 
where the nonuni form hyperbolici ty is responsible for the slow decay of 
correlations (usually of power  type). A m o n g  these systems we recall the 
cont inuous- t ime flow in the Lorentz  gas without  horizon, for which the 

t Centre de Physique Th6orique, CNRS-Luming, Case 907, 13288 Marseille Cedex 9, France. 
2 Universit+ Aix-Marseille II, Marseille, France. 
3 Dipartimento di Fisica dell'Universitfi and INFN, Bologna, Italy. 
4 PHYMAT, D6partement de Math~matiques, Universit6 de Toulon et du Var, 83957 La 

Garde Cedex, France. 

1305 

0022-4715/93/0900-1305$07.00/0 �9 1993 Plenum Publishing Corporation 



1306 Lambert e t  al.  

correlations are conjecture to be as 1/T, with T the time; the Bunimovich 
stadium, for which in ref. 14 it conjectured a power-law decay of correlations; 
and finally a dispersing billiard on a table bounded by three mutually 
tangent arcs, for which ref. 15 formulated a similar conjecture. 

It is known that, depending upon a structure parameter e, the 
invariant measure of our transformation can be finite or not: the former 
case is realized for e > 1. We rigorously establish a power-law decay of the 
correlations when ~ >  3, but we guess that it continues to persist when 
1 < e ~< 3; see Section 5 for a critical discussion of this point. The CLT can 
be rigorously verified for H61der observables whenever c~ > 30, although we 
think it holds for 2 < e ~< 30, too. The nature of all these bounds for the 
parameter c~ is due to the method we used, when is an application of 
symbolic dynamics on topological denumerable Markov chains and is 
reminiscent of the technique of Ibragimov type used in ref. 4 to compute 
the decay of correlations for dispersing billiards. To better understand this 
point, we now outline the idea of the proof. Starting with a denumerable 
Markov partition of the interval [-0, 1], we construct a Markov sieve 
J,,,,.,l,n2 (we adopt the terminology of ref. 4), which is another partition of 
the unit interval depending on the three indices: n is the order of iteration 
entering the correlation function, nl < n  is the length of the cylinders on 
which we approximate our observables with piecewise constant ones, and 
finally n 2 < n l  gives a bound to the infinite alphabet of the associated 
Markov chain. In particular, ~.,.1..2 = O.,.~,n2 ~ O=,~1,.2, where ~.,=~.2 will 
be discarded while the statistical analysis will be performed on (2.,.~,. 2, 
which we can endow with a structure of nonstationary finite Markov chain 
(after having renormalized the original measure on it). The dominant term 
of the decay comes from the measure of s and, due to the nonuniform 
hyperbolicity of the mapping, is of the form nine. This obliges us to choose 
n 2 = n q, with t /< 1 and t /> 1/c~. Conditions of the same type are necessary 
to ensure a subexponential decay of the errors arising either by approxi- 
mating the original observable with cylindrical functions of length n l and the 
stationary conditional probabilities with the corresponding nonstationary 
ones. In particular they make the preceding estimate worse, giving 

> 1/(~ - 1 ). 
Finally, the statistical analysis on (2,,,~,, 2 will produce a subexponen- 

tial bound provided that q < 1/2. This explains why we have to keep a > 3. 
More stringent conditions of the same nature are met in the proof of the 
CLT, requiring ~ >  30. We want to point out that also for dispersing 
billiards there is a discarded set, close to the singularity lines (expressed by 
the "rank condition"(s)), but due to the uniform hyperbolicity of the 
system, the measure of this set is exponentially small, so that the leading 
term for the correlation is given by the subexponential decay arising from 
the finite nonstationary Markov chain. 
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We recall that in our case a power-law decay was already obtained 
by Wang (1) for the autocorrelation of the characteristic function of the 
"chaotic" region Ao (see Section2), but his argument is not conclusive. 
However, for such an observable the correlations can be written quite 
easily and computed numerically without approximations of any sort and 
reveal just a decay of power type. 5 This confirms the validity of our 
analysis and suggests the impossibility of getting a decay faster than the 
power one, at least in the class of H61der observables. We will also 
show that the subexponential rate of decay of the nonstationary (finite) 
Markov chain (Lemma 3.8) is confirmed by an extremely accurate numeri- 
cal analysis. This analysis, shown in Section 5, verifies a sort of D6eblin 
condition for the convergence of the ratio of the conditional probabilities. 
Also in Section 5 we show that the theoretical estimation of the measure 
of f)n.n~,n2 is confirmed by the numerical computations. In our opinion a 
reliable and accurate numerical analysis of the correlations is very impor- 
tant just to find the real natural of the decay compared with the theoretical 
predictions, which are often worse. However, it is a matter of fact that for 
nonuniformly hyperbolic systems or for systems with singularities, such 
numerical computations can be done only for a small order of iteration n; 
as a consequence, the statistics is so poor as to prevent any decisive con- 
clusion. These questions are well illustrated in the statistical analysis of 
dispersing billiards, where, along with the theoretical estimations, there is 
an increasing list of numerical works giving qualitatively different results 
for the decay of correlations (see the Introduction of ref. 13 for a discussion 
of this point and related references). Therefore it seems interesting to us 
that, for our system, we are able to work out some quantities of statistical 
importance with great precision and accuracy. 

As a final comment, we observe that besides the symbolic dynamics, 
the other powerful technique to study the statistical properties of dynami- 
cal systems is given by the Perron-Fr6benius theory (see, for example, 
refs. 8-12 for the analysis of ID mappings). It would be interesting to 
investigate if such a method could get and improve our results to 1 < ~ ~< 3. 

2. THE S Y S T E M  A N D  S T A T E M E N T S  OF THE RESULTS 

2.1. We now recall the definition and the main properties of the 
Gaspard-Wang mapping(t'2); it is a piecewise linear mapping of the unit 
interval onto itself defined as 

5 In particular, for the autocorrelation of the characteristic function of A o the numerical 
analysis gives a decay of type n ~ ~J, while we found in this paper an analytic (asymptotic) 
bound like n -~ /2-1) .  
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(~k--2Z--~--k--~(X~--~k)+~ k if ~ k < X . < ~ k  
X . + I = f ( x . ) = J .  ~k 1--~k --1 1 

~ X  n - -  a 
i . ~  a if a<<.x ,<l  

with ~k=a/(1  + k )  ~, k e Z  +, ~o=a,  4 - 1 =  1 (see Fig. 1). 
We choose e > 1; under this assumption it is possible to prove the 

existence of a finite invariant probability measure #. This is a Markov 
measure. To understand the properties of such a measure, we begin by 
observing that the partition (mod0)  of [0 ,1 ]  into the intervals 
A~= ~ - 1 -  ~,  i~>0, is a Markov partition. Denote by s the space of one- 
sided sequences c o -  (coo, col ..... co ..... ), coiE {0, 1, 2,...}, satisfying the com- 
patibility condition: given co~, then coi ~ = co~ + 1 or co~ ~ = 0, and the map 
~b associating to x e [0, 1] the sequence co,g2 according to i f ( x )  eA~oi, 
i>~0, is a bijection between ~2 and the points of [0, 1] which are not 
preimages of zero. Finally, the map r conjugates the map f with the shift 

on f2. The following properties of the measure p are easily checked: 

(i) #~ -  g(i) = #(Ag) = p(A~)[Ai[ = a#o/ff , where 

( 1 - a )  p(Ao) 
p(A~) - 1 - ( i / ( i+ 1)) ~' i>~ 1 

is the density of the measure in Ai, #o = 1/(1 + a Z . ~  n-S), and [Ai[ is the 
diameter of Ai. 

fCxl J 

Fig. 1. The Gaspard-Wang  map. 
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(ii) # is a Markov measure, that is, the stochastic process on f2, 
c%(co) -- co., is a Markov chain with conditional probabilities given by 

Pi: = P(oI  =J l  COo = i) = p ( f  - l  Ajc~ A~)/p(A~) 

where we denoted again by p the measure p o ~ -  1. 

The corresponding stochastic matrix is easily seen to be 

/Ploo Pol 0 Po2 " " ") 0 

*'=/-~ 1 o 

with the invariance condition Z :~ p . P . m = # , . , ,  which also gives rt=O 
Po~ = ( # ~ -  Y ,  + 1)/Po = An. The structure of this matrix also implies that the 
chain is irreducible and aperiodic, so that all the states are ergodic ~6) and 
the dynamical system (f, p) is mixing. We denote by Pn the truncated 
matrix of conditional probabilities of order n, that is, n) 

Pn= i 
\ ...1 

(2.1) 

It is easy to check that all the entries of the matrix p,~+l are positive, the 
first line of Pn being the last one of P~ § 1. 

We conclude this section with some useful asymptotic expressions; the 
diameter of each interval scales like 

a~ 
1~1=13. 1-~1 ,~oo (1 +n)~+l  

and the constant slope Sn within each interval behaves like 

[A._I[ ~ + 1  
Sn= [An[ n ~  1+ n ' A ~  

The notation a(n) ~ b(n) means a(n) = b(n) + o(b(n)), n ~ ~ .  

2.2. Our goal will be to compute the decay of correlations for 
H61der continuous functions (of exponent fi); without restriction we 
compute the autocorrelation of H61der observables g of p-zero mean, that 
is, 

f g ( f n x )  g (x )  dp (2.2) 
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It will be clear from the proofs and it was pointed out in ref. 4 that we can 
enlarge the space of observables g by taking piecewise continuous H61der 
functions (with the same exponent or not) on a partition of [0, 1] into 
finitely many subsegments. We return to this case in the Remark after 
Lemma 3.2. With abuse of language we call this enlarged space of functions 
H6lderfunctions of exponent ~, where fl is the minimum of the local H61der 
exponents. We also set E(g)  the expectation of g w.r.t./~. 

We now state our main results. 

Theorem 1. Let g be a H61der function of exponent /~ with 
E(g) = 0. Then there is a constant C(g, c~, ~) depending only on g, e, and 
/~ such that for e > 3 and z in the open interval ( 1 / ( e - 1 ) ,  1/2) we have 

fg(f"x)g(x)du ~C(g, 1 
~,/~) nZ~-i (2.3) 

for n >~ ~, where ~ depends on z and C(g, c~, fl). In particular, r~---, oo when 
z ~  1/2. 

Theorem 1 allows us to prove the existence and the finitness of the 
following limit, defining the "diffusion coefficient" Og for the zero mean 
observable g, at least whenever ~ > 4: 

1 / ' n -  1 ~2 
Dg= lira - E |  ~ g(f'x) = E ( g ) = + 2  ~ E(g(x)g(fix)) (2.4) 

n --+ oo F/ \ i = 0  ) i=1 

We suppose in addition that Og ~=0 (nondegeneracy of the process); then 
we can prove the Central Limit Theorem for the observable g: 

T h e o r e m  2. Let g satisfy the hypothesis of Theorem 1 and D e r 0; 
if, moreover, we have ~ > 30, then 

lim # x; (Ogn)l/2 ~ g(fix)< y (2rc)1/2 e -"2/2 du (2.5) 

3. P R O O F  OF T H E O R E M  1: D E C A Y  OF C O R R E L A T I O N S  

The proof of Theorem 1 consists in several lemmas whose proofs are 
postponed to the Appendices. 

3.1. As usual, in the computation of (2.2), we will shift the descrip- 
tion on s by using the isomorphism ~b, that is, we will consider the func- 
tion ~: s ~ defined as g(~o) =g(~b 1(o))). We also put M = s u p w ~  I~(co)l 
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and for simplicity we set ~ = g. We start by reducing the space s intro- 
ducing the following two subsets of s 

~.~= {co es ~o . - .  co.1~< n2 } (3.1a) 

(the symbols O9o...con, are less than or equal to n2) and similarly 

~ +,,1 = {~o~s (3.1b) 

where n~ and rt 2 will be chosen later as a function of n; for the moment we 
simply take n2 <n~ <n.  We identify 0 .+.~ with the set ~-,-~,,,2 defined in 
the Introduction as a part of the Markov sieve J#.,.~,.2' 

If we generally put ~m = {12)~ ~e~; (2)0,,, (.0 m ~ ///2}, we need to estimate 
the measure of the complement of 0 , . .  

By the invariance of the measure # it is easily follows that 

[m] 
/t(cKD,~)~</~(cs ~ when m~>n2+l  

#((~r ) when m<~n2+ 1 

denoting by [-]  the integer part and c~ the complementary set. 
We are thus led to the estimation of #(c~,~+~). The conditions (3.1) 

can be viewed as the "rank condition" in the theory of dispersing billiards. 
As there, the estimation of the complement can be done quite easily with 
standard probabilistic arguments, but it turns out to be not sufficient for 
our purposes; we need a more sophisticated analysis (for completeness the 
preceding standard arguments give a bound like n 22- ~). 

komrna  3.1. The following condition holds: 

where 

# ( ~ . 2  + 1) ~ < __C~ (3.2) 
n~ -1  

C1 = #oa + a~(c~ 

and ((e) is the Riemannian function. 

ProoL See Appendix A. 

As a consequence, we have 

+", n~-~ Ln2+ l j  
(3.3) 
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The fact that the mapping is not uniformly hyperbolic obliges us to 
approximate the correlation (2.2) with the following one: 

I'~o +.1 g(G"co) g(co) d/2(co) 

On the domain ~n + n, we are sufficiently far away from the indifferent fixed 
point. 

The error we incur is easily computed by means of Lemma 3.1: 

f g(a"co) g(co) d~ -- ~ g(a'co) g(co) ct~ ~ M2C1 ?l (3.4) Jo J~ 
n+n I ] ~  

Warning. Starting from (3.4), we will write all the bounds by using 
the fact that we will choose later n~ =o(n)  and n2=o(n). This implies 
that only the dominant term will be written; the other are discarded by 
assuming that they are a given fraction (for example, c f=  1/2) of the 
dominant term. Collecting all the approximations of this type, we are 
obliged to choose n greater than a large but finite ~; moreover, all the 
constants in the following bounds will contain cf. The value of ~ can be 
prescribed at the end of the proof once precise relations among n~, n2, 
and ~ are established (cf. Section 3.2). 

We now introduce the cylindrical functions on the cylinders of the 
form (COo,..., COt/,), which give a partition of ~nl ~ CO: 

g,~(CO)= ~ gnl(coo'"co,1)Z(o)o ...... 1)(~ (3.5) 
O3 0 � 9  (Onl 

As a consequence, the indices of summation run over [0, nz]; Z is the 
characteristic function and 

1 g(co) d/2(co) gnu(coo""" con1) =/2(0)0. .  . co.x ) f(~0 ...... 1) 

Using the fact that uniformly for (coo'" con~) c ~n~" 

nl 

i = 0  

~< const x (Sn21 )nl 

~ const x (1 +c~ n2 +---~1~-"~/ = D(nl, rt2) 

(3.6) 

(3.7) 

we get the following result. 
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Lemma 3.2. The following condition holds: 

I= g(one)) g(co) d#-  f= g.~(a~co) g.~(co) d# <~ 2MD(nl, n2) ~ (3.8) 
n + n l  ~ , ~ 2 n + n l  

where 3 is the H61der exponent. 

ProoL See Appendix B. 

In order to get a (subexponential) decay we put/72 = n~,  0 < p < 1. 

Remark. The cylindrical functions are defined on D~I, with length 
n 1 + 1, rather than on ~ .+ .1  since ~.+~1 ~ an~,,+-i =~-1  and this fact was 
explicitly used in the proof of Lemma 3.2. 

As said in Section 2.2, we can weaken the H61der property of g by 
assuming g piecewise H61der, that is, the H61der condition is satisfied on 

p v of [0, 1]. This implies that each element of a finite partition ~ = { ~}~= 
we should neglect the elements of (C~)o-.-co,,1)c~.l intersecting the 
boundaries of ~ ;  but we can do that since the measure of each cylinder 
( coo"co . , )  is bounded from above by n2[l+(~+l)/n2] -~ (and then 
decays subexponentially), where the first factor is the asymptotic value of 
the density p(An2 ) in the interval A~2. In the particular case that g is already 
the characteristic function of a Markovian rectangle (coo-.. co~), we do not 
need Lemma 3.2 and we can simply take n2 = n~, so that the Markov sieve 
reduces to J/g~,.l' 

We now try to approximate further the term 

f~ gnl(~rnco) g~i(co) d#(co) 
n T n  1 

We call / i  the restriction of # to s~. +,,1. 
By using the representation (3.5) we get 

fD gnl(Gnco) d#(co) gnl(co) 
n + n  1 

= ~ gn~(CO0'''COnl) ~ g.I(CO.'''COn+~I)/2(CO0'''CO.I;C%'''COn+,,~) 
(D O . . ,  COnl  CO n � 9  O3 n ~- n 1 

= ~ g.l(coo'"co.l)g.l(co.'"co.+.l)#(coo"'co.+,,l) (3.9) 
o)  0 � 9  o)  n + n 1 

We repeat that all the indices in the last sum are less than or equal to 
n2; this condition continues to hold in the following considerations since 
we will exclusively work on the space On+n,: all the sums over the indices 
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COo, co~ ..... toe, k~< n + nl ,  satisfy this condition,  and  we will simply denote 
then with 5Zo~ 0 ..... ~.6 

3.2.  We now define a new probabi l i ty  measure  fi on 0 , + , ~  by setting 

~(gO0"""  O)m) 
�9 = , m > ~ O  ( 3 . 1 0 )  ~(~Oo ..co~) Z(o,0 ..... +o0#(~o0--.co~+n~) 

and extend it to the induced Borel ~-algebra on O n +,,- 
Consider ing on the probabi l i ty  space just  constructed (O,+,~ ,  fi) the 

stochastic process coi(co)= (o i (the i th coordinate  of ~o e On+, , ) ,  it is easy to 
check that  it is a nons ta t iona ry  M a r k o v  chain with m e m o r y  one, as stated 
by the following lemma,  which also holds in the theory  of dispersing 
billiards. (5) 

L e m m a  3.3.  

g m > l > ~ O ,  

where 

The  following condi t ion holds: 

~(co,.-. ~Om) = ~(0~,--. CO~) [e[ 
i = p + l  

~(~o,l,o,_ 1) (3.11) 

~ l ( ( - O i ] ( - O i  1 ) =  ~(( '0 i  ] (/)i 1) 

n + n l  

(3.12) 

I t  is impor t an t  to realize that  in formulas  (3.11) and (3.12) the condi- 
t ional  probabil i t ies  fi(coi] coi_ i) are compu ted  on t h e  space (2n +nl (and will 
be successively considered only for i<~n+nl), while #(coil(oi_l)  are 
compu ted  o n / 2  and therefore are stat ionary.  

We now compare  the nons ta t ionary  condi t ional  probabil i t ies  with the 
s ta t ionary  ones; we need L e m m e  3.1 and the following one: 

kemma 3.4. Let us consider the sum 

S,(Z)= ~ #(c%lZ)#(COllO)o)...It(e)nloOn_l) (3.13) 
co O � 9  ~o n 

where Z ~< n2 and not  all the indices O)o.-.co n vary  s imultaneously in the 
interval [-0, n2] (the tilde distinguishes these f rom the summat ion  symbols  
in t roduced above) .  Then  

1 Sn(Z) ~< - -  # ( ~ n )  (3.14,) 
/to 

6 B y  ~'(~, , .  . . . . . . . .  g n , ( ~  - - - a ) .  + . ,  ) f i ( o ) 0  - .  - cn,,~ ; c o n . - ,  c %  + . ,  ),  w e  m e a n  

g~ ~o;,1 ~(~Oo - �9 -~o., ; ~. = co; -. �9 oJ . . . .  = CO'o) 
~)0 �9 -- ~Ont 

a n d  s o  o n .  
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L e m m a  3.5. The following condition holds: 

fi(r176176 1 <~ n =  
I~(e) i co~_1) C2n~-'/" (3.15) 

The proofs of Lemmas 3.5 and 3.6 are in Appendix C; the constant C2 
can be easily related to #o and the constant Ca introduced in Lemma 3.1, 
just looking at Eq. (3.3) and Eq. (C.1). The choice of n2 in order to get a 
decay of the upper bound will be discussed at the end of this section. 

We now replace in (3.9) the measure /~ with the new one; by (3.10) 
and Eq. (3.3) we immediately get 

~. g.1((% �9 " "~.1) g.l(~o. �9 " " co. +.I) H(COo �9 �9 �9 (o. +.1) 
o 9 0  �9 o ) n  + n t 

�9 . . ~ O n + n l  ) t'1 
- -<c37 

r 0 . . .  o3 n + n I " 2  

(3.16) 

where the constant C3 is the product of M 2 and a term containing Cl. 
To treat the second term in the lhs of (3.16), which we call G.,  we now 

follow the same method as in the proof  of Lemma 4.3 in ref. 4. We first add 
to and subtract from G. the following expression: 

Go,. = ~ gnl(('Oo'''('Onl)~(('Oo'''('Onl) 
O)  0 �9 . . 0 9 h i  

x ~ g.~(~. - �9 - e;. +.1) fi(~o. �9 �9 �9 r +.~ ) (3.17) 
o )  n � 9  03 n • n 1 

which is close to zero, as stated by the following lemma. 

L e m m a  3.6. The following condition holds: 

n 
IGo, A ~< C4 ~ (3.18) 

Proof. See Appendix D. 

The constant C4 is the product of M 2 and a term containing C1 and 
Ca, as easily follows from the proof. 

Therefore we get, using the Markov  character of/3, 

16.l  IGo,.I + M 2 E /~(('00""" COrn) 
(z~ 0 � 9  c o n l  

x ~  y" ~ ~(coiJo3 i t)-fi(e),) (3.19) 
~ n  r  i = n l + l  
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We call G1, n the sum over (~Oo--.COnl) in the r ight-hand side of (3.19): 
to estimate it we need the following crucial lemma on the uniform rate of 
mixing on the reduced space On +nl : 

Lemma 3.7 (Rate  of  mixing). For Vco0, o~n2+1~<n2, 
n 2 +  I 

(P,~22+1)o)0,~o~2+1= ~ l~ #(coil~i-l)~>/~n2#(con2+l) (3.20) 
O)1 - - �9 COn2 i = l  

where/?,2 ~ , -  +0o 1/n2. 

Proo f .  See Appendix E. 

L e m m a  3.7 allows us to bound  subexponentially Gl,n, as stated by the 
following lemma, which we will also use in the p roof  of the CLT:  

kemma 3.8 (Convergence of the nonstat ionary Markov  
chain). The following condit ion holds: 

IGl,nl ~< U1 - (1 - ]2n)n2+lfln2] [(n nt)/(n2+ 1 ) ]  z (3.21) 

where Z ~< 4. 

Proof .  See Appendix F. 

3 .3 .  The leading term to the decay of [G,] is clearly given by 
Lemma 3.6 once we prove that  the rhs of  (3.21) vanishes in the limit n ~ ~ .  
In order  to get a power- law decay for the bounds  given by the inequalities 
(3.4), (3.16), and (3.18), first set n~ = n  ~, 0 < v < 1, which, together with 
F/2 = F / p ,  gives n2 = nf  = rtpv; therefore we require 1/e ~< pv. A more  stringent 
condit ion of this type comes from the approximat ion  of the nons ta t ionary  
M a r k o v  chain, that  is, in order  to guarantee the convergence of 

( 1 -  ~)~2+ '  ~ (1  - const  ~ )  ~2 

to 1 we must  have 1/(e - 1) < pv.  7 We now return t o  (3.21). Since/?,2 scales 
as in Lemma3 .7 ,  the rhs of  (3.21) decays in a subexponential  way 
whenever pv < 1/2, which joined to the previous lower bound  for pv, 
implies c~ > 3. 

In  conclusion, for e > 3, we get a power law decay of type 

1 
IE(g(a"~o) g(o))] ~< const .nZ ~ -  ~ (3.22) 

7 It is useful to remark that in order to have a subexponential decay of (3.21), it would be 
sufficient to keep n - n  1 >/72+ 1 or /'11 = ~ ( n - - 1 ) / 3 ]  instead of nl =n ~' as above (and this 
evidently does not change the final results). However, the position n~ = n ~ will be necessary 
in the proof of the CLT and we preferred to assume it from the beginning. 
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where 

z 

and n is sufficiently large, n > n, n depending on z and the constant entering 
(3.22), which depends on g, c~, and ~ (see Warning in Section 3). Whenever 
p v ~  1/2, the bound (3.21) becomes negligible with respect to n/n~ only 
asymptotically. This concludes the proof of Theorem 1. | 

4. P R O O F  OF T H E O R E M  2: C E N T R A L  L IM IT  T H E O R E M  

The proof of the CLT closely follows that for dispersing billiards 
quoted in refs. 4 and 5: we want here to emphasize only those parts where 
new constraints for the parameter e arise. The proof consists in showing 
that the characteristic function 

~0n(2)=E exp i(Dgn) 1/--------~k=o ~ g(~rkc~) 

converges to e -  x2/2, when n ~ o% uniformly in 2 on compact sets. A crucial 
step is to check the Lindeberg condition, which in our case reduces to 
proving a bound of type 

{ ( ~ 0  t 4 t  E g(~i~o) ~< const,  n 2 (4.1) 
i 

The proof of this is performed by first replacing the integral over s with 
the one on On+n1, as in Section 3.1. Since we have fours sums running over 
[0, n], the error incur is nS/n ~ which implies pv > 5/c~; but pv < 1/2 (by / 2~ 
Section 3.2), so that we get e > 10. Another, more subtle bound on c~ comes 
from the following representation for the preceding fourth moment, which 
is obtained as in (3.9): 

2 2 2 gnl((Dil "" "O')il +nl) 
il<i2<i3<i 4 co0-..conl coi 1 ""coq+n 1 

• gnl(O)i2 "'" ~i2+nl) gnl(O)i3"''COi3 +nt) gnl(('Oi4 "'" O)i4+nl) 
x t~(COo", e)n~, c%...  toe4 + nl) 

We first consider the terms such that i4-i1<~nll +O, 0 < ~ < i ,  whose 
contribution is r/3v(1+~~ which in view of (4.1) is smaller than two 

822/72/5-6-30 
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provided that (1 + ~) < 1/(3v). The sums over the remaining terms can be 
_ _ 1+~, and i4-i3>~n~ +~ split in three parts, namely i2 il/> n ~ + ~', i3 i 2 ~> n 1 

and each part can be estimated as in Lemma 3.8 after having suitably 
added terms close to zero by the zero property of g and Lemma 3.4. In 
particular we get bound of the type 

which decays provided that (1 + ~ ) > 2 p .  Joining this to the previous 
bound for 1 + ~k, we get pv < 1/6, which, together with pv > 5/c~, finally 
gives c~ > 30. 

We now turn to the estimate of the characteristic function q~,(2) by 
applying Bernstein's method as in refs. 4 and 5. 

~ n  1 ~ o . k ( . o  x The first step is to write the sum 2~k=ogt ) as 

p p + l  

E Z g(a~c~ + Z Z g(ak~ (4.2) 
s = l  k e A s ( 1  ) s = l  k ~ A s ( 2  ) 

where, for l<<.s<~p, IAs(1) l  = [-n~ '] ,  IAs(2)l = [n~2], and they are inter- 
calated; the last one .  Ap+I(2)=A, is such that J<~nT'+n ~2. Besides 
0 < ~)2 < ~21 < 1, we set A = A + Ap(2), and to simplify the notations we drop 
the integer part symbol in the next formulas. 

Due to this decomposition, (i) we can discard the second term 
in (4.2), since the limiting distribution of (Dgn)-I/2~,k=og(ako9) and 

p (Dgn) -lIE Zs=~ Zk~s(~)g(a~~ are the same (see Section 6.2 in ref. 4 for 
the details); and (ii) all the p stochastic variables 5Zk~s(1)gn~(ak~) [see 
(4.3)] have the same distribution and this is essential to in applying 
Lindeberg's condition to (4.4) below. 

The analysis of the first term in (4.2) proceeds as for billiards: we first 
replace g with the cylindrical functions g,,,  making a subexponential error 
[cf. (3.8)]; therefore we approximate the characteristic function ~o,(2) with 
the following expression, where we introduce the measure fi according to 
(3.16): 

2 p-1 } 
E exp i(Dgn)~/2 E E gnl(~kO')) 

s = l  k e A s ( 1  ) ~o0 �9 �9 �9 r - nT1 - nY2 - z] + n 1 

X ~ ( ( D O ' ' ' ( - ' O n - - n ' l  n~ 2 A + n l )  

x ~ exp i (Dgn)l/2 ~ gn~(crkm) 
~n_nrl 2...Ogn+nl k~zIp(1)  

(4.3) 
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By g,l(crk~o) we mean that  g,l is computed  on the cylinder with fixed 
O~k'''~Ok +,~; this and the choice of the indices in the preceding two sums 
imply that  the sums over k are independent:  in particular, we need 
n - n 7~ - n 72 - 3 + n I < n - n 71 - -  ,~ ,  which implies 72 "~ •.8 

By invoking L e m m a  3.8, we replace the second term in (4.3) with 

2 exp i(Dgn)a/2 • g,,(a~o) fi(o9n ,~.~ ~...o9,+,1 ) 
Ogn_n~l_~,..OOn+nl k E ,alp(l) 

up to a subexponential  error  of the type 

n2 / 

which tends to zero whenever 72 > 2pv, giving 5/c~ < pv < 1/2 or c~ > 10. This 
bound  is already included in the previous one, c~ > 30. 

I terating p times the procedure sketched above, we can factorize the 
characteristic function in such a way that  

q~ . (2 ) -  E exp i(D--)~/2 ~, g.~(ake)) = o ( 1 )  (4.4) 
s= 1 k~As (1 )  

when n ~ ~ and with the expectation now taken with respect to the 
original measure /~ with a power  correct ion [cf. (3.16)]. The expression 
(4.4) is bounded  independently of 2, so that  the convergence to zero is 
uniform; this plus the Lindeberg condit ion checked above is sufficient to 
establish the Central  Limit Theorem. 

5. N U M E R I C A L  C H E C K I N G  

']?he impossibility of achieving the decay of correlations for 1 < ~ ~< 3 
relies on the inequalities, proved in Section 3, 

1 1 
~ _ l < P V < ~  (5.1) 

We could get the desired if, instead of  1 / ( e -  1 ) <  pv, we had 1/e + 1 
< pv. To this end we should improve Lemma 3.5, bounding  7,, which is 

based on Lemma 3.1; alternatively, we could hope to improve the upper  
bound  in (5.1). We show in this section that Lemmas  3.1 and 3.8, on which 

8 This is the point where the comparison between nl and n 2 explicitly requires n I =n ~, 
v~ (0, 1) (see also footnote 7). 
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the upper bound in (5.1) is based, are optimal, in the sense that very 
accurate numerical computations confirm the analytical bounds. Therefore 
only a direct improving of Lemma 3.5 could extend Theorem 1 to e > 1. 

To check Lemma3.1, we computed numerically the expression 
Zn=y(S0n+1) in (A.1) by means of the recursive relation (A.3), which 
allows us to go rapidly to order of n up to 8000. 

The quantity we are interested in is En-(1-Zn)=#(c~2n+l); in 
Fig. 2 we report - l o g  En versus log n for different values of e = 2.5, 3, 4. In 
all the cases, the data are fitted with a straight line of slope very close to 

- 1 ,  thus confirming the theoretical bound given by Lemma 3.1. 
In order to check the upper bound in (5.1), we estimate the quantity 

Gl,n (cf. Section 3) in a way different from that used in Lemma 3.8 and 
better adapted to the numerical computations (it is the same method 
utilized to prove the subexponential decay of the nonstationary Markov 
chain for dispersing billiards/5/). The starting point is to subtract from the 
second term in (3.16) the expression 

E gnl(gO0 "'" gOn~) ]2((Do""" gOnl) 
O90  """ COn 1 

x . ~ ,  g , , l ( o ~ , ,  �9 - - o.~,, + , , ~ )  p ( ~ , ,  - - - ~ , ,  + , , ~  I ~ o  - - �9 ~ n l )  

~ ~  "" " ( ~  + n 1 

where the symbols c30---o3,t are fixed and the error is estimated as in 
Lemma 3.6. 

-tog~(cfi~ 

38. B 

2.5,8 

Z~. 8 

.iS, 8 

I8.B 

5.8 I ] J I P 

4=8 5,8 6,8 7,8 8.8 9.8 

logn 

Fig. 2. Graph of --1og#(C~(2n~_l) VS. logn for •=2.5 (diamonds), 3 (squares), 4 (crosses). 
The slopes are, respectively, 1.523, 2.009, 3.011. The points of intersection with the ordinate 
axis are functions of ~. 
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The term analogous to GI,n, which we call Gl,n, can now be bounded 
a s  

coo """ tOn I c o n  a ) n  I + 1 """ COn I 

• ...p(co.l~%)- ~ P(o~.+,l~.,)---P(~o. lo~.,) 
COn I + 1 �9 "�9 COn I 

(5.2) 

We now bound the term in the absolute value in (5.2), which we call R." 

R n ~ m a x  

~ n l + l ' - ' ~ n  1 

P(m. ,  + 11 ~) . . .  P(co. I co,,_ 1) 

- min 
~ n + l - . . ~ n _ l  

~(~ .1  + 11 ~) --" ~(co.  I ~o,~ 1) 

We further define 

~1,  COn 

COn I + 1 "" " COn - t 

g ~  n-"~) = m a x  C (n nl )  
~l,COn 

m ~  - ~ )  = m i n  C ("-"~) 
o~ 1 ,  o ) n  

O~ 

Standard estimates for Markov chains give 

R <~(M~-I)  (n- _mo~. 1)) 

(M(~--1-.2+1) m(. nl "2+1)) 
(O n  

~ ' ~  O~nl 2 + 1  ~~ + 1 " ' ' ~ n l  + n  2 

(5.3) 
COn I + 1 "" �9 (O n  1 + n 2 

/ )  

The symbol Z + means that we sum over the m.1+.2+1 for which 

S # ( ~ . , + 1 1  ~) "" P(~ . I  +.2+ 11 ~ .1+o2)  
COn I + 1 "�9 "(on I + n 2 

c o n  I + I " " " R~n l + n 2 
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Using Lemma 3.6, we can replace the nonstationary conditional proba- 
bilities with the stationary ones, obtaining for the argument of ~2~+~o1+,:+~ in 
(s.3) 

+ 

m a x  E 

~ n  1 + n 2 + 1 

(-) 

+ 

~<max Z [(P~:2 +~ (1 v ] n : + l ( p m + l  ~,~ ) . . . .  ~+~ - -  . . . .  : )B,~o~+.:+I] 
COn I + n 2 + l 

mi n: + 1 min~(P~ + _),7] (5.4) 
~< 1 - ( 1  - - 7 n )  " :+1 min .:+1 

j max/(P.:  )~3 

and then we iterate the procedure as in the proof of Lemma 3.8. 
The quantity 

mini(P~2+ 1~)'7 
/~n: = min 

s maxi(P~2:+ 2))ij 

plays the role of/~.: in Lemma 3.89; analytic computations of ~in: give rough 
estimates of the type ~n:..~l/n~, t > c ~ + l ,  insufficient to establish 

9 Note, however, that the term in the absolute value in (5.2) must be multiplied by the 
cardinality of the sum over ~on (which is ns), in contrast to the proof of Lemma 3.8. 
However, this does not affect the subexponential rate of convergence. 

5 . 8  

8 .81 I r I 8,10 
4.1~ S,~I 6.8 " 7.B 9.8 

logn 

Fig. 3. Graph of -log/~nvs. logn for ~=2.5 (diamonds), 3 (squares), 5 (crosses). The 
slopes are, respectively, 0.997, 0.997, 0.996. The points of intersection with the ordinate axis 
are functions of c~. 
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Theorem t. On the other hand, /?,~ can be computed very accurately by 
using again the reeursive relation (A.3). 

With the order of n up to 8000 and choosing, for example, c~ e [2.5, 5], 
we find a surprising regularity of the decay, precisely 

1 
/?n < const .--  (5.5) 

H t 

where t is independent of e and almost equal to 0.997 and the constant 
depends on ~. 

This is evident, e.g., in Fig. 3, where we report -log/~n versus log n for 
different values of c~; we point out that the statistical analysis on the 
reduced space ~n+,~ showed us the good quantity to study numerically. 
While a direct numerical computation of (2.2) for nontrivial g is extremely 
difficult and often unreliable, the mixing rate coefficient expressed by /~,,~ 
can be found with high precision and quality. 

A P P E N D I X A .  P R O O F  OF L E M M A 3 . 1  

We put for simplicity nz=n and Pn=B. Then we observe that 
#(~g~n + ~) = 1 - Zn, where Zn is given by 

i = 0  j = 0  

We also define 

B~. +I=L . . . .  i, Vm=0,.. . ,n and Vi=0,.. . ,n (A.2) 

and rename the entries of the first column of the matrix (2.1) as Po~= P~. 
It is therefore easy to check the following recursive relation, which is 

used in the numerical computations of Section 5: 

Lm+l,i=Lm.gPi+Lm.i+l, Vi=0 ..... n -  1 (A.3) 

which also holds for i=n by setting Lm, n+l =0.  We will be interested in 
n L expressions of the form Zi=o m+Li; repeated use of (A.3) and (A.2) 

allows us to get the following bounds: 

f X~m+2 E PJ) <~ ~ L,,,+l.i <~ 2 PJ (A.4) 
j ~ n  / i = 0  j ~ n  

We now turn to the computation of 1 -  g.. 
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Using (A.2), we have 

- - - -  ~ -~ L .  i,j (A.5) 1 Z~=po l + a  1 Ln 'J - i=  
n = l  F/c~ j = O  1 

Application of the bounds (A.4) in (A.5) gives, after some manipula- 
tions, 

Since 

1 - Z ~ < ( n + l )  ~ Pj l + a  + a  i ~ (A.6) 
~ 0  j >  n i =  1 i 

1 < ~ ,  1 
i=~i -7 = 1 ~  = ~ ( ~ ) < + ~ 1 7 6  

where ff(~) is the Riemann function, we can further bound (A.6) as 

1 - z .  < m  n--~_ ~ + a~(~) 

which completes the proof of the lemma. | 

(A.7) 

A P P E N D I X  B. P R O O F  OF L E M M A 3 . 2  

The expression on the lhs of (3.8) can be bounded by 

M I - s u p  Ig(~r"co)-g,,(~"co)l+ sup Ig(co)-g,l(co)[ ] 
O) ~ ~'~n +hi co~["~n+nl  

(B.1) 

Since 

sup [g(~o)-g.~(co)l < sup [g(co)-g.l(~O)l 
o9 e ~ n + n  I ~ - O n  1 

~< sup sup Ig(og) -g(~o')l 
(coo- .  " O~n 1) oJ, eo' E ( t oo . .  "oJn 1) 

~<const. sup ~ f -~  
(og0""OJn 1) i = 0  A~ 

using (3.7), we get the requested exponential bound for the second term 
in (B.1). The first term gives a similar bound, remembering that 
~"~.  +.~ = ~.~. I 
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A P P E N D I X C .  P R O O F S  OF L E M M A S  3.4 A N D  3.5 

By using the definition of S~(Z) as given in (3.13) and applaying 
(3.12), we immediately have 

Sn+nl-i(O)i-!)--Sn+n,-i 1 ( ( ~ / )  ~(coilcoi~(coilcoi 1)1) 1 ~< -1-7S~-+s ~- '(C.1) 

so that Lemma 3.6 is proved once we bound the quantity S~(Z) as in 
Lemma 3.5. To prove this, we consider two cases: 

(i) Let Z = 0 ;  then 
a a 

/-t(coo I Z) = Po#oo - 
co; (COo + 1)~ 

from which #(coo[ Z)~< (1//~o)#(coo). Then S,(Z) is bounded by 

~ 1 &(z)<~ E ~,(coo) ~ ,.(co,l~,=,)~<-,.(~cZ,) 
o~0 �9 �9 �9 con ~ / 0  i = 1 / / 0  

(ii) Let Z r  we note that, by hypothesis, Z<~n2; then it must be 
that co o = Z -  1. Therefore 

S ~ ( Z ) = I - s  ~(coI I / - -1) ' ' '~ (COnlcon-I )  
O 9 1  �9 - - O 9  n 

Now if Z - 1  = 0, we go back to case (i), otherwise we get as above 

S ~ ( / ) - - 1 - 1 .  s # (co21 / -2 ) . . . # (con l~o ,  1) 
g o  2 � 9  c o  n 

If, continuing the procedure, we are never reduced to case (i) (and this 
surely happens whenever n > n2), we must get S,(Z)--0, since at least one 
c%, 0 ~< k ~< n, must take values larger than n2. | 

A P P E N D I X  D. P R O O F  OF L E M M A 3 . 6  

What we have to estimate is 

(*)= ~ gn,(coo ~,t~(co0 ~o,,,) 
690 �9 . . COn, 

which is very close to zero, with g of zero mean. To make this argument 
precise, we start by changing fi to fi in (.). The error is 

~ ( ~ o ' " c o ~ , )  1 n 
~< c o n s t  - - -  ~(coo co~ n; 
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The next step is to enlarge this sum to the words belonging to t2n~, 
which is the space where we defined the cylindrical functions. The error is 
clearly bounded by 

~(COo...~,,) It"(COo..- c%) 
1 

It(~o'"con~) It(COo...~n~) 

where It((9o.-.~%~ ) is the It-measure of the word (COo---~%l)ct2,1 and 
#"(C9o...o~,~ ) is therefore the It-measure of the word (C9o...co,~)~O, 1, 
for which not all the symbols (9,~+1...~o,+,, vary simultaneously in the 
interval [0, n2]. But clearly #"(c%.-. ~o,~) = It(trio-.. con~) S,_1(o~,~). The 
quantity S,  1(~o,~) can be estimated as in Eq. (3.14), giving an error 
const, n/n~. We thus have to bound 

Y. g.Y~ ' "  ~~ It(~o "'" ~ = S I~ 
( 0 9 0 . . . O 9 n l )  ( o ~ 0 . . . C n n l ) ~ n l  ( 0 " "  

But this last expression differs from 

g(~o) dit(~o) 
�9 ~onl ) 

= Y~ I g(co) 0 d#(~o) 
( ( o o . . .  a ~ , l )  ~ t 2  ( (o0  �9 - �9 o J , )  

by const.  #(egO.l) and this concludes the proof. | 

APPENDIX  E. PROOF OF L E M M A 3 . 7  

We have to estimate (3.20), that is 

(P~22+1)o~0,~%+i= ~ #(~1[COo)-.-#(co.2+~I(.%0 (E.I) 
co I � 9  ~On2 

which is surely positive, since the matrix p,2+1 is positive, as noted in 
n2 

Section 2. We now consider the last term, that is, 

con 2 - I ~ 2 

and, for reasons which will be clear in a moment, we want to compare it 
with 

(T2)=#(~~ 2 It(~~176 2)~,#(c~ 
O~n 2 - I COn 2 

In particular, we look for a condition of the type (T1)~> r(n2)(T2), where 
r(n2) is a decreasing function of n2. 
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We distinguish two cases: 

(i) First, let ~on2_ 2 = b # 0. Then  con2_ 1 = b - 1 and it is immediate  to 
verify that  

(T1) = ~/~(~%21 b - l) ~(~n2+, I c%) >i ~(010) ~(~,,2 +, 10) 
COn 2 

for any b > 0. 

(ii) Let  e ) ~ 2 _ 2 = b = 0 ;  then 

( T 1 ) =  2 # ((2)n2 11 0 ) {  ~-~ ]~(On2 I On2 1) ]~((J)n2 + 11 On2)}  
r 2 1 COn 2 

~> ~(OlO)2 ~(o).2+11o) 

In both  cases, (T2)~< #(C0n2 + 1); we will show later that  

#(~%2+ 1 I~on2 = 0)/> ?(n2) #(~on2 + 1) (E.2) 

where ?(n2)~ l/n2 for n2 large. The r(n2) we are looking for is then given 
by 

1 
r(n2) = ?(n2) # (0 t0 )  2 ~ - -  (n2 large) (E.3) 

/'/2 

We now prove (E.2), that  is, #(~oil co i_ 1 = 0)/> r(n2) ~(~i) for co i ~ n 2. 
We first note  that  by the explicit expressions for the condit ional  
probabilities given in Section 2 we have 

~,o,, ~ ~ --o~ - ~  ~ i ,  [ ~ ~o,+ ~ )  1!] = ~,~,)~0) ,rl ~ ~ ~ ,+1~ ~ l, 

The function [ 1 -  x~/(l +x) ~] is mono tone  decreasing to zero and 
reaches its minimum at x = n2 in our  range. Then  

1 [1 n~ ] 1 (n21arge) 
~(~)=~,~ ,~  (n~+ 1) ~ n~ 

We now conclude the proof  of the lemma. By using the inequality 
(T1)>~r(n2) T(2) in (E.1) we have 

(pnn22+1)~o,~%2+l>/r(n2)#(~ Z ~((J) 1 [ (J)O) " " ' #((~On2 [ ('On2 - 1 )  
o) 1 �9 con2 

>~ #(o)n~+ 1) r(n2)[1 - S.2_ 1(COo)] 

where S.2 1(o9o) is bounded  by [1//~(0)]/~(cgt?~2_l) as in Lemma 3.4. We 
finish the proof  by set t ing/~.2= r(n2)[1 - S n  2_ l(coo)] ~ 1In2 for n2 large. | 
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A P P E N D I X  F. P R O O F  OF L E M M A 3 . 8  

We first rewrite G1, n a s  

+E n 
G,,~=2 E fi(C~176 E [ I  

(o0...cOnl con COnl+l- ' 'On 1 i = r t l - ? l  
fi(co, l o~i_ l) - fi(co,)] 

where Z + means that we sum over all the 0% for which 

Y [~ ~(~1~, ~)~>g(~.) 
0onl+l ' ' '0on 1 i = n l + l  

We call G2,, the sum over Y~o~+: it can be rewritten in the following 
way (we will divide successively the interval [n~, n] in multiples of n2 + 1 
starting from the end): 

+ f- n n2-- 1 

a~,.=E E ~ E II 
(On O9n n 2 1 On l+ l ' ' ' 0on  n 2 2 i = t / l d - I  

~ ( ( D i l ( - O i  1) - -  f i ( 6On- -n2 - -  1) 1 

>( [ E ~ ~ ((Dil  (~Oi 1 ) - - ~ n 2 f i ( ( ' O n )  1 
On-n2" ' ' (On 1 i = n - - n 2  

where we have subtracted the term 

+ [- n - - n 2 - -  1 

E E L2~(o.) [ E [I 
COn COn n 2 1 COnl+l - - -con-n2-2  i = n l  -t- 1 

~(~o,l~oi_l)-~(co..2 1)] 

which is zero since/2 is a probability measure on t2 n + nl ; the term/~2 will 
be defined in a moment. Now we replace the conditional probabilities 
fi(" I') with the corresponding ones/x(.I.)  in the second square bracket in 
the expression for G2, n ; in particular, we get 

(~ --n 2 ' "f~ - I i -- n -- ;7 2 

~> (1--7n) n2+1 (pnn22+l)~on_n2_,,on--fln2~(fDn) (F.1) 

Now, if we choose fi.2=fln2(1--?.)n2+l, we surely have that the 
expression in (F.1) is nonnegative by Lemma 3.7. Now we return to G2,n; 
splitting the sum over n - n 2 - 1  into the positive and negatiVe parts Z + 
and Z -  and by the nonnegativity of (F.1) we have 
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+ + E  nn2, )1 
(On COn n 2 1 fonl+l"'gOn-n2--2 i=nt+l 

X ma2~ [ E ~ ~ ( ( l ~ i I Q J i - 1 ) - - ~ n 2  ~ ( ( J j n )  ] 
f~ o}n-n2 - . . fDn - I i ~ n -- n2 

~< [1-(1--~n)n2+l~n21 

(On--n2-1 C~nl+l--,Can n2-2 i:ni-t-1 

We can now iterate the procedure and get 

IGI.,,I ~< 2211 - (1 - ~)-2+ ~fln2] E(---hi}~('2+ 1)] 

where 2 < 2 is the last term of the iteration. I 

N o t e  A d d e d .  After this paper was written, V. Baladi made aware us 
of the paper by Prellberg and Slawny, (16) where some results for the decay 
of correlations for 1D mappings with an indifferent fixed point were 
reported without proof (and without using symbolic dynamics on Markov 
chains). For  our particular map, Mori (17) improved some of our results, by 
using a technique of Perron-Frobenius type (we thank J. Aaronson for 
having sent the preprint to us). Another more general and powerful techni- 
que of Perron-Frobenius type for transformations of the unit interval with 
a neutral fixed point has recently been developed in ref. 18. 
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