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Abstract

We show that for a large class of piecewise monotonic transformations on a totally ordered, com-
pact set one can construct conformal measures and obtain exponential mixing rate for the associated
equilibrium state. The method is based on the study of the Perron-Frobenius operator. The confor-
mal measure, the density of the invariant measure and the rate of mixing are deduced by using an
appropriate Hilbert metric, without any compactness arguments, even in the case of a countable to
one transformation.

1 INTRODUCTION

Invariant measures, absolutely continuous with respect to conformal measures, for 1-D maps should
enjoy the same properties as Gibbs measures for Axiom-A systems [4, 23, 20]. One therefore expects
that they verify strong statistical properties (exponential decay of correlations, central limit theorem,
variational principles) and that their local behavior permits a complete fractal and multifractal de-
scription. Yet, the construction of conformal measures appears to be problematic. We refer to the
introduction of [8] for a rather complete history of the various attempts to construct conformal mea-
sures. For dynamical systems considered in this paper two methods are available. Both of them look
at the conformal measure as the fixed point of the adjoint of the Perron-Frobenius operator associated
to the dynamics. The first method proposed in [27, 11, 12] consists in defining the transfer operator
on some larger space where it acts on continuous functions and fixed points theorems are successively
applied. The other approach has been developed in [8] for continuous, finite to one transformations,
inspired by some previous work by Patterson [21] : the conformal measure turns out to be a weak
accumulation point (computed at a transition parameter) of a sequence of measures constructed by
weighting suitably the powers of the transfer operator. We also mention the work of V. Baladi [1],
where a spectral gap of the Transfer operator implies both the existence of a conformal measure and
the exponential decay of correlations.

Our contribution is the following. By iterating the Perron-Frobenius operator we obtain, at the
same time, the conformal measure (see (3) below), the density of the invariant measure and a construc-
tive estimate on the rate of decay of correlations. Such an unified approach works also in the case of
countable to one maps. In addition, we obtain a variational characterization of the invariant measure.

Let X̃ be an uncountable, totally ordered, order-complete set. We endow X̃ with the topology
given by the intervals, which makes X̃ into a compact space [3]. Equipped with the σ-algebra B(X̃) of

Borel sets, X̃ becomes a measurable space. Let us call B(X̃) the set of real bounded Borel measurable
functions.

We call T a piecewise monotonic transformation on X̃, if there is a finite or countable partition1

Z of X̃ in intervals Z such that T is strictly monotone and continuous on each Z ∈ Z. MT (X̃) will
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1Note that here we allow countably many intervals of monotonicity, contrary to some other definition in the literature.
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denote the set of invariant Borel measures of T . Next, we consider a potential ϕ : X̃ → IR∪{−∞} such

that the weight g = exp(ϕ) is of bounded variation over X̃ and
∑

Z∈Z supZ g < ∞. We can define
the Perron-Frobenius (or transfer) operator given the map T and the weight g acting on bounded

measurable functions h ∈ B(X̃) as :

Ph(x) =
∑

y∈T−1{x}

g(y)h(y). (1)

We assume the weighted system (X̃, T, ϕ) to be covering (some kind of topological mixing property,
see definition 3.5).

The aim of this paper is to find a conformal measure ν and a positive eigenvector h∗ of the transfer
operator such that the measure µ = h∗ν ∈ MT (X̃) is an equilibrium state, and mixes exponentially
fast for all the observable of bounded variation.
We briefly recall that a measure ν is said e−ϕ̃-conformal when

ν(TA) =

∫
A

e−ϕ̃dν ∀A ⊂ Z ∈ Z. (2)

In the sequel, we will refer to ν as a conformal measure, as it will be clear from the context what the
potential is.

Traditionally, the above program is carried out in two steps :
First, the conformal measure is obtained via compactness arguments.
Second, one looks at the spectral properties of the transfer operator acting on a suitable Banach

space (typically, Hölder continuous, Zygmund or bounded variation functions); using again compact-
ness, or an Ergodic theorem by Ionescu-Tulcea and Marinescu, the density of the invariant measure
is obtained (see [13] for an exhaustive review of these methods).

As already mentioned, our approach is different, and does not rely on compactness arguments:
we construct a pseudo-metric (Hilbert metric) on a subset of functions of bounded variations, for
which the transfer operator becomes a contraction. In addition, we can estimate explicitly the rate
of contraction, which provides a bound on the decay of correlations.
We get the eigenvector of P and the conformal measure at once by the following limits :

ν(h) = lim
n→∞

P nh

P n1
, (3)

h∗ = lim
n→∞

P n1

ν(P n1)
.

Notice that, in the traditional constructions, first one obtains ν and then proves that it verifies the
limit (3). On the contrary, we directly prove that the limit exists and defines a conformal measure,
without studying explicitly the adjoint operator. An additional merit of our approach is the simple
way in which we can deal with the discontinuities of the map (we simply ignore them) compared with
other approaches in the literature (doubling these points or introducing equivalence classes), which
become problematic in the case of countably many discontinuities. In conclusion, our method reveals
itself particularly powerful in constructing conformal measures for countable to one maps, where only
few, non exhaustive results, exists [2, 6, 5]. In particular, in [5] the shift on a infinite alphabet is
considered; in [6] piecewise monotonic maps are studied with respect to Lebesgue measure only. In
[2] spectral results are given (without looking at conformal measures), while in [24] spectral results
are obtained assuming the existence of the conformal measure. Note that once the result on decay
of correlations is obtained, it follows immediately the central limit theorem for bounded variation
observable (see e.g., [18]). Moreover, we are able to establish a variational principle which is a new
result in the infinite case.

The paper is organized as follows :
Section 2 : we briefly present the Hilbert metric and its properties.
Section 3 : we introduce covering weighted systems and state the main results of this paper.
Section 4 : we apply the technique presented in section 2 to the construction of conformal measures,

and prove their statistical properties.
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Section 5 : we show that the measures constructed enjoy a variational caracterization (equilibrium
states).

2 HILBERT METRIC

In this section, we introduce a theory developed by G. Birkhoff [3], which is highly powerful to
analyzing of the so called positive operators.

We will apply it to study the Perron-Frobenius operator for our maps. This strategy has been
applied to other classes of dynamical systems, namely in dimension one in [10, 17] and for higher
dimension in [16]; in the later case, it gives new results on the decay of correlations.

Definition 2.1 Let V be a vector space. We will call convex cone a subset C ⊂ V which enjoys the
following properties

(i) C ∩ −C = ∅
(ii) ∀λ > 0 λC = C
(iii) C is a convex set
(iv) ∀f, g ∈ C ∀αn ∈ IR αn → α, g − αnf ∈ C ⇒ g − αf ∈ C ∪ {0}.

Lemma 2.1 The relation ≤ defined on V by

f ≤ g ⇐⇒ g − f ∈ C ∪ {0}

is a partial order relation, which is compatible with the algebraic structure of V.
(i) f ≤ 0 ≤ f ⇒ f = 0
(ii) ∀λ > 0 0 ≤ f ⇔ 0 ≤ λf
(iii) f ≤ g ⇔ 0 ≤ g − f
(iv) ∀αn ∈ IR αn → α, αnf ≤ g ⇒ αf ≤ g
(v) f ≥ 0 and g ≥ 0 ⇒ f + g ≥ 0.

We are now able to define the Hilbert metric on C :

Definition 2.2 The distance Θ(f, g) between two points f, g in C is given by

α(f, g) = sup{λ > 0|λf ≤ g}
β(f, g) = inf{µ > 0|g ≤ µf}

Θ(f, g) = log
β(f, g)

α(f, g)

where we take α = 0 or β = ∞ when the corresponding sets are empty.

The distance Θ is a pseudo-metric, because two elements can be at an infinite distance from each
others, and it is a projective metric because any two proportional elements have a null distance.

The next theorem, due to G. Birkhoff [3], will show that every positive linear operator is a contraction,
provided that the diameter of the image is finite.

Theorem 2.1 Let V1 and V2 be two vector spaces, C1 ⊂ V1 and C2 ⊂ V2 two convex cone (see
definition above) and L : V1 → V2 a positive linear operator (which means L(C1) ⊂ C2). Let Θi be the
Hilbert metric associated to the cone Ci. If we denote

∆ = sup
f,g∈L(C1)

Θ2(f, g) ,

then

Θ2(Lf, Lg) ≤ tanh
(

∆

4

)
Θ1(f, g) ∀f, g ∈ C1

(tanh(∞) = 1).

Theorem 2.1 alone is not completely satisfactory: given a cone C and its metric Θ, we don not know if
(C, Θ) is complete. This aspect is taken care by the following lemma, which allows to link the Hilbert
metric to a suitable norm defined on V.
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Lemma 2.2 Let ‖ · ‖ be a norm on V such that

∀f, g ∈ V − f ≤ g ≤ f ⇒ ‖g‖ ≤ ‖f‖

and let ρ : C → IR+ be a homogeneous and order preserving function, i.e.

∀f ∈ C,∀λ ∈ IR+ ρ(λf) = λρ(f)

∀f, g ∈ C f ≤ g ⇒ ρ(f) ≤ ρ(g) ,

then
∀f, g ∈ C ρ(f) = ρ(g) > 0 ⇒ ‖f − g‖ ≤ (eΘ(f,g) − 1)min(‖f‖, ‖g‖)

Proof :

Let f, g ∈ C with ρ(f) = ρ(g) > 0. If Θ(f, g) = ∞ then the inequality is obvious. If not,
we have

Θ(f, g) = log
β

α
where αf ≤ g ≤ βf . Which yields, by the properties of ρ :

αρ(f) ≤ ρ(g) ≤ βρ(f) ,

hence α ≤ 1 ≤ β. This implies

(α− β)f ≤ (α− 1)f ≤ g − f ≤ (β − 1)f ≤ (β − α)f

that is

‖g − f‖ ≤ (β − α)‖f‖

≤ β − α

α
‖f‖

≤ (eΘ(f,g) − 1)‖f‖.

The proof is concluded by interchanging f and g. �

Remark 2.1 In the previous lemma, one can choose ρ(·) = ‖ · ‖ which fulfill the hypothesis. An
interesting case is also when ρ is a linear functional positive on C. Nevertheless, we will use a
nonlinear ρ in section 4.3.

3 STATEMENTS OF THE MAIN RESULTS

The class of dynamical systems we intend to study will be formally defined in (3.5) below. We shortly
call them “covering” because they satisfies a sort of topological dynamical covering reminiscent of
Markov partitions. Dynamical systems with a (strong) covering property have been introduced in [7]
(where they consist of expanding maps with a finite number of branches) and also investigated in [17]
especially with respect to the decay of correlations for absolutely continuous measures. However the
same analysis can be done for all others equilibrium states [25]. In this paper the covering property
will be weakened to include countable to one maps and the hyperbolicity assumed in [7, 17] will be
more generally stated in terms of a suitable assumption on the potential (see remark 3.1).
First of all, we need some basic definitions :

Definition 3.1 A function h ∈ B(X̃) is of bounded variation (or h ∈ BV (X̃)) if
∨
X̃

h < ∞. The

variation
∨

A
h is defined for all subset A ⊂ X̃ by

∨
A

h = sup

{
k−1∑
i=0

|h(xi+1)− h(xi)|
∣∣∣ x0 < x1 < · · · < xk , xi ∈ A,∀i ≤ k

}
,

where the sup is taken over all finite sets {xi} ⊂ A, and we call
∨
A

h the variation of h over A.
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Definition 3.2 T : X̃ → X̃ is a piecewise monotonic transformation if there exists a finite or
countable partition Z of X̃ into intervals such that for each Z ∈ Z, T (Z) is an interval and T : Z →
T (Z) is continuous and strictly monotone.

Definition 3.3 Let D be the set of discontinuities of T , the union of the endpoints of Z, Z ∈ Z. Let
W be the singular set of T , defined by

W =
⋃
k≥0

T−k
⋃
j≥0

T jD .

Note that W is countable and forward and backward invariant (T−1W = W = T (W )). Let X =

X̃\W . We endow X with the topology given by the interval (we put on X the restriction of the order

of X̃). Note that T (X) ⊂ X.

Notation. Let Z(1) = {Z ∩X, Z ∈ Z}. For n > 1 we denote by Z(n) the partition
∨n−1

i=0
T−iZ(1),

the partition of X on which T n is monotone and continuous (in fact, T is continuous on X). Note
that, by construction, Z(n) consists of open (in the topology of X), nonempty intervals.

Definition 3.4 We will call ϕ : X̃ → IR ∪ {−∞} a contracting potential if

(i) g1 is of bounded variation over X̃,

(ii) S1 =
∑
Z∈Z

sup
Z

g1 < ∞,

(iii) ∃n0 ∈ IN sup
X̃

gn0 < inf
X

P n01,

where, for all integer n ≥ 1, gn = exp
(
ϕ + ϕ ◦ T + · · ·+ ϕ ◦ T n−1

)
.

Remark 3.1 We will see later (section 4) that in our case, p(ϕ), the pressure of ϕ, is given by

lim
n→∞

1

n
log P n1(x) for all x ∈ X. Our assumption on the potential is easier to verify than the usual

one, sup ϕ < p(ϕ) (see [9, 8]).

Proof :
sup ϕ < p(ϕ) ⇒ ∃n0 ∈ IN sup ϕ <

1

n0
log inf

X
P n01

⇒ ∃n0 ∈ IN exp(n0 sup ϕ) < inf
X

P n01

⇒ ∃n0 ∈ IN
sup gn0

infX P n01
< 1.

�
Notation. We will denote by χB the characteristic function of a set B ⊂ X̃.

Definition 3.5 (covering system) We call the weighted system (X̃, T, ϕ) covering if T is a piece-
wise monotonic transformation and for each nonempty open interval I there exists an integer N(I)
and a constant C(I) > 0 such that infX P NχI ≥ C(I).

Remark 3.2 (X̃, T, ϕ) covering implies in particular that for all intervals I ⊂ X̃ there exists an N
such that T NI ⊃ X. Due to the discontinuities of T , it is natural to consider systems where an interval
covers all the space but a countable set (W ) after some iterations of the map. In fact, covering implies
that for all interval I ⊂ X ∃N : T NI = X. If the partition is finite and ϕ is bounded from below,
then covering turns out to be equivalent to the above mentioned property : ∀I ⊂ X∃N : T NI = X
(which has been called “covering” in [7, 17]).

If the system is covering each open interval must contain an uncountable number of points, and
the partition Z is generating.

Notice that for countable to one maps, one cannot extend the space X̃ by “doubling” the set W ,
making the new map T continuous2 (see [27, 12] for more details). Also the other approach found in
the literature (introducing equivalence classes of functions [2]) to deal with discontinuities would lead
to severe technical difficulties. Instead of doubling these points, we study the transfer operator on X
(despite the lack of compactness of X no technical problem arises).

2If x is an accumulation point of D, left or right limit of T in x may not exists.
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The above definition of covering weighted systems has been inspired by the following interesting class
of dynamical systems [25], which are a natural extension of the expanding systems quoted in [7, 17].

Example 3.1 Let us consider a piecewise monotonic map T : X̃ → X̃ such that
(i) infZ g1 > 0 for all Z ∈ Z.
(ii) For all interval I ⊂ Z(n), X may be covered by a finite number of smooth pieces of T NI, i.e.

∀n ∀I ∈ Z(n), ∃N ∃ finite J ⊂ Z(N)
∨
{I}

⋃
J∈J

T NJ = X

(iii) Z is generating (
∨∞

n=1
Z(n) = B )

Proposition 3.1 Example 3.1 is a covering weighted systems.

Proof :

Let K ⊂ X be an interval. As Z generates, it exists an n such that there is an element
I ∈ Z(n) with I ⊂ K. Then by hypothesis, there is N and a finite J ⊂ Z(N) such that
∪J∈J T NJ = X. Hence

P NχK ≥ P NχI ≥ inf
J

gN .

To conclude we take C(K) = infJ gN .

�
The following proposition states that under some circumstance, it is sufficient to have the covering
for one partition in the case of expanding maps of [0, 1].

Proposition 3.2 Let X̃ = [0, 1], T be a piecewise C(1) monotonic map with a partition Z finite3. If
there exists an integer K such that inf |DT K | ≥ γ > 2 then4

∀n ∀I ∈ Z(n)∃N(I) T N(I)(I) = X ⇐⇒ ∃N ∀I ∈ Z(K) T NI = X .

Proof :

We will denote by |I| the length of an interval I.

Let n > 0 and I ∈ Z(n). By definition, J0 = T nI is an interval.

Then we have three possibility :

(1)- J0 contains an element of Z(K), hence T N+nI = X.

(2)- J0 is included in an element of Z(K), hence J1 = T KJ0 is an interval of length
|J1| ≥ γ|J0|,
(3)-J0 intersects two pieces of Z(K). Let us denote J ′0 the biggest intersection. T K is
monotonous on J ′0 hence J1 = T KJ ′0 is again an interval, of length |J1| ≥ γ

2
|J0|.

We can construct, by repeating the same arguments, a sequence Jk which satisfies |Jk| ≥
( γ

2
)k|J0| ∀k until case (1) is true.

�

Definition 3.6 For m ∈ MT (X̃), the conditional information of the partition Z given T−1B is given

by Im = − log gm, where gm =
∑
Z∈Z

χZEm[χZ |T−1B]. (See Parry [19]).

Definition 3.7 The pressure of a covering system for the contracting potential ϕ is given by p(ϕ) =

lim
n→∞

1

n
log sup

X

P n1. Note that p(ϕ) is well defined since the sequence log sup
X

P n1 is sub-additive.

We now state the main result of the paper

3When Z is countable, we still have (⇐) but this is not sufficient to satisfy (ii) of example 3.1. Nevertheless, if for
example {T (Z), Z ∈ Z} is composed by a finite number of intervals, one can still show that (ii) is true if the right hand of
the following equivalence is satisfied.

4In particular, this implies that (iii) of example 3.1 is satisfied.
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Theorem 3.1 Let (X̃, T, ϕ) be a covering system for the contracting potential ϕ.
Then there exists a probability measure µϕ equivalent to an ep(ϕ)−ϕ-conformal measure ν without
atoms, and the correlations decay exponentially fast5 for bounded variation observable :

∃Λ < 1, C > 0

∣∣∣∣∫ f ◦ T nhdµϕ −
∫

fdµϕ

∫
hdµϕ

∣∣∣∣ ≤ CΛn‖f‖L1
µϕ
‖h‖BV .

Theorem 3.2 With the same hypothesis of theorem 3.1 we have that µϕ is the unique equilibrium
state for ϕ :

p(ϕ) =

∫
(Iµϕ [Z|T−1B] + ϕ)dµϕ = sup

m∈MT (X̃)

∫
(Im[Z|T−1B] + ϕ)dm.

Where the supremum is obtained iff m = µϕ.

Remark 3.3 Theorem 3.2 reduces to the usual variational principle if Hµϕ(Z) is finite6.

p(ϕ) = hµϕ(T ) +

∫
ϕdµϕ ≥ hm(T ) +

∫
ϕdm ∀m ∈ MT (X̃), Hm(Z) < ∞.

With equality if and only if m = µϕ.

Remark 3.4 In the proof we do not assume the existence of an atom free conformal measure ν with
full topological support. It will be a consequence of the contraction of the Perron-Frobenius operator,
as we mentioned in the introduction. Also, we do not use any extension of the space X̃ (see remark
3.2), thanks to this we can deal with a countable partition (in this case, it is unclear to us how to get
the conformal measure by classical arguments [1]).

4 CONFORMAL MEASURE (Proof of Theorem 3.1)

The proof of theorem 3.1 will be divided in several steps. Our first goal is to exhibit a cone which
is mapped inside itself by the transfer operator. Our cone is similar to the one considered in [17],
for absolutely continuous invariant measures and in [25] for the other equilibrium states. In order to
prove this, we adapt a lemma by Rychlik [24], which is a generalization of the initial work of Lasota
& Yorke [14]. After, we show that the diameter of P NC in C becomes finite for some N , hence P N is
a contraction by theorem 2.1. Thanks to lemma 2.2, we find that the projective limit of P nh exists
for h ∈ BV (X), h ≥ 0, and is equal to a (projective) fixed point of P .
Notation Let B(X) the set of real bounded functions from X to IR, and BV (X) ⊂ B(X) the set of
bounded variation functions over X, endowed with the norm ‖f‖BV =

∨
X

f + ‖f‖∞.

Proposition 4.1 P is a well defined continuous operator on B(X) and BV (X).

Proof :

Using the fact that ϕ is a contracting potential, we obtain by (i) for all f in B(X)

‖Pf‖∞ =

∥∥∥∥∥∑
Z∈Z

g1 ◦ T−1
|Z f ◦ T−1

|Z χTZ

∥∥∥∥∥
∞

≤ S1‖f‖∞.

The continuous action of P on BV (X) is an immediate consequence of sub-lemma 4.1.1.

�
5Actually, we prove a bit more :

∥∥e−np(ϕ)P nh− ν(h)h∗
∥∥
∞

< CΛn‖h‖BV (X) for all h ∈ BV (X), and Ph∗ = ep(ϕ)h∗.

6For m ∈ MT (X̃), by Hm(Z) we mean the entropy of the partition Z, Hm(Z) = −
∑
Z∈Z

m(Z) log m(Z). If Hm(Z) < ∞

then hm(T ) = H(Z|T−1B) =

∫
Im[Z|T−1B]dm (see [19]). It is unclear if the conditions hµ(T ), hm(T ) < ∞ suffice.
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Lemma 4.1 For all positive integers n, we have
(i) gn ∈ BV (X)

(ii) Sn :=
∑

Z∈Z(n)

sup
Z

gn < ∞

Proof :

We prove (i) by induction. Let us assume that gn ∈ BV (X). Using gn+1 = g1gn ◦ T we
obtain ∨

X

gn+1 ≤
∑

Z∈Z(1)

∨
Z

gn+1 + 2 sup
Z

gn+1

≤
∑

Z∈Z(1)

∨
Z

g1 sup
TZ

gn + sup
Z

g1

∨
TZ

gn + 2 sup
Z

g1 sup
TZ

gn

≤ (2S1 +
∨
X

g1)‖gn‖BV .

We prove (ii) by induction as well. Let us assume that Sn < ∞. For gn+1 = gng1 ◦ T n

Sn+1 =
∑

Z∈Z(n+1)

sup
Z

gn sup
T nZ

g1

≤
∑

Z′∈Z(n)

∑
Z∈Z(n+1),Z⊂Z′

sup
Z′

gn sup
T nZ

g1

≤
∑

Z′∈Z(n)

sup
Z′

gn

∑
Z′′∈Z(1)

sup
Z′′

g1

≤ SnS1.

�

4.1 Cone of functions

We define for all function h ∈ B(X) the quantity ν(h) by

ν(h) = lim
n→∞

inf
x∈X

P nh(x)

P n1(x)
.

Note that ν(h) is well defined because the bounded sequence inf
x∈X

P nh(x)

P n1(x)
is increasing. We emphasize

the fact that, at this point, ν as nothing to do with a measure (it may be non linear), yet for all
λ ∈ IR+ we have ν(λh) = λν(h); ν(1) = 1; for each h1, h2 ∈ B(X) ν(h1 + h2) ≥ ν(h1) + ν(h2); ν is
order preserving and ∀λ ∈ IR ν(h + λ) = ν(h) + λ.
Let us consider the following convex cone (a is a positive real number)

Ca =

{
h ∈ BV (X)

∣∣∣ h ≥ 0,
∨
X

h ≤ aν(h)

}
.

Remark 4.1 This cone is far from being empty, in fact, given h ∈ BV (X) then hc = h + c ∈ Ca,
provided c ≥ a−1

∨
X

h− inf h.

We will need the following cone too

C+ = {h ∈ BV (X)|h ≥ 0} .

In the sequel, Θ and Θ+ will denote respectively the Hilbert metrics induced by the cones Ca and C+.

Lemma 4.2 The distance between two functions f, h ∈ C+ is given by

Θ+(f, h) = log sup
x,y∈X

f(y)h(x)

f(x)h(y)
.
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Proof :

Let f, h ∈ C+. We have to find λ and µ with λf ≤ h ≤ µf . So λ ≤ h(x)
f(x)

and µ ≥ h(y)
f(y)

for
all x, y ∈ X, whence the result.

�

Lemma 4.3 For all f, h ∈ Ca we have Θ+(f, h) ≤ Θ(f, h).

Proof :

It is an immediate consequence of theorem 2.1, since the identity I is a linear map from
Ca to C+.

�

Lemma 4.4 For all σ < 1 there exists an integer Nσ and a real number a > 0 such that P mCa ⊂ Cσa

for all m ≥ Nσ.

Proof :

We first need the following :

Sub-lemma 4.1.1 For all positive integer m, ∃Bm < ∞ such that∨
X

P mh ≤ ηm

∨
X

h + Bmν(h)

∀h ∈ BV (X), h ≥ 0 and where ηm = 9 sup gm.

Proof :

The proof closely follows Rychlik (corollary 3 in [24]).
Using (i) and (ii) of lemma 4.1 we know that gm is in BV (X) and Sm < ∞.∨

X

P mh ≤
∨
X

∑
Z∈Z(m)

gm ◦ T−m
|Z h ◦ T−m

|Z χT mZ

≤
∑

Z∈Z(m)

∨
X

(
gm ◦ T−m

|Z h ◦ T−m
|Z χT mZ

)
≤

∑
Z∈Z(m)

∨
X

gmhχZ

≤
∑

Z∈Z(m)

∨
Z

gmh + 2 sup
Z

gmh

≤
∨
X

gmh + 2
∑

Z∈Z(m)

sup
Z

gmh.

Choose an increasing sequence of points z1 < · · · < zq−1 ∈ X such that on Z1 =
{x ∈ X, x ≤ z1}, Zi = [zi−1, zi] for i ∈ [2, . . . , q−1] and Zq = {x ∈ X, x ≥ zq−1},
the interior of Zi is nonempty,

∨
Zi

gm ≤ 4‖gm‖∞ and
∑

Z∈Z(m)

sup
Z∩Zi

gm ≤ 2‖gm‖∞.

This can be achieved in the following way : we know that gm belongs to BV (X).
So there exists a sequence zi such that

∨
X

gm − ‖gm‖∞ <
∑q

i=1
|gm(zi−1) −

gm(zi)|.
For these points zi, we have

∨
Zi

gm ≤ 2‖gm‖∞ (otherwise one can find a finer

partition such that the sums are bigger than the variation, which is impossible).
If Z1 has empty interior, then it can be eliminated. If Z2 has empty interior,
then we consider the interval Z2 ∪Z3 instead of Z2. Such an interval contains in
its interior the points z2 and hence uncountably many points (see remark 3.2).
Then we look at Z4 and so on. Finally, we eliminate Zq if it has empty interior
and has not been joined to Zq−1. For simplicity, we call again {Zi} the partition
so obtained. Notice, that the element of the new partition consists, at most, of

9



the union of two elements of the old, so
∨
Zi

gm ≤ 4‖gm‖∞. Then we refine the

partition {Zi} so that
∑

Z∈Z(m)

sup
Z∩Zi

gm < 2‖gm‖∞ (it is possible since Sm < ∞).

Then we get∨
X

P mh ≤
q∑

i=1

∨
Zi

hgm + 2
∑

Z∈Z(m)

sup
Z∩Zi

gmh

≤
q∑

i=1

‖gm‖∞
∨
Zi

h + ‖hχZi‖∞(
∨
Zi

gm + 2
∑

Z∈Z(m)

sup
Z∩Zi

gm)

≤
q∑

i=1

‖gm‖∞
∨
Zi

h + 8‖gm‖∞‖hχZi‖∞

≤
q∑

i=1

9‖gm‖∞
∨
Zi

h + 8‖gm‖∞ inf
Zi

h

≤
q∑

i=1

9‖gm‖∞
∨
Zi

h + 8‖gm‖∞
P N1

P NχZi

P NhχZi

P N1
.

Hence, ∨
X

P mh ≤ 9‖gm‖∞
∨
X

h + Bm inf
X

P Nh

P N1

≤ ηm

∨
X

h + Bmν(h)

where N = max
i∈[1..q]

N(Zi) is given by the covering and Bm = 8‖gm‖∞ sup
i∈[1..q]

sup
Zi

P N1

P NχZi

,

which is finite by the covering hypothesis.
�

We now return to the proof of the lemma 4.4. As ϕ is a contracting potential, the sequence
sup gm/ inf P m1 converges to zero when m tends to infinity. So it exists an Nσ such that
for all m ≥ Nσ we have σ > 9 sup gm/ inf P m1. By the previous sub-lemma we know that
for h ∈ Ca ∨

X

P mh ≤ (ηma + Bm)ν(h) .

To conclude, it suffices to compare ν(h) with ν(P mh). Let k ∈ IN , we have

P k+mh

P k+m1
inf P m1 ≤ P k+mh

P k+m1

P k+m1

P k1
=

P kP mh

P k1
.

Thus ν(h) inf P m1 ≤ ν(P mh). This implies∨
X

P mh ≤ ηma + Bm

inf P m1
ν(P mh) ≤ σaν(P mh)

whenever

a ≥ Bm

σ inf P m1− ηm
.

We conclude that, for all m ≥ Nσ, exists am such that

P m(Ca) ⊂ Cσa ⊂ Ca for all a ≥ am. Define a = max{am}, m ∈ [Nσ, . . . , 2Nσ[.

Then for all m ≥ Nσ, write m = kNσ + r where r ∈ [Nσ, . . . , 2Nσ[. We get

P mCa = P rP kNσCa ⊂ P rCa ⊂ Cσa.

�
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4.2 Diameter of the image

Lemma 4.5 Let σ < 1. For all h ∈ Cσa the hyperbolic distance with respect to the metric induced by
the cone Ca between 1 and h is bounded by

Θ(1, h) ≤ log
sup h + σν(h)

min {inf h, (1− σ)ν(h)} .

Proof :

Let h ∈ Cσa. To compute the distance between h and 1, we must find λ and µ such that
λ ≤ h ≤ µ, where the ordering is the one given by the cone Ca.

λ ≤ h ⇔
{

h− λ ≥ 0∨
(h− λ) ≤ aν(h− λ)

⇔
{

λ ≤ inf h
a−1
∨

h ≤ ν(h)− λ

⇐
{

λ ≤ inf h
σν(h) ≤ ν(h)− λ

⇐ λ ≤ min {inf h, (1− σ)ν(h)} .

For µ we proceed in a similar way

h ≤ µ ⇔
{

µ− h ≥ 0∨
(µ− h) ≤ aν(µ− h)

⇔
{

µ ≥ sup h
a−1
∨

h ≤ µ + ν(−h)

⇐
{

µ ≥ sup h
σν(h) ≤ µ− sup h

⇐ µ ≥ sup h + σν(h).

So we conclude that Θ(1, h) ≤ log µ
λ
.

�
We will see in the next lemma ([17], adapted to ν) that the functions in the cone cannot be small too
often. More precisely

Lemma 4.6 Given a finite partition P of X, if each element p ∈ P is an interval such that b ≡

sup
p∈P

∥∥∥∥P M (χp)

P M1

∥∥∥∥
∞

<
1

2a
for some M then, for all h ∈ Ca there exists ph ∈ P such that

h(x) ≥ 1

2
ν(h) ∀x ∈ ph.

Proof :

Let P− =
{
p ∈ P| ∃xp ∈ p : h(xp) < 1

2
ν(h)

}
. It suffices to show that P− 6= P.

Let us suppose the contrary :

∀p ∈ P,∃xp ∈ p, h(xp) <
1

2
ν(h).

Given n larger than M ,

P n(hχp) ≤ P n(χp)

(
h(xp) +

∨
p

h

)
< P n(χp)

ν(h)

2
+ bP n1

∨
p

h.

Which implies, by summing over all p ∈ P and dividing by P n1,

P nh

P n1
<

ν(h)

2
+ b
∨
X

h ≤ (
1

2
+ ab)ν(h).

We obtain a contradiction by letting n go to infinity, since 1
2

+ ab < 1.

�

11



Fix σ < 1 and take a given by lemma 4.4.

Lemma 4.7 There exists an N ≥ Nσ such that the diameter of P NCa in Ca is finite.

sup
f,h∈Ca

Θ(P Nf, P Nh) ≤ ∆ < ∞.

Proof :

Let h ∈ Ca, and N ≥ Nσ be an integer (which will be fixed later). To show the finiteness
of the diameter, it suffices to find an uniform upper bound (independent of h) for the ratio
:

sup P Nh + σν(P Nh)

min {inf P Nh, (1− σ)ν(P Nh)} .

As P Nh ∈ Cσa, we have

sup P Nh ≤ ν(P Nh) +
∨
X

P Nh ≤ (1 + σa)ν(P Nh) .

Consequently all we need is a lower bound for inf P Nh in terms of ν(P Nh).

Let M be such that
sup gM

inf P M1
<

1

2a
, M exists because ϕ is a contracting potential. So for

all p ∈ Z(M),
P M (χp)

P M1
<

1

2a
.

If the partition is finite, say Z(M) = {p0, . . . , pL} then we can apply lemma 4.6 with h and
P = Z(M).

If not, it is possible to extract from Z(M) a finite partition P which satisfies the hypothe-
ses of lemma 4.6 in the following way : We choose intervals p0 . . . pl of Z(M) such that
P M (1− χp0∪···∪pl)

P M1
<

1

2a
.

(we can do it since P M1 =
∑

p∈Z(M)

P Mχp ≤
∑

p∈Z(M)

∥∥P Mχp

∥∥
∞
≤ Sm < ∞ , by lemma

4.1). The set X − (p0 ∪ · · · ∪ pl) consists of a finite union (at most l + 1) of nonempty
open intervals, let’s call them pl+1 . . . pL. Then the partition P = {p0, . . . , pL} fulfills the
assumptions of the previous lemma.

We know that in both cases (finite and infinite) there exists a ph ∈ P such that h(y) ≥
1
2
ν(h) for all y ∈ ph.

By the covering hypothesis applied to P we can find an N = N(P) and a constant C(N,P)
such that P Nχp > C for all p ∈ P.

P Nh ≥ P N (hχph)

≥ C

2
ν(h)

≥ C

2 sup P N1
ν(P Nh) .

Since ν(P Nh) ≤ sup P N1ν(h).

So we obtain

Θ(1, P Nh) ≤ log

 1 + σ + σa

min
{

C
2 sup P N 1

, 1− σ
}
 .

The proof is concluded by setting

∆ = 2 log

 1 + σ + σa

min
{

C
2 sup P N 1

, 1− σ
}
 < ∞.

�
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4.3 Conformal measure and density

Lemma 4.8 There exist h∗ ∈ Cσa and λ > 0, with Ph∗ = λh∗, such that for all f ∈ Ca,

h∗ = lim
n→∞

P nf

ν(P nf)

λ = lim
n→∞

ν(P n+1f)

ν(P nf)
.

Proof :

Obviously, the space B(X) endowed with the norm ‖·‖∞ and ρ = ν : Ca → IR satisfies the
hypothesis of lemma 2.2.

Let f ∈ Ca. Then
P nf

ν(P nf)
is a Cauchy sequence in B(X) because by lemma 2.2∥∥∥∥ P nf

ν(P nf)
− P n+kf

ν(P n+kf)

∥∥∥∥
∞

≤
(
eΘ(P nf,P n+kf) − 1

)∥∥∥∥ P nf

ν(P nf)

∥∥∥∥
∞

.

If we write n = (q + 2)N + r where q = [ n
N

] − 2 and r = n mod N then we see, using
Birkhoff theorem 2.1, that

Θ(P nf, P n+kf) = Θ((P N )
q
P 2N+rf, (P N )

q
P 2N+r+kf)

≤ Λq
0Θ(P NP r+Nf, P NP r+N+kf)

≤ Λq
0∆

where Λ0 = tanh(∆/4).

For P nf ∈ Cσa, if n is big enough, ‖P nf‖∞ ≤ ν(P nf) +
∨

P nf ≤ (1 + σa)ν(P nf).

If we set Λ = Λ
1
N
0 < 1 and K0 = ∆Λ−3

0 we obtain∥∥∥∥ P nf

ν(P nf)
− P n+kf

ν(P n+kf)

∥∥∥∥
∞

≤
(
eK0Λn

− 1
)

(1 + σa).

Which goes to zero when n goes to infinity.

As B(X) is a Banach space, it exists a function hf ∈ B(X) with
P nf

ν(P nf)
→ hf . Clearly

hf ∈ BV (X), ν(hf ) = 1 and hf ∈ Cσa. Moreover,

P (hf ) = lim
n→∞

P n+1f

ν(P nf)
= lim

n→∞

P n+1f

ν(P n+1f)

ν(P n+1f)

ν(P nf)
= λfhf .

We will show now that given f, g ∈ Ca we have hf = hg = h∗

‖hf − hg‖∞ ≤
(
eΘ(hf ,hg) − 1

)
‖hf‖∞

≤
(
eΘ(P nhf ,P nhg) − 1

)
‖hf‖∞

which goes to zero when n goes to infinity, this implies that λf = λg = λ.

�

Lemma 4.9 The functional ν (restricted to BV (X)) is linear, positive, ν(Pf) = λν(f) for all f ∈
BV (X) and λ = ep(ϕ).

Proof :

Let f ∈ Ca. For all integer n, k

P n+kf
P nf

= P n+kf

ν(P n+kf)

ν(P n+kf)
ν(P nf)

ν(P nf)
P nf

↓ ↓ ↓ ↓

lim
n→∞

P n+kf

P nf
= h∗ λk h−1

∗
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so lim
n→∞

P n+kf

P nf
= λk. But∥∥∥∥P nf

P n1
− P n+kf

P n+k1

∥∥∥∥
∞

≤ sup
P n+kf

P n+k1

(
P nf

P n+kf

P n+k1

P n1
− 1

)
≤ ‖f‖∞

(
P nf

P n+kf

P n+k1

P n1
− 1

)
and since the sequences P n+kf

P nf
and P n+k1

P n1
have the same limit λk, P nf

P n1
is a Cauchy

sequence in B(X), hence converges to a function νf . Moreover, if we take two point
x, y ∈ X, we have

|νf (x)− νf (y)| = lim
n→∞

∣∣∣P nf

P n1
(x)− P nf

P n1
(y)

∣∣∣
= lim

n→∞

∣∣∣P nf

P n1
(y)

∣∣∣ · ∣∣∣∣P nf(x)P n1(y)

P n1(x)P nf(y)
− 1

∣∣∣∣
≤ ‖f‖∞ lim sup

n→∞

(
eΘ+(P nf,P n1) − 1

)
≤ ‖f‖∞ lim

n→∞

(
eΘ(P nf,P n1) − 1

)
= 0.

Therefore, νf (x) = ν(f) for all x ∈ X. Hence, ν(f) = lim P nf
P n1

for all f ∈ Ca. Nevertheless,

if f ∈ BV (X), the function (f + a−1
∨

X
f − inf f) ∈ Ca, so ν(f) = lim P nf

P n1
for all

f ∈ BV (X). Clearly, ν is linear by the linearity of the limit.

Next, as Pf ∈ BV (X), we know that

ν(Pf) = lim
n→∞

P n+1f

P n1
= lim

n→∞

P n+1f

P n+11

P n+11

P n1
= ν(f)ν(P1) = λν(f) .

We now prove that the pressure of ϕ is equal to log λ. By lemma 4.8 we know that
P n1

λn
=

P n1

ν(P n1)
converges uniformly to the function h∗. In addition, for P Nh∗ = λNh∗,

with the same argument used in lemma 4.7 we deduce that inf h∗ > 0. Hence,∥∥∥ 1

n
log P n1− log λ

∥∥∥
∞
≤ 1

n

∥∥∥log
P n1

λn

∥∥∥
∞

goes to zero when n goes to infinity. This implies in particular p(ϕ) = log λ.

�

Lemma 4.10 The functional ν can be extended to a non-atomic conformal measure, i.e.∫
Pfdν = λ

∫
fdν ∀f ∈ L1

ν(X̃).

In addition, the measure µ = h∗ν is T–invariant.

Proof :

From now on C(X̃) will denote the space of continuous functions from X̃ to IR endowed

with the uniform norm ‖·‖∞. We define, for h ∈ BV (X̃), ν(h) = ν(h|X) (remark that

h|X ∈ BV (X)). Since ν is positive, |ν(f)| ≤ ‖f‖∞ for all f ∈ BV (X̃). By compactness

of X̃, we can approximate uniformly each continuous function by bounded variation func-
tions. This allow us to extend ν to a positive functional on C(X̃). By the Riesz theorem,

there exists a Borel probability measure m on X̃ which agrees with ν on C(X̃).

We first show that m(I) = ν(χI) for all interval I ⊂ X̃. Let I be an interval such that
I = [a1, a2].

Let ε > 0. For i = 1, 2, let Vi be an open interval which contains ai, such that ν(χVi) < ε/2.
This can be achieved by the following : let n be such that ν(Z) ≤ ε/4 for all Z ∈ Z(n)
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(this is possible for the potential is contracting). Since
∑

Z∈Z(n) ν(χZ) = 1 (for Sn < ∞
), one can find a subset Q of Z(n) such that7 ai ∈ int(

⋃
Z∈Q

Z) and
∑

Z∈Q
ν(Z) < ε/2.

Let f ∈ BV (X̃)∩C(X̃) be a function8 such that χI ≤ f ≤ 1 and f = 0 outside (V1∪I∪V2).
We have

m(I) ≤ ν(f) ≤ ν(χI) + ν(χV1) + ν(χV2) ≤ ν(χI) + ε.

Since ε was arbitrary, m(I) ≤ ν(χI) for all intervals I. Moreover, we have X̃ = A∪ I ∪ J ,
where A, J, B are disjoint intervals.

Since 1 = m(A)+m(I)+m(B) ≤ ν(χA)+ν(χI)+ν(χB) = 1, m(I) = ν(χI) for all interval

I ⊂ X̃.

From this we deduce immediately that m has no atoms.

We show now that m and ν agree on BV (X̃). Let f ∈ BV (X̃). Let ε > 0, since jumps of
f can be bigger than ε at most on a finite set Dε, we can approximate f by a piecewise
constant function fε, where ‖f − fε‖∞ < ε. This implies

|m(f)− ν(f)| ≤ |m(f − fε)|+ |m(fε)− ν(fε)|+ |ν(f − fε)| < 2ε

because m and ν agree on piecewise constant functions.

From this we deduce that m(Pf) = ν(Pf) = λν(f) = λm(f) for all bounded variation
function f . For simplicity, we consider ν as the measure m itself.

This yields ∫
Pfdν = λ

∫
fdν ∀f ∈ L1

ν(X̃).

In other words, ν is a λe−ϕ–conformal measure9.

If we set µ = h∗ν, i.e. ∫
fdµ =

∫
fh∗dν ∀f ∈,

then ∫
f ◦ Tdµ =

∫
f ◦ Th∗dν =

1

λ

∫
P (f ◦ Th∗)dν =

1

λ

∫
fPh∗dν =

∫
fdµ

hence µ is T–invariant.

�

Remark 4.2 One can prove that, for each function f ∈ L1
ν(X̃), P nf

P n1
is a Cauchy sequence in L1

ν(X̃).

Yet this does not imply that on B(X̃) ∩ L1
ν(X̃) the measure ν coincide with the original functional ν

due to the presence of the inf in the former definition, which is meaningless for functions in L1
ν .

4.4 Decay of correlations

As we know that the Perron-Frobenius operator converges exponentially fast to the fixed point h∗, it
is not difficult to deduce the exponential decay of correlations for bounded variation functions.

Lemma 4.11 It exists C > 0 such that for all h ∈ BV (X̃)∣∣∣∣∫ f ◦ T nhdµ−
∫

fdµ

∫
hdµ

∣∣∣∣ < C‖f‖L1
ν
‖h‖BV Λn

Proof :

7To be completely precise this is the case only if ai ∈ X, if not then the above relation must be interpreted as ∃α, β ∈
int(

⋃
Z∈Q

Z) such that α < ai < β (where the ordering is the one in X̃).

8Actually, following the proof of Urysohn’s Lemma (using order structure rather than topological one, see [22]) one can
show that if a < b, there exists a continuous increasing (hence BV ) function from [a, b] onto [0, 1].

9Consider the function f = e−ϕχA where A ⊂ Z ∈ Z, and remark that Pf = χTA.
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Let h ∈ BV (X). If we set hc = h + c then hch∗ ∈ Ca with

c =
1

(1− σ)

[
(1 + σ)‖h‖∞ + (a−1 + σ)

∨
X

h

]
.

Because ∨
(hch∗) ≤

∨
hc‖h∗‖∞ +

∨
h∗‖hc‖∞

≤ (1 + σa)
∨

h + σa‖h‖∞ + σac = (c− ‖h‖∞)a

≤ aµ(h + c) = aν(hch∗).

Next, if we assume that µ(h) = 0, it suffices to show that µ(f ◦ T nh) ≤ C‖f‖∞‖h‖BV Λn.
In fact,

µ(f ◦ T nh) = ν(f ◦ T nhh∗)

= ν(fλ−nP n(hh∗))

= ν(f(λ−nP n(hch∗)− ch∗))

≤ ‖f‖L1
ν

∥∥λ−nP n(hch∗)− ch∗
∥∥
∞

≤ ‖f‖L1
ν
‖ch∗‖∞

(
eΘ(P nhch∗,P nh∗) − 1

)
.

The last inequality is given by lemma 2.2, since ν(λ−nP n(hch∗)) = c = ν(ch∗). So

|µ(f ◦ T nh)| ≤ ‖f‖L1
ν
c(1 + σa)(eK0Λn

− 1)

setting C0 = 2K0(1+σa)
1−σ

, we obtain

|µ(f◦T nh)| ≤ ‖f‖L1
ν
C0

[
(1 + σ)‖h‖∞ + (a−1 + σ)

∨
X

h

]
Λn ≤ C0(2+a−1)‖f‖L1

ν
‖h‖BV Λn.

And if h is not of zero mean, we have µ(h− µ(h)) = 0 hence∣∣∣∣∫ f ◦ T nhdµ−
∫

fdµ

∫
hdµ

∣∣∣∣ ≤ C0‖f‖L1
ν
2(2 + a−1)‖h‖BV Λn

which yields the result with C = 2(2 + a−1)C0. (We recall that if h ∈ BV (X̃) then
h|X ∈ BV (X)).

�

5 EQUILIBRIUM STATE (Proof of Theorem 3.2)

When the partition is countable, it is possible that both the entropy and the integral of the potential
are infinite. That is why we give a variational principle in terms of conditional information, which
avoids the problem of infinite entropy (the general strategy has been sketched in [15, 26, 13]).

Lemma 5.1 The pressure of ϕ is equal to p(ϕ) =

∫
(Iµ[Z|T−1B] + ϕ)dµ.

Proof :

We first renormalizes the potential so that Pµ1 = 1 on X by setting

Pµf =
P (fh∗)

λh∗
.
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Pµ is the Transfer operator with the new weight

gµ = exp (ϕ− p(ϕ))h∗/h∗ ◦ T =
∑
Z∈Z

χZEµ[χZ |T−1B].

We recall that the conditional information of µ is given by Iµ[Z|T−1B] = − log gµ.

For p(ϕ) = − log gµ + ϕ + log h∗ − log h∗ ◦ T , we get

p(ϕ) =

∫
(Iµ[Z|T−1B] + ϕ)dµ.

�

Lemma 5.2 Variational principle: for all m ∈ MT (X)

p(ϕ) ≥
∫

(Im[Z|T−1B] + ϕ)dm

Proof :

Let m ∈ MT (X). We have

Im[Z|T−1B] + ϕ = − log gm + log gµ + p(ϕ)− log h∗ + log h∗ ◦ T

= log
gµ

gm
+ Φ

Where Φ is a bounded function and m(Φ) = p(ϕ). We must prove that

(i) log+

gµ

gm
is m-integrable and

(ii)

∫
log

gµ

gm
≤ 0.

Let us start by proving (i).

For all functions f ∈ F , where F is the set of bounded functions with support in a finite
number of intervals of Z, we define

Pmf(x) =
∑

y∈T−1x

gm(y)f(y) ∀x ∈ X

as
Em[χZ |T−1B] = T ∗

m(χZ) ◦ T

we have Pmf = T ∗
mf , m− a.e., for all functions f ∈ F .

We remark that gm > 0 m− a.e., since gm = 0 on A ⊂ X implies∑
Z∈Z

χZT ∗
m(χZ) ◦ T.χA = 0

therefore

0 =
∑
Z∈Z

∫
A∩Z

T ∗
m(χZ) ◦ Tdm =

∑
Z∈Z

∫
T ∗

m(χA∩Z)T ∗
m(χZ)dm ≥

∑
Z∈Z

∫
|T ∗

m(χA∩Z)|2dm

so m(A ∩ Z) = 0 for all Z ∈ Z.

For Z is countable, we can label the intervals Z = {Zi, i = 1, 2, ...}. If we set

Fn(x) =

{
1 if x ∈ Z1 ∪ · · · ∪ Zn and | log

gµ

gm
(x)| < n

0 otherwise
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and χ+ = {x ∈ X| log
gµ

gm
(x) ≥ 0}, for log gm > −∞ m− a.e. and sup gµ < ∞, we have∫

χ+ log
gµ

gm
dm = lim

n→∞

∫
Fnχ+ log

gµ

gm
dm

= lim
n→∞

∫
Pm

(
Fnχ+ log

gµ

gm

)
dm

≤ lim
n→∞

∫
Pm

(
Fnχ+(

gµ

gm
− 1)

)
dm

≤ lim
n→∞

{∫
Pµ(Fnχ+)dm−

∫
Fnχ+dm

}
≤ 1

since Pm(f
gµ

gm
)(x) = Pµf(x) for all f ∈ F .

Hence χ+ log
gµ

gm
∈ L1

m, which proves (i).

We now prove (ii).

If

∫
log

gµ

gm
dm = −∞ then (ii) is proven; otherwise log

gµ

gm
∈ L1

m. In this last case we can

repeat the above computation without the characteristic function χ+, and obtain∫
log

gµ

gm
dm ≤ 1− lim

n→∞

∫
Fndm = 0

Moreover, the equality is true iff gµ = gm m − a.e., that is Pmf = Pµf m − a.e. for all
f ∈ BV . So for P n

µ f → µ(f) uniformly and m(f) = m(P n
mf) we obtain m(f) = µ(f) for

all bounded variation function f . We conclude by density that m = µ.

�
To conclude, we need to show that “reintroducing” the singular set W does not change the result

of lemma 5.2.

Lemma 5.3 Lemma 5.2 yields Theorem 3.2.

Proof :

We already have proven the variational principle for invariant measures which do not give
any mass to W . We can write any given m ∈ MT (X̃), as the convex combination of two
invariant probability measures ma and mc, where ma is an atomic measure and mc has no
atoms (since W is countable, this implies mc(W ) = 0). We have m = cmc + ama where
a, c ≥ 0 and a + c = 1. Since an atomic invariant measures has the following form (A is a
set of periodic points xp, of period Np),

ma =
∑
p∈A

σp
1

Np

Np∑
i=1

δT ixp
, σp > 0,

∑
p∈A

σp = 1

we have Ima [Z|T−1B] = 0 ma − a.e.. Since mc and ma are singular, we can choose
Ima = 0 mc − a.e. and Imc = 0 ma − a.e. and obtain Im = Ima + Imc = Imc . This yields∫

Im + ϕdm = c

∫
Imc + ϕdm + a

∑
p∈A

σp
1

Np

Np∑
i=1

ϕ(T ixp)

≤ cp(ϕ) + a
∑
p∈A

σp
1

Np
log gNp(xp)

≤ cp(ϕ) + a
∑
p∈A

σp
1

nNp
log(sup gn)Np .

Since ϕ is a contracting potential, there exists a real number s, 0 < s < 1 such that
sup gn ≤ sn inf

X
P n1 if n is big enough. Therefore, if a > 0,∫
Im + ϕdm ≤ cp(ϕ) + a

∑
p∈A

σp

(
log s +

1

n
log inf

X
P n1

)
< p(ϕ).
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Thèse, Université de Paris (1996)

[6] A. Broise : “Aspects Stochastiques de certains Systèmes Dynamiques”. Thèse, Université de
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