
ELSEVIER Physica D 85 (1995) 405-424 

Statistics of temperature increments in fully developed 
turbulence 

Part II. Experiments 
M. Ould-Rouis  a, F. Anselmet  a, P. Le Gal  a, S. Vaienti  b'c 

~Institut de M~canique Statistique de la Turbulence, Unit~ Mixte Universit~ d'Aix-Marseille H/CNRS N ° 380033, 
12, Avenue du G~n&al Leclerc, 13003 Marseille, France 

bPHYMA T, DOpartement de Math~matiques, Universit~ de Toulon et du Var, 83957 La Garde Cedex, France 
CCentre de Physique Th~orique, Luminy Case 907, 13288 Marseille Cedex 09, France 

Received 7 October 1994; revised 23 December 1994; accepted 13 February 1995 
Communicated by U. Frisch 

Abstract 

A partial differential equation for the probability density function (pdf) of temperature increments in fully 
developed turbulence has been derived in a previous theoretical analysis IS. Vaienti, M. Ould-Rouis, F. Auselmet 
and P. Le Gal, Physica D 73 (1994) 99]. This equation is a function of two conditional expectations q~ and q2 of 
respectively the increment of velocity and the temperature dissipation. It was shown that these two quantities are 
the only parameters that govern the evolution of the pdfs for the temperature increments. With the help of closure 
hypotheses on ql and q2, the calculation of the asymptotic forms of this pdf is then tractable and displays a notable 
deviation from the Gaussian behavior for large temperature increment fluctuations when the spatial separation r 
lies within the inertial and dissipative ranges. The objective of the present paper is to complete our theoretical 
approach and to investigate experimentally, from simultaneous measurements of velocity and temperature 
fluctuations obtained in a laboratory wind tunnel, the evolution of the marginal and joint pdfs of the velocity and 
temperature increments. Attention is particularly paid to the conditional expectations q~ and q2. 

Dedicated to Valentina 

I. Introduction 

To interpret  the turbulent energy transfer 

f rom the large scales to the dissipative ones, 
Richardson has introduced the fundamental  con- 
cept of  an energy cascade on which is based 
Kolmogorov ' s  original theory [2]. In fact, ex- 
per imental  observations have pointed out that 
refined analyses are required to take into ac- 
count the intermittent nature of the energy 

transfer towards the small scales, resulting in 
new models based on various schemes of eddy 

breakdown [3]. From an experimental  point of 

view, the investigation of the scaling law charac- 
teristics through the computat ion of the high 
order moments  of velocity and tempera ture  
increments has shown the complexity of the 
mechanisms involved in the cascade [4,5]. There-  
fore, investigations more  closely based on the 
fluid dynamics and its conservation equations are 
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still needed to improve our understanding of 
turbulence. Even though this problem has so far 
received quite little attention, considering a 
passive scalar advected by the turbulent field is 
quite attractive since techniques allowing the 
detailed study of its statistics have been shown to 
be tractable [6]. An extension of this approach to 
the prediction of the behavior of temperature 
increments, or temperature differences X =  
A0(r) = O(x + r) - O(x) between two points sepa- 
rated by a distance r, has been recently worked 
out [1]. A similar study has also been recently 
published [7]. As usual, in the inertial range, the 
separation distance r is much larger than the 
Kolmogorov scale ~ and much smaller than the 
injection scales- in the dissipative range, r is of 
order of ~7. The main theoretical result that we 
obtained is the explicit partial differential equa- 
tion of the evolution of the pdf P(r, AO) (k o is 
the molecular heat diffusivity): 

0 \ r, ( 2  + -~r)[q, ( X) P(r,X)] 

_ 0 2 

+ 2 N - ~ -  2 [q2(r, X) P(r, X)] 

- 2 k o ( 2 + ~ )  OP(r ,X)=O,  (1.1) 

where ql(r,X) is the expectation of the incre- 
ment of velocity AU(r) conditioned by X and 
qz(r, X) is the expectation of the dissipation of 
temperature k0 ~7 0 2 conditioned by X. 
.~'(=k 0 V0 2) is the mean dissipation rate of tem- 
perature. Closure hypotheses of the asymptotic 
behaviors of ql(r,X) and qz(r,X) were then 
made to predict the asymptotic shapes of the pdf 
P(r, X). The present experimental study is moti- 
vated by the determination of the various func- 
tions q~(r,X), qz(r,X) and P(r,X). Hot wire 
measurements are conducted in a turbulent 
boundary layer over a slightly heated wall and 
Section 2 describes this experimental arrange- 
ment. A brief review of the theoretical approach 
is presented in Section 3 and results are dis- 
cussed in Section 4. It will be shown that ql and 
qz actually quantify very precisely the physical 
phenomena which are embedded in turbulence 

and which govern the pdf evolution. Finally, in 
Section 5, a few additional arguments are given 
about the universality of the trends we are 
reporting and about their implications with re- 
spect to isotropy. 

2. Experimental conditions 

2.1. Experimental setup 

The study is performed in the turbulent 
boundary layer developed on the working sec- 
tion floor of a low-speed wind tunnel with a cross 
section: 0.56 × 0.56 m 2. This experimental facili- 
ty has already been investigated quite extensively 
[8], so that only the flow main characteristics are 
reported here. The wall is heated from the 
beginning of the layer to a constant temperature 
such that the difference with respect to the 
ambient temperature is 10 K so that temperature 
is acting as a passive scalar. At the measuring 
station (x--3,7 m), the free stream velocity is 
U e = 12 m/s, the boundary layer thickness 6 = 
62 mm and the momentum thickness Reynolds 
number 4900. The friction velocity is u*=  
0.46 m/s. Measurements and exhaustive analyses 
reported herein are obtained at the non-dimen- 
sional distance to the wall y + =  310 with y + =  
yu*/v, v being the kinematic viscosity of air. At 
this position, the Reynolds number associated 
with the Taylor micro-scale is about 180 and the 
Kolmogorov length-scale is r/=0.13 mm. In 
addition, the robustness of our results is demon- 
strated by complementary studies performed at 
different points in the same flow, namely, y+ = 
120 and y + =  750, which approximately corre- 
spond to the lower and upper limits of the inner 
region of the boundary layer respectively. Over 
this range of distances, the flow can be approxi- 
mately considered as fully turbulent with no 
direct influence from the limit boundary con- 
ditions on the individual statistics of U and 0. 
When no explicit comment is given, the analysis 
will be related to the y+ = 310 measurements. 

Simultaneous longitudinal velocity u and tern- 
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perature 0 measurements are performed with a 
pair of parallel wires located at the same distance 
from the wall. Both wires are etched from 
wollaston. The upstream cold wire has an active 
length l of 1 mm and a diameter d of 0.6 ~m. 
The downstream hot wire has an active length of 
0.8 mm and a diameter of 5 p~m. The streamwise 
separation between these two wires is about 630 
times the cold wire diameter. The hot wire is 
operated with a constant-temperature circuit at 
an overheat ratio of 1.6, whereas the cold wire is 
operated with in-house constant-current circuits. 
The heating current is adjusted to 0.2 mA so that 
the velocity sensitivity of the wire is practically 
negligible and the signal to noise ratio is large 
enough to allow a correct estimation of tempera- 
ture increments for small scales r. More details 
about this arrangement are given in [8]. 

Both signals are low-pass filtered at a cutoff 
frequency of 10kHz which is about the Kol- 
mogorov frequency at this position, before on- 
line digitizing at 37.5 kHz per channel. The high 
resolution (15 bits with sample and hold systems) 
A / D  converter is connected to a micro-computer 
where d a t a  (10 6 points corresponding to an 
about 14 s duration) are stored and processed. 

2.2. Validation of turbulence characteristics 

The measurement position y+ = 310 has been 
determined by the optimization of different 
characteristics of turbulence versus homogeneity 
and isotropy of the velocity field. In particular, 
the third order moment of the longitudinal 
velocity increment has been studied as a function 
of the scale r. Fig. 1 presents the behavior of this 
moment  and the corresponding mixed moment 
for temperature,  normalized by Kolmogorov 
velocity and temperature scales and divided by 
r/~7. The velocity curve shows a plateau at the 
- 4 / 5  classical value extending over almost one 
decade around r = 80q. This is in accordance 
with predictions deduced from homogeneity and 
local isotropy, where the second term in the left 
hand side is negligible in the inertial range, with 

oo 1@~ 1 
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Fig. 1. Variation with the separation r of normalized third 
order moments, [((AU)3)I (asterisks) and I<AU(A0)2>I (tri- 
angles) divided by r/rb 

~7 the constant mean rate of transfer of kinetic 
energy: 

d 4 
(AU 35 - 2V~rr (AU2) = - 5  tgr, (2.1) 

with ( ) denoting an ensemble average. For 
temperature increments, there is also a plateau 
region associated with the behavior predicted by 
the Yaglom formula for the inertial range [9]: 

d 4 - 
(A02AU} - 2 k 0 ~ r ( A 0 2 )  = - - s U r .  (2.2) 

However, Fig. 1 shows that the range of the 
linear scaling law (100 < r < 900) is slightly 
shifted towards smaller scales with respect to 
that obtained for velocity (300 < r < 1200). The 
position y + =  310 was selected because it was 
providing the greatest extent for these plateau 
regions. In addition, the temperature skewness 
factor is virtually zero (0.05) and the flatness 
factor is about 2.8 at this position, corresponding 
to almost Gaussian conditions. It was also 
checked that the spectral distributions for the 
longitudinal velocity U and for the normal to the 
wall velocity V were in reasonable agreement 
with the relation resulting from the assumption 
of local isotropy. Quite similar results were 
obtained at the two other positions, but the 
extent of the plateaus was slightly smaller as the 
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Fig. 2. Evolution with the separation r of the correlation 
coefficient between AU and A0. 

largest Reynolds number R~ is for y+ = 310. The 
temperature flatness factor is the same for the 
three positions, whereas the skewness is also 
virtually zero (-0.03) at y + =  120 and positive 
(about 0.3) at y+ -750 .  

We will also finally mention that the wire 
length influence on the results reported hereafter 
was carefully checked. Experiments with shorter 
wires (l/~ = 4) were performed, and the correla- 
tion coefficients between AU and A0 were virtu- 
ally unchanged. However, since short wires 
(l/d < 1000) result in a significant attenuation of 
the measured temperature variance, it was pre- 
ferred to use longer wires because our interest 
mainly lies in the inertial range of scales. Thus, 
considering also the separation (about 4,/) be- 
tween the cold and hot wires, our results for r/~l 
smaller than about 8 might be approximate 
though the obtained trends are in complete 
accordance with conditions imposed by local 
isotropy, such as the correlation coefficient be- 
tween AU and A0 going to zero for r/~l going to 
zero (see Fig. 2). 

3. Recall of the theoretical analysis 

In this section, we briefly recall the main 
features of our analytical study [1] leading to the 

evolution equation for the pdf P(AO(r)) and we 
also present some extensions very helpful to 
enlighten our experimental results. 

Starting from the diffusion equation for tem- 
perature: 

aO(x, t) 
a ~  + U(x, t) . VO(x, t) 

= k 0 V20(x, t ) ,  (3.1) 

we have shown in [1] that 

0 (-~ AO(x,t) )=0 , (3.2) 

where the symbol ( ) was used to denote a 
spatial average over x E R 3 in analogy with the 
papers of Yakhot and Sinai [6]. Such a volume 
measure was implicitly normalized over a large 
scale L and also assumed was the vanishing of 
the fields and their derivatives for large values of 
x, say Ix l -  L. Finally, the hypothesis of station- 
arity was also invoked to suppress time deriva- 
tives. This and the hypotheses of homogeneity 
and local isotropy imply that Eq. (3.2) can be 
transformed as (see [1]) 

1 
~F) ( AO 2n(r, X) AU(r, x) ) N . 2 n ( 2 n - 1 )  ( 2 +  0 

=-2(A02"-Z(r,  x) [ V 0 ( X ) ] 2  > 

ko 
+/Vn(n--1)  (2+-~r)~r (AOZ'(r'x))' 

(3.3) 

where we have rescaled the temperature gradient 
according to [V0(x)] 2 ~ [V0 (x)] 2 / ([V0(x)] z). 
AU(r, x) is the projection of AU(r, x) along the 
direction of r and we also set r = [rl. In the case 
n = 1, eq. (3.3) reduces to the well-known Yag- 
lom formula (2.2). 

We now introduce, following Yakhot and Sinai 
[6], the stochastic variables on the space ~3 
equipped with the volume measure: X =  
AO(r, x), Y = AU(r, x) and Z = [V0(x)] 2. Writing 
the joint pdf P(r,X, Y, Z) as P(r,X) Q(r, Y, 
Z/X), and substituting into (3.3), we get, after 
having replaced the mean with the distribution 
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Table 1 
Closure expressions for q~ 

Zone IX I small IxI large 
inertial dr " dr -° +~?r~lXl~; ~ = 1,2 
dissipative dr ~ dr ~ + y ~ r~lX] 

averaging and by the vanishing of the even 
moments (see [1] for more detail), 

0 

_ 0 2 

+ 2N X)P(r, X)I 

~r P(r, X )  , (3.4) 

where the conditional expectations ql(r, X )  and 
q2(r, X) are defined by 

q~(r, X )  -- f YQ(r,  Y / X )  d Y ,  

qz(r, X )  = f ZO(r,  Z / X )  d Z .  (3.5) 

Notice that the conditional probabilities and 
expectations depend upon the parameter r and 
not r by isotropy. The function ql quantifies the 
influence of the turbulent velocity field on the 
transfer of temperature from the large scales to 
the small ones, whereas q2 represents the link 
between temperature and its dissipation, which is 
known to play an important role in turbulence 
modelling [10]. The analytical study of (3.4) 
reported in [1] showed that it is possible to 
conjecture the analytical form of the closure 
functions with physical arguments, but also by 
requiring a certain regularity of the solution of 
this equation. These closure expressions for ql 
and q2 are reported in Tables 1 and 2, with ~ = 1 

+ 

or 2, 0 ~</3 <~ 1, y i < 0, and all other exponents 
positive numbers. 

Table 2 
Closure expressions for q2 

Zone IX I small IX] large 

inertial rP(y2 + ~ X  2) r ~(Y2 + Y3IXI ~) 
dissipative r° ( y2 + % X z) r ~('~2 -~ ~/3]X] B) 

Actually, the form of q2 proposed in [1] was 

qz(r, X )  = y2r ~ + Z~ r ~ , 

with /3 = 2 for IX[ small, and 0<~/3 ~<1 for IX I 
large (we will explain in a moment the meaning 
of such attributes for X). 

The upper bound for/3 could be shifted to 2 
whenever q l(r ,X) scales asymptotically as 

+ e 2 q~(r, X )  -~ y~ r X (cf. the appendix). The slight- 
ly different expressions for q: given in Table 2 
capture the dominant asymptotic behavior in the 
respective regimes and allow also to separate the 
variables in the solutions of the differential 
equations for the pdf. Note finally that, in the 
dissipative range, we get a pdf diverging at the 
origin [1, Section 5]. The solutions of Eq. (3.4) 
were studied in [l] by separating the variables in 
two regimes called IX] small and IX] large. We 
will consider that ]X] is small when it is much 
smaller than the standard deviation at the con- 
sidered scale r and, inversely, that IX I is large 
when it is much larger than the standard devia- 
tion. As the variation with r of this standard 
deviation can be approximated by power law 
functions both in the inertial and dissipative 
ranges, our theory directly compares IX[ with 
these functions of r in the chosen unit of mea- 
sure. 

The solution P(r, X )  was then factorized as 

P(r, X) = ~b~(X) O~(r), (3.6) 

where the sign of the constant a was chosen 
according to the following rules: 
(i) for ]X] large, the spatial factor &~(X) must 
decay to zero, 
(ii) for IX[ small, the radial factor ~0(r) is a 
decreasing function of r in the dissipative range, 
(iii) for ]X] large, the radial factor qJ~(r) is an 
increasing function of r for r smaller than IX]; on 
the contrary, ~0(r) becomes a decreasing func- 
tion for r much larger than IX[. 

As an important observation, we showed in [1] 
that the exponential stretching exhibited by the 
spatial factor ~b(X) is the steepest one compat- 
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Table 3 
Analytical solutions for the two contributions to the pdf associated with the method of separation of variables 

Zone IXl small IXl large 

inertial 

dissipative 

2 2 

4)] 
- v + p + l  ~-2 l -Near 

6o(r) = cr exp\d(v + p + 1)] 

S 2 

$,(r) = c ( r - '  d + ~0 In r + (?(r In r)) 

= c(-~L)'~4X -3t~+w4 exp[-~-~X/2f(cQ ~3_a~,2\) 6o(x) 

where f(~) = (~ /2%y 2 

r l - t  - ¢  
c I -N~ -- 7=-- o:) O~(r) = r,+----Texpt- ~-~ 1 

where f(~) = ( a / 2 ' y 3 )  1/2 

O~'r" c ~ - ~ ) ~ 2  t )=  r , t r = 2  

ible with an exponentially decaying solution at 
fixed r. 

This asymptotic behavior will be effectively 
confirmed by the experimental results quoted in 
Section 4. Table 3 gives the partial solutions of 
(3.4), deferring to the appendix several com- 
ments and explanations; we also slightly changed 
two notations of the solutions given in [1]. c 
denotes a constant. 

4. Experimental results 

4.1. Probability density functions 

Simultaneous measurements of temperature 
and velocity in the turbulent boundary layer, at 
the position y+ = 310, are used to calculate the 
velocity and temperature increments, AU and A0 
respectively, for different temporal shifts r 
through the use of Taylor's hypothesis: r = -UT. 
In this section, we will present some results 
concerning the pdfs of both AU and A0 for 
various separations r. 

As our theory avoids this adimensionalization, 
we plot (Fig. 3) in semi-logarithmic scales the 
pdfs of A0 with their true dimensions for differ- 
ent values of r. When the scale r is decreased, 
exponential tails are clearly formed. These tails 
are typical of the intermittent nature of turbulent 

energy transfer and dissipation at small scales 
[5, 11, 12]. In the vicinity of X = 0 ,  all curves 
present a parabolic shape with a more or less 
pronounced peak whose amplitude diverges at 
X = 0 when r goes to zero. The asymptotic form 
of the pdf as r goes to zero is a delta function, 
which is not obvious when it is plotted as usually 
done in its adimensionalized form. Fig. 4 attests 
this behavior when three-dimensional plots of 
P(r, X )  are used to exhibit the evolution of the 
pdf with the scale r. As explained in [1], our 
theory was developed for non-adimensionalized 
pdfs in order to avoid any assumption for the 
evolution of ([A0(r)] 2 }. Moreover, these second- 

10 
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A8 
Fig. 3. Pdfs for A0 in semi-logarithmic scales. Asterisks: 
r/'o = 1000; full line: r/rl = 100; triangles: r/r 1 = 30; circles: 
r/~ = 2. 
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Fig. 4. Three-dimensional representation of the pdfs P(r, X ) .  

order  moments  should be inferred once the pdf 
equation (3.4) is solved. In the same manner,  
the conditional averages ql and q2 need to be 
studied using non-adimensionalized scales in 
order  to examine the predictions given in Tables 
1 and 2. In fact, we think that our approach may 
shed new light on the so far not completely 
resolved problem associated with the assumption 
for the variance of the energy transfer rate 
fluctuations [9, 12]. All of these features will be 
more  quantitatively discussed further along. Let 
us also note a clear asymmetry in these tempera- 
ture pdfs which is more pronounced at small r 
but cannot so far be taken into account by our 
theory.  This behavior seems to result from 
tempera ture  jumps directly connected to non- 
zero mean temperature  gradients [13]. 

A similar behavior can be observed for ve- 
locity increment pdfs which are presented in 
Figs. 5 and 6. Although we cannot see the 
asymmetry as clearly in the velocity pdfs, it also 
exists. Indeed,  Fig. 7 p r e sen t s -  for the three 
positions y + =  120,310 and 7 5 0 - t h e  evolution 
of the absolute value of the skewness factors of 
the distributions of AU and A0 as a function of 
r / ~  in log-log scales. For large separations, both 
statistics are nearly Gaussian resulting in almost 
zero skewness factors. As the scale r is de- 
creased, the velocity field evolves towards a non- 

lO 

p(Au) 

I 

10 ' 

18 2 

1® s 

1@ -4 
, , ' ~  . . . .  r . . . . . . . . .  i ,  r . . . . . . .  i . . . . . . .  i , , , ~ ' - ' ~  

-5 .0  -3 .8  1.8 1.8 3.8 E~.8 
AU 

Fig. 5. Pdfs for AU in semi-logarithmic scales. Asterisks: 
r/r 1 = 1000; full line: r/r I = 100; triangles: r/r I = 30; circles: 
r/r I = 2. 

symmetric distribution in accordance with the 
local isotropy predictions as described by Eq. 
(2.1). A plateau is clearly visible over the scales 
lying within the inertial range. This behavior 
results directly from the scaling laws of the 
Kolmogorov theory that gives the theoretical 
position of this plateau at 0.25, when using the 
Kolmogorov constant equal to 2.2 [14]. This 
value is indeed experimentally observed. On the 
contrary, the small-scale distributions of tem- 
perature increments should be symmetric, but as 
it can be seen, the experimental observations 

4.5- 
4- 

3.5- 
3~ 

2 -  

1.5-~ 
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1 5 0  - 5  0 

,Jr 

Fig. 6. Three-dimensional 
P(r, AU).  

A U  

representation of the pdfs 
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factors of  t empera ture  and velocity increments  with r. 
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Fig. 8. Stretched exponential  forms of the pdfs P(r,X).  
r/~ = 10; r/71 = 70; rh? = 1000. 

show that the skewness factor strongly departs 
from zero with an asymptotic value, when r/~ 
tends to 1, of about 1.2, which is in good 
agreement with that usually obtained for the 
longitudinal temperature derivative skewness 
factor (e.g. [15]). The striking observation is the 
very close correspondence between the statistics 
of the velocity and temperature fields down to 
the upper limit of the inertial range where the 
two skewness factors then separate. Within the 
inertial range, a scaling law with the exponent 
- 1 / 2  fits quite well the experimental data for the 
temperature skewness. Using a value of about 
2/3 for the power law evolution of (AOZ), we 
thus infer a power law evolution of (A0 3) with 
an exponent close to 1/2. However, isotropy 
seems to be verified when considering the mixed- 
moment associated with Eq. (2.2) (see Fig. 1). 
As a first step, we will not make an attempt at 
describing precisely this asymmetric feature since 
our main objective in the present paper is to 
experimentally validate the theory developed in 
[1] and the closure assumptions for ql and q2 in 
order to provide strong guidelines for a numeri- 
cal study of the pdf evolution equation. 

In order to investigate the exact forms of the 
pdfs' exponential tails, Fig. 8 presents their 
asymptotic behavior for temperature and differ- 
ent r. Following Ching [11] and our own theoret- 

ical analysis (see Table 3), a stretched exponen- 
tial form, exp[-c(r)lXl~r)], can be deduced for 
any r. To be precise, in our analysis, only two 
different values of B(r) are allowed, according to 
whether r belongs to the dissipative or inertial 
range. As already remarked in [1, Section 5.3], 
this is a consequence of the fact that we take the 
exponent /3 in q2 independent of r. In order to 
obtain the function B(r), we compute the quanti- 
ty Log{Log[Pmax/P(X/(A0 2)  1/2)]} and plot it as 
a function of Log(IX[/(A02} 1/z) for various 
separations r. As the pdf is symmetric for large r, 
both tails collapse on a single line whose slope is 
slightly larger than 2, in accordance with an 
almost Gaussian pdf. When r is decreased, the 
asymmetry of the pdf becomes more and more 
pronounced. As the tails tend to get separate 
one from the other, the mean slope is used for 
B(r). It is obvious from these plots that B(r) 
increases with r. Indeed, Fig. 9a shows this 
evolution in more detail. For the injection scales, 
B(r) is close to 2.5, which is in accordance with 
the flatness factor F o equal to 2.8. Over the 
scales lying within the inertial zone (30 < r/~7 < 
120), B(r) is decreased from about 2 to 1. 
Finally, in the dissipative range, B(r) reaches a 
value of about 0.75; we note that this exponent is 
in contradiction with the unicity of the solution 
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Fig. 9. E x p o n e n t  B(r) versus  r for (a) the t empera tu re  and 
(b) the velocity fields. 

of Eq. (1.1). As guessed in [1], we probably 
have to relax the condition B > 1, preventing a 
subexponential decay of the pdf. Indeed, a 
different analytic deduction of Eq. (3.4) avoiding 
the use of moments can relax this constraint [16]. 
Note that a similar curve is presented in [11] but 
it is slightly translated downward. In particular, 
our exponent B(r) is slightly above 0.5, a value 
previously reported by Gagne [4] and Ching [11]. 
The resulting evolution of the exponent B(r) 
versus r, for ~U, is given in Fig. 9b. This curve 
presents similar characteristics although the cor- 
responding exponent B(r) undergoes a smaller 
variation with r: It varies between 1.3 at small 
scales and 2.2 at large scales. Note finally that, 

although our theory gives only two values of 
B(r), in the inertial range it is larger than in the 
dissipative range, which does not contradict the 
experimental observations. 

4.2. Conditional statistics 

In this section, we investigate the evolutions of 
the conditional expectations q : ( r ,X)  and 
q2(r, X) for different scales r. The corresponding 
jpdfs are also presented. The coefficients 
p, or, u, X and e appearing in the analytical forms 
of ql and q2 are then calculated. Furthermore, 
we deduce from these results the asymptotic 
behavior of the pdfs as predicted by our theory, 
and compare them with experimental fits of the 
pdfs. 

4.2.1. Conditional average ql(r, x) 
Fig. 10 presents the jpdfs between AU and A0 

plotted on non-dimensional scales for four typi- 
cal scales r extending from very large ones 
(injection range, 10000) to very small ones 
(dissipative range, 277). For the largest separation 
(Fig. 10a), the iso-contour levels of the jpdf are 
very close to elliptic ones, with their major axes 
aligned along the second bisectrix: this is charac- 
teristic of joint Gaussian pdfs for ~U and A0 
which are then almost identical to U and 0 
fluctuations. The corresponding qt (see Fig. l la)  
is almost perfectly linear, with a slope C equal to 
the correlation coefficient ( -0 .6 ,  see [8]) be- 
tween U and 0; this linear behavior is very close 
to the expected almost Gaussian property of u 
and 0 but it is in total departure from isotropy. 
On the other hand, when r is decreased, the 
shapes of the iso-contours tend to be strongly 
distorted. This is in good agreement with the 
general trends on the pdfs reported in Fig. 8. 
More specifically, the different behaviors previ- 
ously described are also visible: the temperature 
field is much more asymmetric than the velocity 
field, and fluctuations of large magnitudes are 
more frequent for A0 than for AU, accordingly 
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with the smaller exponent B(r) associated with 
the temperature pdfs' tails (see Fig. 9). 

The conditional average q~ actually provides a 
quantitative analysis of these evolutions: such 
results are given in Fig. 11. For large r sepa- 
rations (between 10001/ and about 2000), 
adimensionalized q~ distributions (Fig. l la )  are 
almost perfectly linear, with slopes almost con- 
stant and very close to C. Then, for smaller 
separations (roughly those lying within the iner- 

tial range), both sides of ql have a rather strong 
evolution, globally corresponding to a strong 
reduction of the overall slope. However,  it is 
worth noting that the evolution for X <  0 is 
much faster in terms of r than that for X > 0. In 
particular, for r about 300, which is the lower 
limit of the inertial range, the evolution for 
X < 0 tends to reverse so that, for scales within 
the dissipative range, both arms of ql are almost 
completely lying in the AU < 0 region and the ql 
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distribution has almost an " A "  shape, with two 
arms strongly skewed towards negative AU fluc- 
tuations. These features are obviously in agree- 
ment  with the evolution of the correlation coeffi- 
cient between AU and A0 reported in Fig. 2. 
They  are also in accordance with relation (2.1) 
as (AU 3) is negative. In order  to get analytical 
expressions for the ql behavior to be used for the 
numerical study of Eq. (3.4), we have searched 
for asymptotic fits of this quantity that result in 
the evaluation of coefficients v and X for small 
Ixl and e for large Ixl. Note that, as explained 
before,  we must also consider all the variables 

with their true dimensions. Fig. l l b  presents the 
variation of q~ versus the non-adimensionalized 
A# for various scales r, which naturally displays a 
much stronger evolution with r than the adimen- 
sionalized results of Fig. l la. 

Even though these results concerning jo in t  
statistics between the velocity and temperature  
fields are obtained in a turbulent boundary layer 
over a heated wall and are obviously strongly 
influenced by the large-scale boundary condi- 
tions, basic considerations on pdfs and moments  
can be used to demonstrate that the reported 
final stage for ql at small scales is universal. This 
feature is discussed in more detail in Section 5 
where it is shown that ql will always possess an 
" A "  shape, regardless of the large-scale con- 
ditions which can induce a linear ql with either a 
positive or a negative slope C. 

To determine v and X, we first set a given 
value for X - -  0 and we read ql(r,  0) as a function 
of r. The three sets of measurements,  corre- 
sponding to y+ = 120, 310 and 750, are presented 
here. As it can be seen, the same behavior is 
displayed for the three location data. When these 
results are plotted on log-log scales as a function 
of r (see Fig. 12a), the dissipative and inertial 
ranges are clearly characterized by two lines with 
two different slopes v and X, intersecting at 
r/~? = 30. Regarding exponent  e, we just com- 
pute the slopes of ql(r,X) for large IX[ excur- 
sions (X=2(A#2) 1/2) and for various scales r. 

Again, the three sets of measurements favorably 
compare one with the other.  We then plot this 
data (Fig. 12b) which is proportional to 1,1 r~ as 
a function of r to find the value of the exponent  
e. A linear behavior, giving e = 1, is obtained for 
the three y+ positions. Table 4 gathers these 
results which are those calculated for y + =  310. 

Note that our model,  simplified to make the 
+ 

analytical resolution tractable, needs that T1 
changes its sign for X < 0 and r/~? = 30. We also 
note that reported values are in good agreement 
with the mathematical constraints (0 ~< e ~< 1 and 
v ~>0 [1]). To investigate the evolution of the 
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dissipative process governing the pdf evolution, 
we now need to estimate the coefficients p and o- 
appearing in the analytical expressions of 
q2(r, X) as shown by the theoretical approach 
[11. 

T a b l e  4 

E x p e r i m e n t a l  e s t i m a t e s  o f  t he  p a r a m e t e r s  g o v e r n i n g  the  q ,  
e v o l u t i o n  

Zone Ixl smal l  Igl l a r g e  

i n e r t i a l  v = 0 .42  e = 1 

d i s s ipa t i ve  X = 0 .76  e = 1 

4.2.2. Conditional average qe(r, X) 
Iso-contours for the jpdfs between the tem- 

perature increment A0 and the squared gradient 
(V0) 2 show (Fig. 13) that there is also a signifi- 
cant evolution through the scales r of the linkage 
between these two quantities. For the injection 
scales, the shape of the jpdf is characteristic of a 
statistical independence between 0 and (70) 2 
[17]. On the contrary, we recover the parabolic 
shape corresponding to an exact relation be- 
tween A0 and (70) 2 when r approaches zero. 
The resulting conditional average q2(r, AO)= 
((70)2/A0) is plotted for various scales r in Fig. 
14a. We recall that (70) 2 is already normalized 
by its mean value as we did in the development 
of the theory. The quantity q2(r,X) can be 
approximated by a parabola in the vicinity of 
X = 0, whatever separation r is considered. In- 
deed, when r goes to zero, an exact parabolic 
distribution is obtained over the entire X range. 
But, when r is larger, the extension of the 
parabolic shape is reduced and it is also reaching 
smaller values as q2 only slightly departs from 
unity. The distribution is fiat for the injection 
scales, resulting from statistical independence 
between 0 and (V0)2 [17]. It is interesting to note 
that our function q2(r, X) generalizes the con- 
ditional expectations q and E defined by Pope 
and Ching and Valino et al. respectively [18] 
when studying the relaxation of the pdf of a 
scalar mixed by a turbulent velocity field. These 
authors formulate an equation for computing 
pdfs from these conditional expectations when 
the transport of the scalar by the velocity field 
can be neglected. In our case, we explicitly keep 
this last t e r m - n a m e l y ,  the quantity ( 2 / r +  
8/Or)(qlP ) -since the coupling between the sca- 
lar and velocity fields is one of the main ingredi- 
ents of the mixing process. 

In order to investigate the evolutions corre- 
sponding to the analytical expressions of 
q2(r,X), we must examine q2 with its true 
dimension as it is presented in Fig. 14b. We first 
choose a fixed value of Isl in the vicinity of zero 
and plot the evolution of q2(r, 0) for various r 
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+ 

separations. Here again, results for the three y 
positions are reported. Fig. 15a shows that a 
power law evolution is obtained with two distinct 
lines, intersecting at the separation between 
inertial and dissipative zones. The slopes of these 
lines give the researched exponent p. In the 
range of large IxI, we also set a prescribed value 
for X ( X =  1 K, which corresponds to several 
standard deviations for the various separations 
r), and plotting the corresponding q2, in log-log 
coordinates, as a function of r, permits us to 
determine o-. Fig. 15b presents such results. 

Indeed, p and or are found to be positive in both 
ranges of scales. Table 5 presents the experimen- 
tal coefficients of the analytical expression 
chosen to model q2. 

Table 5 
Experimental estimates of the parameters governing the q2 
evolution 

Zone  IXl small IXl large 

inertial p = 0.10 (r = 0.20 
dissipative p = 0.14 (r = 1.18 
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4.3. Behavior of P(r, X) 

We will use in this paragraph the values for the 
various coefficients we have just obtained in 
order to analyze in a more quantitative way the 
trends reported in Fig. 3. We will check the 
validity of our analytical expressions for the pdf 
P(r, X ) -  in which coefficients e, u, X, P and tr 
a p p e a r - b y  comparing (Fig. 16) the predicted 
trends to the experimental results. As the meth- 
od of separation of variables was the only one to 
be tractable, we had to write down P(r,X)= 

~b(r) ~b (X). We have recalled in Section 3 (see 
Table 3) the expressions giving ~b(r) and ~b (X). 

In order to consider now the experimental 
evolutions of the measured pdf, let us first recall 
the predicted variation with X. When X is small, 
we naturally recover a quadratic behavior as 
given in the analytical expression of Table 3. 
When X is large, the solution ~b~(X) is character- 
ized by exponential tails, with an exponent B 
whose study was previously given in Section 4.1. 
In the inertial range, the experimental value of B 
varies around 1.5. Let us recall that our sepa- 
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ration of variable does not permit in the theory a 
coefficient/3 that varies continuously with r. But 
we find a consistent value of/3 = 0 or 1, given by 
B = ( 3 - / 3 ) / 2  or ( 4 - / 3 ) / 2  (depending on the 
expression taken for qx, see the appendix). In 
the dissipative range, the experimental value for 
B is around 0.75, which agrees, according to 
Table 3, with /3 =0.5.  These different values 
obtained for /3 are in good agreement with the 
theoretical requirement that 0 ~</3 ~ 1. 

There are 4 cases to be considered to study the 
evolution of the pdf with r (see Table 3): 
(1) In the inertial range and small Isl, with the 

values of the different exponents obtained 
previously (v = 0.42, p = 0.10), ~ ( r )  should 
behave as exp( -Kr l52) ,  where K is a posi- 
tive constant. Fig. 16a shows the variation of 
ln(lln(Pmax)l) with In r, emax being the maxi- 
mum value reached by the pdf for the 
considered scale r. The reported data pres- 
ent, as expected, an almost linear evolution 
whose slope is the desired exponent. This 
slope is equal to 1.24 to be compared to the 
1.52 prediction. 

(2) In the inertial range and for Isl large, again 
an exponential behavior is predicted. With 
the values of e and o- determined before 
(e = 1 and o-= 0.20), the theoretical expo- 
nent appearing in the exponential function 
of r is 1 - e - o" = -0.20.  Fig. 16b presents, 
for a fixed value X 0 of X, the variation with r 
of ln{ln[P(X0)]}, and shows the expected 
behavior with an exponent equal to -0.21.  

(3) In the dissipative zone for IxI small, the 
theoretical pdf behavior is given by r -1. A 
log-log plot of Pmax versus r is presented in 
Fig. 16c, and displays a r -°73 behavior. 

(4) In the dissipative zone for IXl large, the 
prediction is an increasing power law of r. 
Fig. 16d is in agreement with this theoretical 
result, giving an exponent equal to 1.84. 

To conclude this section, we have shown that 
the asymptotic behavior of the pdf and of q~ and 
q2 obtained by our analytical study agrees fairly 
well with the experimental trends. 

5. From Gaussianity to isotropy 

In order to interpret the behavior of the 
conditional expectation ql and to assess the 
generality of the previous experimental results, it 
is worth presenting now some investigations 
which directly result from mathematical con- 
straints on the pdf P(r, X) and its associated 
moments. Indeed, homogeneity and local iso- 
tropy assumptions induce the following prop- 
erties on ql and q2. Most of them should be valid 
for all scales lying within the inertial and dissipa- 
tive ranges, whereas some of them only hold for 
the inertial range: 

7 
J qlPdX=O ( A U > = 0 ,  (5.1a) from 

f XqmPdX=O from ( AUA0 )  = 0 ,  (5.1b) 

o o  

f X2ql e dX = (AU (5.1c) (a0)2>. 

Associated relations for q2 inferred from the 
previous ones using Eq. (3.4) in the inertial 
range can be obtained. 

Eq. (5.1b) is valid because the two fields AU 
and AO are uncorrelated at small scales. In fact, 
in all passive scalar turbulence experiments, 
these fields are correlated at injection scales, i.e. 
at large r. Thus, at these scales, local isotropy 
and homogeneity hypotheses are not verified. If 
we suppose that the joint statistics between AU 
and A0 is Gaussian with a correlation coefficient 
C very close to the correlation between the 
fluctuations U and 0: 

q, = CX , (5.2) 

then the right hand side of (5.1b) differs from 
zero and is equal to C. There is no available 
prediction for the behavior of this mixed mo- 
ment,  but this quantity is a decreasing function 
of r. In fact, the forthcoming development will 
show that ratios of (AU(A0) 2> and (A0 2) are 
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involved so that we will not attempt to obtain a 
precise expression for the evolution of the mixed 
moment. 

As already mentioned in [1], relation (5.2) is 
in complete violation of local isotropy and homo- 
geneity. The shape of qj at scales slightly smaller 
than the injection scales is then controlled by a 
process that tends to match together the two 
statistics: Gaussian at large r, and the statistics of 
isotropic and homogeneous turbulence at small 
r. In order to get the very first features of this 
evolution, we will rewrite (5.2) introducing the 
small deviation H(r, X)  from the Gaussian linear 
behavior: 

ql = CX + II(r, X) . (5.3) 

Let us write down a Taylor series expansion of 
q~: 

r)+4°qlU))  o 
1 OZq_l(r,X).] 

+ 2 X 2 (  OX 2 /x=o 

+ ~'(Ix13). (5.4) 

We now substitute this expression in Eqs. (5.1), 
with the integral of (5.1b) being equal to 
C ( X  2) + (II(r, X)X) :  

Oql 

+ . . . .  O, 

1 (02q,] 
+ T <xb \~-7/x:o 

(oq,  
(X)ql (0,  r) + (X2)\  OX/x=o 

1 (OZq,] 
+2 (x3) Cg~-- / ~=o 

+ . . . .  c ( x~ )  + ( r I ( x ) x ) ,  

( XZ) q,( O, r) + ( X3) ( OO~) x=o 

1 4 O2ql 

+ . . . .  ( A U  AO 2 ) . 

(5.5a) 

(5.5b) 

(5.5c) 

Furthermore, as ql(X) is linear for injection 
scales, we suppose that when r decreases, ql(X) 
deviates slightly from this linear behavior, and 
we can neglect the contribution from derivatives 
of order higher than 2. Let us now note that, as 
(X) = 0, all first order terms disappear. Plugging 
expression (5.3) into the truncated equations, we 
can deduce, at X = 0, omitting for simplicity to 
write explicitly the variation with r, that 

OX 2 x=o = 0,  (5.6a) 

(x2>[c+( °It(x)] ] (x3> (o2II(X)] 
C-o2-1x=0J + T \  ~ lx=o 

= C(X 2) ~- (II(X) X ) ,  (5.6b) 

(on(x)) ] (x2)n(o)+ ( x 3 ) t c + ~  ox  /x=,)J 

_~_ </4) (02//(X) ~ 
T \  ~ / x = o = ( A U A 0 e ) "  (5.6c) 

Combining these three equations, together, we 
obtain an expression for the second derivative of 
H at X = 0 :  

<X2>2 (02//(X)~ ((X4) <X3)2 1) 
2 \ O - 5 - X  /x=o\(X2)  2 (XZ)3 

: <au ao2>- (x3>(c + (u(x)x>) 
<x~) 

(5.7) 

With the definition of the flatness factor F and 
the skewness factor S of A0, Eq. (5.7) then reads 

1 $2 , ,{a2II(X)]  
( F -  - l)k 0-~ ]x=o 

<auao2> <x3) 
-- (X2> 2 C < X2~------ ~ 

_ <x~) (u(x)x) 
(X2) 2 (5.8) 

In the limit case of nearly Gaussian statistics 
for the temperature increment field at injection 
scales, we know the values of its two first 
moments: S - 0  and F--3 .  It then follows that 
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(02/7(x) (au a02) 
ox )x:o- (5.9) 

Therefore, whatever the sign of the correlation 
C, the deviation from linearity of the conditional 
expectation ql is realized with a negative con- 
cavity as (AU (A0) 2) is negative. Consequently, 
for r very large, the quantity (AUAO) pro- 
gressively evolves from a linear evolution, with a 
slope equal to the correlation C = (U0) ,  towards 
a curved evolution. Simultaneously, from rela- 
tion (5.6a), we obtain the evolution of/7(0):  

2(AU A0 2) 
/7(0) = (X2) , (5.10) 

showing that ql(0) is getting slightly positive 
when r is among the injection scales. We predict 
in this manner that the final shape of ql, i.e. at 
sufficiently small scale where turbulence is iso- 
tropic and homogeneous, is a chevron with both 
arms directed downwards as obtained in the 
previous section. This is true whatever type of 
turbulence is considered and, in particular, this is 
independent from the flow boundary conditions 
which are known to govern the sign of C and, 
consequently, that of (A03), for r lying within 
the inertial range. Thus, we do believe that 
results previously presented display the universal 
evolution of ql. 

6. Conclusion 

Simultaneous measurements of temperature 
and velocity have been performed with a two- 
wire probe in the turbulent boundary layer 
developing along a heated wall. This data was 
used to study the statistical distributions of the 
temperature and velocity increments. Particular 
attention was devoted to the conditional expecta- 
tions ql and q2 which govern the evolution of the 
pdfs for temperature increments. These quan- 
tities, together with the pdfs, were calculated for 
various scales r from the injection range (r/~ = 

1000) to the dissipative one (r/rl = 2). These 
results were more specifically compared with the 
analytical asymptotic predictions for the pdf 
P(r,X) of the temperature increment X =  A0 
obtained in our previous theoretical study. The 
robustness of these results was checked by con- 
sidering three measurement positions within the 
inner region of the boundary layer where a 
sufficiently large inertial range exists. 

Theoretical assumptions for the scaling laws of 
ql and q2 are particularly well verified. The 
asymptotic features display a clear separation 
between inertial and dissipative ranges occuring 
at r/~l = 30. Considering the rather low Reynolds 
number of the experiments, this suggests that 
our theory enlights the main phenomena govern- 
ing the mixing action of turbulence. We also 
proved that, starting from Gaussian statistics at 
injection scales, the final evolution of ql is an 
"A" shape chevron. We think that this prediction 
deals with a universal process, that permits the 
statistics to evolve from "initial" statistics (con- 
trolled by the injection scales) to homogeneous 
and isotropic turbulence statistics. In the same 
way, the shape of q2 which controls the dissipa- 
tion process evolves from a constant horizontal 
line at injection scales to a parabola at very small 
scales. These transients through the scales gov- 
ern the mixing of the temperature field by the 
turbulent velocity field, and also its dissipation. 
The shapes of the pdfs are therefore given at 
various scales r by a search of equilibrium 
between these two processes. 

Our theoretical approach has synthesized the 
pdf evolution through a partial differential equa- 
tion (namely Eq. (3.4)). Asymptotic features of 
the pdf can be obtained by a separation of 
variables technique, and in particular stretched 
exponential tails can be detected, in accordance 
with the experiments. However, it seems that the 
experimental skewness factor for the distribution 
of A0 grows when r is decreased, in total con- 
tradiction with the local isotropy assumption 
which stipulates that it should be zero. This 
means that, while the velocity field evolves 
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towards isotropy as r---~ 0, the scalar field does 

not obey this trend although the correlation 
between the velocity and tempera ture  fields 
actually vanishes when r---~0. This behavior  

reflects the asymmetry  of the pdfs which is very 

pronounced  for t empera ture  increments,  and 
which is so far not taken into account in our 
model .  
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(A.1) becomes an Euler  equation,  whose decay- 
ing solution is easily found to be 

~ ( r )  = const. × r ( ~ °  1)72. (A.3) 

It was just this solution that was quoted in Table  

3; clearly, one expects a similar behavior  for any 
c r > l .  

The second remark concerns the solutions for 

small ]X] in both ranges. In [1], we kept  the 
constant c~ negative. If, instead, we take a > 0, 

we get for 4L(X) a second order  expression of 
the type that is quoted in Table 3: 

re 4~(X) = const, x L~Y-2---2 ' 

Appendix 

In this appendix,  we comment  on Table 3. We 
first need two remarks.  The first one concerns 

the radial factor &~(r) for large IX] in the 

dissipative range. In [1] we kept the solution 

growing as 1/r, which does not agree with the 
assumption (ii) in Section 3. To supply for, we 

observe  that ~0~(r) satisfies the equation (with 
o -=  1: we chose o -=  1 to simplify the computa-  
tions) 

d2~b~ (r) 2 dqJ (r) c~R 

dr 2 -I - -  , r dr 2rko ~b~(r) = 0 (A.1) 

which admits a general solution of the type, in 
the ne ighborhood of r = 0, 

(1 ) 
O~(r) = A + ~ In r + G(r In r) 

+ B(1  c ~ ' r  e(r2)) (A.2) - +  

with A and B arbitrary constants. By taking 
A = 0, we select a solution bounded in r for small 

r. To  get a solution that effectively goes to zero 
for r - + 0  +, and not to a constant as in (A.2),  it 
will be enough to take o- > 1 (and not a = 1 as in 

(A. 1)). For  example ,  with o- = 2, the analogue of 

which still gives an asymptotic Gaussian behavior  
provided that a < 4y 3. The radial factor O~(r) has 

the same form as in Eq. (4.7) in [1] with the 

property that now $~(r) goes to zero even when 

r---~ ~. Also, the radial part  in the inertial range 

for IX I large goes to zero when r - -~% since 

e + o ->  1, as again is found experimental ly in 
Section 4. In the deduction of ~O(r) in the 
dissipative zone, we assumed ql ~ d ' ~ c o n s t . ;  

this is not a restriction since we showed in [1] 

that Eq. (3.4) can be studied in the dissipative 
regime without the first term on the left hand 

side containing ql. Finally we recall that the 

exponent  of X in ~ ( X )  in the inertial range for 

IX I large becomes ( 4 - / 3 ) / 2  if we take ql 
y ~ r ~ X  2. The solution quoted in Table 3 was 

+ e obtained with q l - Y l  r IXI. 

References 

[1] S. Vaienti, M. Ould-Rouis, F. Anselmet and P. Le Gal, 
Physica D 73 (1994) 99. 

[2] A.N. Kolmogorov, C.R. Acad. Sci. USSR 30 (1941) 
301; 
see also U. Frisch, in: Turbulent and Stochastic Pro- 
cesses: Kolmogorov's Ideas 50 Years On (Royal Society, 
London, (1992) p. 89. 

[3] U. Frisch, EL. Sulem and M. Nelkin, J. Fluid Mech. 87 
(1978) 719; 



424 M. Ould-Rouis et al. / Physica D 85 (1995) 405-424 

G. Parisi and U. Frisch, in: Turbulence and Predictabili- 
ty in Geophysical Fluid Dynamics (North-Holland, 
Amsterdam, 1985) p. 84; 
R. Benzi, G. Paladin, G. Parisi and A. Vulpiani, J. 
Phys. A 17 (1986) 3521-3531; 
D. Schertzer and S. Lovejoy, J. Geophys. Res. 92 
(1987) 9693. 

[4] F. Anselmet, Y. Gagne, E.J. Hopfinger and R.A. 
Antonia, J. Fluid Mech. 140 (1984) 63; 
Y. Gagne, Thrse de Docteur 6s Sciences, I.N.P. Greno- 
ble (1987); 
C. Meneveau and K.R. Sreenivasan, J. Fluid Mech. 224 
(1991) 429. 

[5] R.A. Antonia, E.J. Hopfinger, Y. Gagne and F. Ansel- 
met, Phys. Rev. A 30 (1984). 

[6] Y.G. Sinai and V. Yakhot, Phys. Rev. Lett. 63 (1989) 
1962; 
V. Yakhot, Phys. Rev. Lett. 63 (1989) 1965. 

[7] R.H. Kraichnan, Phys. Rev. Lett. 72 (1994) 1016. 
[8] F. Anselmet, R.A. Antonia, T. Benabid and L. Fulach- 

ier, in: Structure of Turbulence and Drag Reduction 
(Springer, Berlin, 1990) p. 349, and references herein. 

[9] A.S. Monin and A.M. Yaglom, Statistical Fluid Mech- 
anics, Vols. 1 and 2 (MIT Press, Cambridge, MA, 1975). 

[10] V. Eswaran and S.B. Pope, Phys. Fluids 31 (1988) 506; 
H. Chen, S. Chen and R.H. Kraichnan, Phys. Rev. 
Lett. 62 (1989) 2657. 

[11] E.S. Ching, Phys. Rev. A 44, 6 (1991) 3622. 
[12] B. Castaing, Y. Gagne and E.J. Hopfinger, Phys. D 46 

(1990) 177. 
[13] A. Pumir, Phys. Fluids 6 (1994) 2118. 
[14] A. Praskovsky and S. Oncley, Phys. Fluids 6 (1994) 

2886. 
[15] K.R. Sreenivasan, Proc. R. Soc. London A 434 (1991) 

165. 
[16] J. Dusek, private communication. 
[17] F. Anselmet, H. Djeridi and L. Fulachier, J. Fluid 

Mech. 280 (1994) 173. 
[18] S.B. Pope and E.S. Ching, Phys. Fluids 5 (1993) 1529; 

L. Valino, C. Dopazo and J. Ros, Phys. Rev. Lett. 72 
(1994) 3518. 


