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José Luevano
Centre de Physique Theorique, Univ. de Aix Marseille II, and Universidad Autonoma Metropolitana, Azcapotzalco, Mexico

Giorgio Mantica
International Center for the Study of Dynamical Systems, Università dell’Insubria, Via Valleggio 11, Como, Italy, and
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Fluctuations in the return time statistics of a dynamical system can be described by a new spec-
trum of dimensions. Comparison with the usual multifractal analysis of measures is presented, and
difference between the two corresponding sets of dimensions is established. Theoretical analysis and
numerical examples of dynamical systems in the class of Iterated Functions are presented.
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Suppose that T is a transformation of the space X into
itself, which preserves the probability measure µ. Let A
be a subset of X , and x a point in A. We let τA(x) be
the (integer) time of the first return of x in A:

τA(x) = inf{n > 0 s.t. T n(x) ∈ A}. (1)

Poincaré theorem guarantees that the return time is
almost certainly finite with respect to any invariant mea-
sure. It can be rather long, and particularly short as well:
if x is a fixed point of T , then obviously τA(x) = 1 for
any set A containing x. In this paper, we shall prove
that the distribution of return times is characterized by
multi-fractal properties which can be properly described
by the tools of the so-called thermodynamical formalism
[1].

Much recent research has been focused on the local
statistics of these returns, in the following sense: Take
for A a ball of variable radius ε centered at the point x:
A = Bε(x). Next, consider the cumulative distribution
of the first return times, in the ball, of all points of this
latter: Let λ(ε) = µ(Bε(x)), and define m(x, ε, s) :=
µ{y ∈ Bε(x) s.t. λ(ε)τBε(x)(y) > s}/λ(ε). In many in-
stances, these statistics have an exponential character:
m(x, ε, s) → e−s, as ε tends to zero. Rigorous proofs of
this fact have been produced under an ever lessening set
of hypotheses [2].

More fundamental for our analysis than the previous,
is Kac theorem [3], a classical result of the local analysis:
it predicts that, whenever the measure µ is ergodic with
respect to T , for any measurable set A (and not just
balls), the expectation of τA over the set A is just the
inverse of the measure of A:∫

A

τA(y)
dµ(y)

µ(A)
=

1

µ(A)
. (2)

Furthermore, one must quote the theorem of Ornstein
and Weiss [4]: Let A be a generating partition of X , and
let us refine it around all the points x ∈ X by defin-
ing the cylinder of order n, An(x), as the intersection
of all the elements of A, T−1A,...,T−n+1A containing x.
The Ornstein-Weiss theorem states that, whenever the
measure µ is ergodic, the following limit exists µ-almost
everywhere, and is equal to h(µ), the metric entropy of
µ:

lim
n→∞

log τAn(x)(x)

n
= h(µ). (3)

This remarkable result is historically the first link be-
tween a thermodynamic quantity, and the return times.
Parallel to the Ornstein-Weiss theorem, the Shannon-
Mc Millan-Breiman theorem gives the metric entropy by
means of the exponential decay of the measure of cylin-
ders around almost all points. It is common in the phys-
ical usage to replace cylinders with balls: this allowed in
force of the Brin-Katok theorem [5]. The advantage of
balls over cylinders, when considering practical applica-
tions, is apparent.

Let us therefore replace An(x) and n in eq. (3) by
Bε(x) and − log ε, respectively. In the case of Gibbs mea-
sures of Axiom-A diffeomorphisms [6], and of a wide class
of maps of the interval [7] one has been able to prove rig-
orously that the modified limit (3) exists µ-almost every-
where, and is equal to the information dimension Dµ(1),
of µ:

lim
ε→0

−
log(τBε(x)(x))

log ε
= Dµ(1). (4)

The definition of Dµ(1), and an informal proof of eq. (4),
will be given momentarily.
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So far, the analysis has been local. Quite different–and
more complex–is the case of the global statistics that we
consider in this paper. We let balls of fixed radius ε cover
X , and we compute the integrals

Γτ (ε, q) :=

∫
X

τ1−q

Bε(x)(x)dµ(x), (5)

where q is a real quantity. These are the statistical mo-
ments of the time required to come back to a neighbor-
hood of the starting point: it is clear that local analysis
alone has little to say about the scaling, in the radius ε,
of these quantities.

Indeed, Γτ (ε, q) are a sort of partition function, quite
akin to those employed in the thermodynamical formal-
ism. Their scaling for small ε defines a set of dimensions,
Dτ (q):

Γτ (ε, q) ∼ εDτ (q)(q−1), (6)

that we call return time dimensions. The study of these
dimensions is the object of this Letter. In level of impor-
tance, the first question is about their relations with the
usual quantities of the thermodynamical formalism.

Let us first observe that the return time τBε(x)(x) can
be interpreted as a “single-point” sample of the integral
in Kac theorem, eq. (2). Therefore, one could estimate
that

τBε(x)(x) ∼ µ(Bε(x))−1. (7)

It is worth recalling now that the local dimension α(x)
of the measure µ at the point x is defined by the scaling
µ(Bε(x)) ∼ εα(x), in the limit of small ε. Moreover, the
relation α(x) = Dµ(1) holds almost everywhere in X , as
discussed above. This fact, and eq. (7), then imply the
theorem expressed by eq. (4).

The approximate equality (7) has been already
adopted in [8,9] to evaluate via eq. (5), the exact ther-
modynamical partition function Γµ(ε, q),

Γµ(ε, q) :=

∫
X

µ(Bε(x))q−1dµ(x) ∼ εDµ(q)(q−1), (8)

whose scaling for small ε gives the well-known spectrum
of generalized dimensions Dµ(q) [10].

The substitution of eqs. (8) by eqs. (5,6) is partic-
ularly significant, for it allows one to treat dynamical
systems endowed with physical measures of the Sinai-
Bowen-Ruelle type: in this case the integral can be re-
placed by a Birkhoff sum over the trajectory xl := T l(x0),
l = 0, . . ., of a generic point x0:

Γτ (ε, q) = lim
n→∞

1

n

n−1∑
j=0

τ1−q

Bε(xj)
(xj). (9)

Indeed, this Birkhoff procedure, eq. (9), is the one orig-
inally employed in [8,9], where it is claimed to produce
the spectrum of measure dimensions Dµ(q).

It must be remarked that eq. (9) considers a single sum
along the orbit, while in the usual Grassberger-Procaccia
technique for the q-correlation integrals, one must work
with a double summation, where all the couples of points
along the same (or different) orbit are compared [11].

We are now ready to introduce the main result of this
paper: contrary to the usage of [8,9], the estimate (7)
does hold only for the first moment, as in Kac theorem,
but not in the stronger sense required in eqs. (5), and
(8): the variables τBε(x) and µ(Bε(x))−1 have different
large deviation properties. Therefore, Dµ(q) and Dτ (q)
are not the same function, and the latter defines a new
bona fide spectrum of dimensions.

The abstract proof of this statement would be little
informative, if not paralleled by a specific example. It is
therefore convenient to introduce a family of dynamical
systems whose invariant measures are completely known,
in the sense that the spectrum of dimensions Dµ(q) can
be easily and precisely computed: these are the so-called
systems of iterated functions, or I.F.S., see [12] for de-
tails. In the simplest, one-dimensional case, an I.F.S.
consists of a collection of contracting maps of the line,
φi : R → R, i = 1, . . . , M , where M is the number
of maps. These latter can be thought of as the inverse
branches of the dynamics: (T ◦ φi)(x) = x for any i. In
so doing, T is characterized by a mixing repeller, that is
also the attractor of the collective action (in the sense
that will be made soon clear) of the maps in the I.F.S..

A family of invariant measures for T can be con-
structed assigning a probability, πi, to each map φi,∑M

i=1 πi = 1. The dynamics of I.F.S. can be constructed
by sequentially applying maps φσ, where σ is chosen in
a random fashion with probability πσ. Any orbit of the
probabilistic I.F.S., when time-reversed, becomes an or-
bit of the deterministic dynamics T . Notice that return
times are invariant under time reversal.

The reader will find useful to consider the usual ternary
Cantor set measure as the invariant measure of the fol-
lowing 2-maps I.F.S.: φ1(x) = x/3, φ2(x) = (x + 2)/3,
π1 = π2 = 1/2. The related invariant measure is an
example of mono-fractal: all generalized dimensions are
equal to the constant δ = log 2

log 3 . Let us perform the re-

turn time analysis of this dynamical system following the
Birkhoff sums approach, eq. (9). Other techniques of es-
timating the integral (5) will be presented elsewhere.

We can first verify that the scaling relation (6) holds:
fig. 1 assures us that this is indeed the case.

We can then extract the return dimensions Dτ (q) ver-
sus q: the numerical results are plotted in fig. 2. They
reveal a non-trivial range of dimensions: as far as return
times are concerned, the dynamics is multifractal. More-
over, the return time dimensions are consistent with the
constant value δ (within the statistical error bars) for
negative dimensions, but are significantly different from
this latter for positive values of q, the more, the larger
the value of q.

Resorting now to exact analysis, we can confirm these
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results: precisely, we are able to prove that i) Dµ(0) =
Dτ (0), and ii) Dτ (q) → 0 for large q. The second fact
proves that the return dimensions Dτ (q) are significantly
different from measure dimensions, while the first hints
at relations that, at least in certain dynamical systems,
may exist between them.

To see that i) is true, observe that the repeller of T
can be hierarchically covered by intervals Ak

l , of length
1/3k, where k = 0, . . . is the index of the generation, and
l = 1, . . . , 2k is the label of the single interval within its
generation. This is simply the usual construction of the
ternary Cantor set, in which one carves a hole of length
1/3k in the middle of each interval generation k − 1.

For a fixed value of k, let us choose ε = εk = 1/3k.
Then, simple geometric considerations assure us that
whenever x belongs to Ak

l , with k and l fixed, it is also
contained in the ball of radius εk centered around any
other point in Ak

l . In addition, these balls intersect no
interval of generation k other than Ak

l . This permits us
to employ Kac theorem, eq. (2), to compute exactly the
sum Γτ (εk, 0):

Γτ (εk, 0) =

2k∑
l=0

∫
Ak

l

τAk
l
(x)dµ(x) = 2k. (10)

It is then clear that i) holds.
Remark that the intervals Ak

l , are also the cylinders of
order k of the dynamics. Therefore, the result we have
just proven also applies to the return time dimensions,
when defined via cylinders, and predicts that the dimen-
sion of order zero is equal to the topological entropy.
Following the same idea, one also expects that the cylin-
der return time dimensions will be related to the Renyi
entropies of the measure [13].

Observe that the above results are by no means re-
stricted to the one-dimensional case. At the same time
it is evident that use of Kac theorem is permitted only
for q = 0, for otherwise different fluctuation properties of
the return time statistics set in. This leads us directly to
the statement ii).

Remark that the return times define partitions of X by
the sets Rn(ε) := {x ∈ X s.t. τBε(x)(x) = n}. This allows
us to re-write the moments Γτ (ε, q) as a new summation:

Γτ (ε, q) =

∞∑
n=1

n1−qµ(Rn(ε)). (11)

When q is large, terms with small n lead the sum (11).
Let us retain just the first of these: it does not vanish
by increasing q. This term is the measure of R1(ε), the
set of points that move less than ε in a single iteration.
Clearly, all fixed points of T belong to this set. Let x̄
be any one of these, and let us assume that ε is small
enough, and that the transformation T is smooth. Then,
R1(ε) contains the ball of radius ε/Λ centered at x̄, where
Λ is the largest singular value of the matrix 1− T ′, 1 is
the identity, and T ′ is the Jacobian matrix of T at x̄.

Moreover, the ball of radius ε/σ, where σ is now the
smallest singular value, contains the connected part of
R1(ε) around x̄. Then, we can estimate that, for large q,

Γτ (ε, q) ≃
∑

x̄ s.t. T (x̄)=x̄

µ(Bρε(x̄)), (12)

where the sum is extended to all fixed points of T , and
where ρ is a multiplicative factor, which depends on x̄:
σ < ρ < Λ. When the number of terms in the sum
is finite, the leading contribution to (12) comes from the
fixed point x̄ with the smallest local dimension, αm: since
µ(Bε(x̄)) ∼ εαm , it follows at once that

Dτ (q) ≃
αm

q − 1
, when q → ∞. (13)

We can readily verify that eq. (13) is satisfied by the
Cantor set dynamics introduced above. The fixed points
of T are here zero, and one, and they are both character-
ized by the same value of the local dimension, αm = log 2

log 3 .

In fig. 2 the relation (13) is validated by the numerical
results of Dτ (q) for large q.

This investigation is not limited to a single dimen-
sion. We now add a two-dimensional example with a
non-trivial dimension function Dµ(q): the motion on
a Sierpinsky gasket, corresponding to the I.F.S. maps
φ1(x, y) = (x/2, y/2), φ2(x, y) = ((x + 1)/2, (y + 1)/2),
and φ3(x, y) = (x/2, (y + 1)/2), with non-uniform prob-
abilities π1 = 4/10, π2 = π3 = 3/10. In fig. 3 we have
compared the exact thermodynamical function Dµ(q)
and the numerically evaluated Dτ (q). For negative values
of q the two dimensions are very close, and discrepancies
may be due to the finite length of the Birkhoff sum, and,
more importantly, of the fitting interval in ε, which can-
not be accounted for by the statistical definition of the
error bars. For positive values of q, to the contrary, the
two dimensions are rather different, and the asymptotic
formula (13) soon becomes a very close approximation of
Dτ (q).

In conclusion, we have shown that the statistics of re-
turn times are characterized by multi-fractal properties,
well defined by a new spectrum of dimensions Dτ (q). We
have also found that, contrary to implicit previous state-
ments in the literature, this spectrum does not coincide
with the usual multi-fractal spectrum Dµ(q). It is now
interesting to understand the meaning of the Legendre
transforms associated to these new dimensions. We have
proven that Dτ (0) = Dµ(0) under certain hypotheses
on the dynamical system. Approximate equality seems
to hold for negative q’s as well [16]. This might pro-
vide a means for computing negative measure dimen-
sions, which is known to be a challenging numerical task.
Finally, we have shown that in a large class of systems
the relation Dτ (q) ≃ αm

q−1 holds for large q, where αm is

the smallest local dimension at the fixed points of T .
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FIG. 1. Return time partition sums Γτ (ε, q) versus ε for
a set of equally spaced values of q ranging from q = −19
(bottom curve) to q = 19 (top). Lines in between points are
solely intended to connect data with the same value of q.
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FIG. 2. Generalized dimensions Dτ (q) versus q for the
ternary Cantor set dynamics. Error bars are defined via the
uncertainty in the least square fits of Fig. (1), under the
usual statistical assumptions. The horizontal line is the (flat)
measure thermodynamics : Dµ(q) = log 2/ log 3. The dashed
curve for q > 0 is eq. (13) with α = log 2/ log 3.

0

0.5

1

1.5

2

-6 -4 -2 0 2 4 6 8

D
(q

)

q

FIG. 3. Generalized dimensions Dµ(q) (dotted line) and
Dτ (q) (error bars) versus q for the Sierpinsky dynamics de-
scribed in the text. Data have been computed by least square
fits of Birkhoff sums with n = 800000. Also reported for
positive q is the asymptotic formula (13).
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