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Hausdorff Dimensions in Two-Dimensional Maps 
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We compute numerically the Hausdorff dimensions of the Gibbs measures on 
the invariant sets of Axiom A systems. In particular, we stress the existence of 
a measure which has maximal dimension and can be relevant for the ergodic 
properties of the system. For hyperbolic maps of the plane with constant 
Jacobian j, we apply the Bowen Ruelle formula, using the relation 
F(fl = dH -- 1 ) = In j, which links the Hausdorff dimension dH of an attractor to 
a free energy functional F(fl) defined in the thermodynamic formalism. We 
provide numerical evidence that this relation remains valid for some nonhyper- 
bolic maps, such as the H~non map. 

KEY WORDS: Strange attractors; thermodynamic formalism; Gibbs states; 
Hausdorff dimension; generalized Lyapunov exponents. 

1. I N T R O D U C T I O N  

The Bowen Ruelle relat ion (l~ is one of the most  impor tan t  tools for the 

analysis of the fractal properties of mixing repellors such as Julia sets of 

po lynomia l  maps. In  fact, it gives the Hausdorff  d imens ion  dH of invar ian t  

sets in terms of a free energy funct ional  defined in the the rmodynamic  
formalism. (2~ In  this paper, we want  to show how to apply it to more 

general Axiom A systems. Roughly speaking, Axiom A means  that  the 

invar ian t  set S of the map  F is hyperbolic,  i.e., at each point  x of S, the 
tangent  space is the direct sum of two subspaces, varying cont inuous ly  with 

x, the stable subspace where initial  vectors are exponent ia l ly  contracted 
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and the unstable one, where they are exponentially stretched. Moreover, 
the periodic points of F are dense in S. 

In the following we focus our discussion on the attractors of two- 
dimensional maps, where our result is a simple but important achievement 
both for analytical calculations and for numerical purposes. 

We in fact indicate how to implement the Bowen-Ruelle formula via 
the generalized Lyapunov exponents L(q), ~3) and show that its correction 
to the Kaplan and Yorke formula ~4) (giving the information dimension dl, 
i.e., the Hausdorff dimension of the smallest set of full "physical" measure) 
can be found in terms of the variance of the finite-time fluctuations of the 
Lyapunov exponent. 

Moreover, we find a simple method to give a thermodynamical 
description of the ergodic properties of two-dimensional maps by means of 
the Hausdorff dimensions of a family of ergodic invariant probability 
measures, the equilibrium Gibbs states/6) This permits us to derive some 
known results of ergodic theory in a simple way and to provide numerical 
evidence of the existence of an important measure, the Gibbs state with 
maximum Hausdorff dimension. We also try to calculate those Hausdorff 
dimensionalities for the H6non map, a polynomial nonhyperbolic map of 
the plane. In this case we are able to give a rough characterization of the 
nonhyperbolicity. 

2. E Q U I L I B R I U M  S T A T E S  A N D  T H E I R  D I M E N S I O N A L I T I E S  

Let us recall that the equilibrium Gibbs state of the function ~b is the 
F-invariant ergodic measurement on S which realizes the supremum in the 
variational principle for the topological pressure~2): 

P(F,~b)= sup [K(t~)+~dt~(x)(b(x)~ (2.1) 
u E M E ( S )  L " A 

in the set Me(S) of the F-invariant measures on S. Here K(#) is the 
Kolmogorov-Sinai entropy of #.(13) 

In the following we shall consider the interaction function 
~b(x)=-/?ln liOxFIEULI (where IlOxFlEU~ll is the norm of the tangent 
map of the transformation F restricted to the unstable subspace E~) and 
the corresponding equilibrium Gibbs states #r Note the naive thermo- 
dynamic analogy: /3 is an inverse temperature, F( /~)=-P(~) /~  is the 
free energy, with P(~)=P(F, qb=-/31n ]tDxFIE~I]), while K(#p) is the 
entropy, and the maximal Lyapunov exponent 

2+ (#~) = f d#~(x) in IIDxF] Eu~]I (2.2) 

is the internal energy. 
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In the literature there are two different ways of computing the free 
energy by numerical experiments: 

1. A thermodynamic approach via the computation of the free 
energy. The pressure is derived from the generalized Lyapunov exponents 
L(q) defined a s  (3) 

L(q) = }im~ llnt f dp(x) ]lOxUlg~ll q (2.3) 

where p is the physical measure singled out by the time averages in real 
numerical experiments. 

L(q) is a convex function of q and in the limit q ~ 0 one has 

2+(p) = lira dL= lim L(q) 
r dq q~O q 

In the invariant sets of Axiom A systems, the L(q) are related to the free 
energy via the relation (~'9) 

L(q) = P(1 - q) (2.4) 

By using (2.4) and the variational principle (2.1), one can obtain the maxi- 
mal Lyapunov exponent o f / ~  as 

dP dL 
2+(#a) = d[3-dq q=,_~ 

and thus the Kolmogorov entropy via the thermodynamic relation 
K(/I~) = P(/~) +/~)L + (kta). 

2. A statistical approach via the computation of the Gibbs states. 
Axiom A attractors are given by the closure of the fixed points of F n for 
n>~0/2) It is therefore possible to approximate the Gibbs states by 
weighted delta function concentrated on the points z~ such that z~ = Fnzg, 

d/l~(x)= lim Z,(fl)~3(z,-x)exp(-fllnllD~,FnlE~V, lt)dx (2.5) 
n ~ o ' o  

,7 i 

where 

and 

Z,(fl)= ~ exp(-flln I]Dz, F'I u Ez~l[ ) (2.6) 
z i  

P(/~) = lira 1 In Zn(/~) 
n ~ o o  n 
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Fig. 1. (a) HD(f i )  versus # for the bake r  t r ans fo rmat ion  wi th  c~=0.3, 7a=0 .1 ,  and  7b=0.4 .  
u ST The tangent  m a p  has  noncons t an t  de te rminant .  The three lines are H D  H D  and  H D  . The 

T ~ ST ~ ST ST S d d m a x i m u m  of l i D  is d H = d H - - 1 = 0 . 4 6 ,  so lu t ion  of the equa t ion  7a" + ? b "  = 1 .  One  sees 
tha t  the m a x i m u m  of H D  U is equa l  to 1 and  is reached for # = 1, as in all the fol lowing cases. 
(b) As for (a), bu t  wi th  c~ = 10 -4. In this case the funct ions H D  sT and H D  U become very 
peaked  a round  their  max ima .  The m a x i m u m  of H D  sT is reached for/3, which tends to 0 (max-  
i m u m  en t ropy  Gibbs  s ta te)  when e ~ 0. No te  tha t  the Hausdor f f  d imens ion  of the invar ian t  
set is the same as in (a), since one has  the same ?a and  ?:b values. 
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This procedure has been recently developed in many cases, and has also 
been applied to nonhyperbolic systems, where it is nonrigorous, but seems 
to give good results, (14) assuming that the physical measure p is picked up 
by fl = 1 in (2.5). 

The main results of this section is the numerical characterization of the 
equilibrium states by means of their Hausdorff dimensions or information 
dimensions, HD(f l )=  infs (Hausdorff dimension of J), where J are the sub- 
sets of S of full measure #~(J) = 1. For this purpose we can use the Young 
relation (!6) for invariant sets of C 2 diffeomorphisms F of a surface: 

H D ( p ) = K ( # )  2+(p ) 2--( (2.7) 

where # is any F-ergodic measure on A, and 2+(#) and 2 (#) are, respec- 
tively, the largest and smallest Lyapunov exponent. In the case of the 
physical measure, i.e., p =#~=1, (2.7) becomes the Kaplan and Yorke 
relation (4) for the information dimension: 

2+(p) 
d, = HD(p) = 1 + - -  (2.8) 

12-(o)1 
We have here used the Pesin equality. (17) which states that the Kolmogorov 
entropy of p is equal to the sum of the positive Lyapunov exponents. For 
two-dimensional hyperbolic diffeomorphisms it implies K(p)= 2+(p) and 
P(1)=0 .  

We can compute HD(fl) as function of fl from the L(q) as well as 
from the fixed point approach. Figure 1 shows HD(fl) for the baker's trans- 
formation: 

1 
Xn+l=~)aXn, yn+l=-- y. if y,<<.e 

1 
X,+I='/bX,, y , + l - - l _  (y,--~) if y , > a  

where 0 ~< x,, y,  ~< 1, 7a < 7b < 0.5, and c~ ~ 0.5. In this case we can obtain 
HD(fi) by a direct use of (2.4), since one has a closed form for the 
topological pressure, (8'9) i.e., P(f l )=ln[c t~+ ( 1 -  e)~J (and so for 2+ and 
K) and for the negative Lyapunov exponent. In fact, the periodic points 
of F" are distributed uniformly in the atoms of the partition 
F - " ( [0 ,  1] x [0, 1]) v F ' ( [0 ,  1] x [0, 1]) and a calculation similar to that 
of the Appendix of ref. 8 gives: 

2-(#~) = e P(~)(c~ ~ In 7a + (1 - ~)B In 7b) (2.9) 

4 F o r  a cr i t ica l  d i s c u s s i o n  see ref. 15. 
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We have also computed HD(fl) by means of a numerical algorithm 
developed by G. Gunaratne that gives the fixed points of F n together with 
the tangent map eigenvalues. Figures 2 and 3 show, respectively, the results 
for the Lozi map with n = 2 0  (22,128 fixed points, corresponding to a 
topological entropy hTop = In 22,128/ln 22o = 0.5002) and for the H6non 
map with n =  18 (4261 fixed points corresponding to hTop= 
in 4261/ln 2 Is =0.4643). In all the figures one also sees two other curves, 
the Hausdorff dimensions of the Gibbs states along the stable and unstable 
directions, i.e., HDV(#)=K(#)/2+(#) and HDSV(#)----K(/~)/2 (/~), as 
hyperbolic attractors can be regarded as given locally by the product of a 
continuum (the unstable manifold) times a fractal Cantor set (the inter- 
section of the attractor with the stable manifold). 

Let us now stress some common features of the functions shown in 
Figs. 1-3: 

1. The maximum of the HD v is equal to 1 and is reached for/3 = 1. 

2. The maximum of the HD sT is equal to the dimension dn - 1 of the 
stable Cantorian direction and, if the Jacobian of the transformation is 
constant, it is reached for/3 = dH -- 1. 

15 l 
HD 

1.25 l I 

0.75 

0 . 5  

0 . 2 5  

[ I I 1 

-5.5 -3 -0.5 4.5 7 

Fig. 2. HD(fl) versus for the Lozi map. The three lines are HD, HD U, and HD sT, In this 
case as well as for the Hbnon map the maximum of HDST=dSX=0.4135 is reached for 
fl = d sT, since those maps have constant Jacobian. 
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Fig. 3. HD(/~) versus /~ for the H6non map, as obtained by the Young formula. The three 
lines are HD, HD U, and HD sT. The max imum of HD sT is d sT = 0.273. For/~ ~ oo, HD does 
not vanish and one observes the three asymptotic limits H D S * = 0 . t l ,  HDU=0.70 ,  and 
HD =0.81. 

3. There are no equilibrium states foi" which HD = d n ,  and the maxi- 
mum of HD is reached by a measure different from the physical measure. 

4. In the H6non map HD does not vanish when/3--* oo. We conjec- 
ture that this a consequence of the nonhyperbolicity of the map. 

The shape of the function HD provides a qualitative characterization 
of a large class of dynamical systems, since it is a quantity easily accessible 
to numerical analysis. 

Property 1 is just a numerical check that the numerical agorithm 
works, since the (physical) measure /~= t  is absolutely continuous with 
respect to the Lebesgue measure along the unstable direction, and so its 
dimensionality is one. Property 3 provides numerical evidence for the 
existence of a relevant ergodic measure: the Gibbs state which maximizes 
the Hausdorff dimension HD(/~). Only if the physical measure is uniform 
also along the stable directions does one have that the maximum of HD is 
equal to the Hausdorff dimension of the invariant set S. Indeed, it has been 
shown that generically for F in a C 2 open, dense set (231 

sup H D ( / 0 < d H  
~ M E ( S )  
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We shall prove at the end of section 3 that HD is maximized for fl in the 
interval [d sT, 1]. 

Finally, we conjecture that the degree of nonhyperbolicity of a m a p  
can be characterized by property 4. The limit of HD(fi) for fi ~ oo is a first 
indication of the dimensionality of the measure which lives on the ensemble 
of unstable fixed points with eigenvalue of the tangent map ~ 1. The larger 
the limit, the more important the role of nonhyperbolicity. It is interesting 
to understand if a zero limit value of HD is a necessary condition for the 
uniqueness of the Gibbs states Vfl. For  instance, Fig. 2 show that the decay 
of HD(fl) toward zero is very slow in the Lozi map, which is quasihyper- 
bolic, and which has an infinite Markov partition (19) corresponding in 
statistical mechanics language to infinite-range interactions, but probably 
with such a fast decay that phase transition phenomena cannot be present 
in the generalized exponents, in contrast with those observed in the H6non 
map. (20, 5) 

3, A B O W E N - R U E L L E  F O R M U L A  FOR T W O - D I M E N S I O N A L  
A T T R A C T O R S  

In this section we apply the Bowen Ruelle formula to Axiom A attrac- 
tors S of hyperbolic C 2 maps of the plane. For these systems, there always 
exists a unique ergodic measure # which realizes the maximum in the varia- 
tional principle (2.1). In the following we shall consider the interaction 
functions ~b(x) = - f i  in [IDxFI ExUll and q~SX(x) = fl in []DxFI EStl (where E s 
is the stable subspace at x) with the corresponding pressure functions P(fl) 
and pST(fl), and Gibbs states # ,  and tt~ x. We refer to them as the unstable 
and stable Gibbs measures, since we are computing the pressure along the 
stable and unstable directions at x ~ S. Let us show that # ,  coincides with 
#~T if the Jacobian is constant. In this case the sum of the two Lyapunov 
exponents (2 + and 2 - )  is equal to the logarithm of the Jacobian. One 
easily gets 

P(fl) = sup [ K ( # ) - - f l  f d#ln IIDxFnl EU~ ll ) 1 
# 

= K(tt,) - ft. 2 + (#~) 

= K(#~) + f l - 2 -  (tt~) - ft. ln(j)  (3.1) 

It follows that the "stable" pressure is related to the "unstable" pressure by 

p(fl) = pST(fl) _ fl In j (3.2) 

5 See also ref. 21 for a discussion of nonhyperbolic attractors. 
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since 

PsT(fl)=P(F;flln llDxFIESll))=K(#ST)+/3.2-(#s~ T) (3.3) 

One also has from the uniqueness of the Gibbs states 

#~ = #~T Vfl ~ 91 (3.4) 

Let us stress that this is not the case if the Jacobian j is not constant, 
as, e.g., in the baker transformation, where one sees that P ( f l )=  
ln[c~ ~ + (1 - c~) ~] and pSX(fl) = - ln(7~ + 7g). 

We can now use some known results of ergodic theory. In particular, 
McCluskey and Manning (23) and Pesin (17) have extended the Bowen- 
Ruelle formula for repellors to the pressure computed along the stable 
directions, obtaining 

P(fl= 1)=0 ,  PST(fl-=dSW)-=O (3.5) 

where d sT = d R - 1 is the Hausdorff dimension of the stable direction of the 
attractor. As consequence of our previous arguments, we have 

i.e., 

F(fl = d s'r) = In j (3.6a) 

L(1 - d  HsT)= - d  sx In j (3.6b) 

where we have used (2.4), which links the free energy F(/~)= -P(fl)/fl to 
the generalized Lyapunov exponents L(q). Note also that (3.5) implies 
pST(1)= - I n  j, which simply means that the contraction rate of a uniform 
square of points around the attractors is given by the logarithm of the 
Jacobian. 

The temporal intermittency (3) of the chaotic degree in some sense 
makes the information dimension different from the Hausdorff dimension 
of the attractor. In fact, if L(q) = 2q, i.e., in the absence of temporal inter- 
mittency, the free energy would be linear in the temperature fl I and the 
physical measure would become "uniform" along both unstable and stable 
manifolds, so that dH = HD(/~=~).  This, however, is a very exceptional 
case. In general, we can expand L(q) for small q as 

L(q) = )~q + �89 + O(q3) (3.7) 

and thus compute the correction to the Kaplan and Yorke formula for the 
information dimension dz = - 2 + / 2  - of the stable manifold in terms of a 2, 
where ~2/t is the variance of the finite-time t fluctuations of the Lyapunov 
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exponent/3) From (3.6b) we obtain the following approximation up to the 
order O(1 - d S T ) 3 :  

G 2 
di ~sT _ d , +  ~ (d, + 2d~) ( 3 . 8 )  

We have checked that for the Lozi map x,  +1 - -a  Ix,[ + Yn + 1, y ,  +1 = bxn, 
with a = 1.7, b = 0.5: 

2 = 0.4702 +_ 0.0001, cr 2 = 0.068 + 0.001 

d~-- 1.404, dH = 1.413, approximation (3.8) = 1.410 

Moreover, the approximation seems to hold also for the Hhnon map 
x ~ + l = a x  2+ y , +  1, y , + l = b x ~ ,  which is not an Axiom A system, where 
we have found for a = 1.4, b = 0.3: 

2=0.4192+0.0002,  o2 = 0.136 + 0.001 

d~= 1.255, d H = 1.273, approximation (3.8)= 1.278 

We finally want to prove that the fl-value which maximizes HD is in the 
interval [d sT, 1 ]. Let us in fact recall that the pressure P(/?) and pSr(fl) are 
analytic convex non-increasing functions of /3, vanishing respectively for 
fl--- 1 and for fl = d sT(2 '23) .  Indicating the derivative with respect to fl with 
8~ we thus obtain: 

8~HD(fl) = (8~p(~)) 2 (0~pST(/?))2 

This implies that @ H D  is strictly positive when /3 sT ~<d H , and that 8~HD 
is strictly negative, when /?>~ 1. For the continuity of 8~HD, we can 
conclude that the value/3* maximizing HD(fi) should belong to [d  sT, 1 ]. 

4. C O N C L U S I O N S  

We have illustrated the theory of Young and of McCluskey and 
Manning on the information dimension, applying it to low-dimensional 
strange sets. We have described two practical methods based on the ther- 
modynamic formalism to compute the information dimension HD(#t~ ) of a 
continuous set of ergodic measures, the Gibbs states #~ related to an inter- 
action function ~b(x) = - f i  in ]DxF[. We have provided numerical evidence 
that the maximum of HD does exist for hyperbolic maps with constant 
Jacobian and for the baker's transformation as well as for the nonhyper- 
bolic H6non map. In all those cases, the Gibbs state maximizing HD(/~) 
differs from the physical measure #/3= 1, which maximizes only HDU(fl). 

The main result of this paper is the application of the Bowen-Ruelle 
formula to compute fractal dimensions of hyperbolic attractors. It makes it 
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possible to improve the Kaplan and Yorke formula in two-dimensional 
mappings, by taking into account the variance of the finite-time fluctua- 
tions of the Lyapunov exponent besides its average value. 
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