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For a mapping of the torus T 2 we propose a definition of the diffusion 
coefficient D suggested by the solution of the diffusion equation on T z. The 
definition of D, based on the limit of moments  of the invariant measure, 
depends on the set f2 where an initial uniform distribution is assigned. For the 
algebraic automorphism of the torus the limit is proved to exist and to have the 
same value for almost all initial sets f2 in the subfamily of parallelograms. 
Numerical results show that it has the same value for arbitrary polygons .62 and 
for arbitrary moments. 
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1. I N T R O D U C T I O N  

The transport in chaotic regions of phase space of Hamiltonian maps or 
flows is quite relevant for many physiucal systems ~ (a confined plasma, 
the beam of a particle accelerator, a spinning planet or a galaxy). A theory 
of transport is still missing due to its extreme complexity even for systems 
with a small number of degrees of freedom. ~2.g~ Indeed if we consider an 
integrable map of the plane sufficiently perturbed, then a variety of new 
topological structures appear, such as Cantoris issuing from the breakup of 
KAM curves, chains of islands, chaotic regions issuing from homoclinic 
and etheroclinic intersections of hyperbolic manifolds, with replicas 
continuing ad infinitum under scale changes. 

The picture simplifies somewhat when the perturbation strength is 
increased since the measure of the "chaotic regions" increases, but unlike 
the limit of vanishing perturbation where the measure of the KAM curves 
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equals the measure of all orbits, one cannot show that the measure of 
surviving islands converges uniformly and rapidly to zero. 

The description should be made on a local basis with "transport coef- 
ficients" varying in phase space, to take into account the coexistence of 
regions of stochastic and regular motion, where no diffusion can occur. ~9~ 
The symmetries of the unperturbed system determine the choice of the 
coordinates at least for moderate perturbations. 

If an area-preserving map is described by action-angle coordinates, 
j ~  R, 0 ~ T ,  it is usually believed that the angle, being a fast variable, 
randomizes on a time interval small with respect to the time scale on which 
the action shows an appreciable diffusion. (1~ As a consequence it is quite 
reasonable to assume a Markov property for the action j and to compare 
the asymptotic distribution of j with the solution p(j;  t), of a Fokker-  
Planck (FP) equation for an initial distribution p( j ;0) .  The diffusion 
coefficient D(j )  has to be determined from the knowledge of p(j;  t) by 
solving an inverse problem. A simple solution is found when D ( j ) =  D is 
constant. Given a uniform initial distribution on a set /2 c ~ x ~, then 
p(j;  0) depends on g2 and so does p(j;  t), given by the convolution of 
p(j;  0) with a Gaussian. The simplest way to recover D is to compute the 
even moments, recalling that 

q! 1 q ~ l/q 
O =  (-~q).t lirn ? <[j ( t ) - - j (O)]  2 >QI (1.1) 

The equality holds for any t for a FP equation with constant D; the limit 
is necessary if we assume that the FP equation is only asymptotically 
(in t) satisfied. 

Usually the diffusion coefficient is defined by the second moment for 
a specific domain /2. However, its existence is not sufficient to determine 
the statistical properties of the process; to this end the higher moments 
should be considered and their independence from the set s'2 verified. 

We notice also that the solution of the Fokker-Planck equation 
depends on the manifold on which the process occurs and accordingly 
change the relations between the asymptotic behavior of the second or 
higher moments and the diffusion coefficient. For the case of the ql -z torus 
the diffusion coefficient is related to the moments of order q by 

D =  lira - - l l o g l ( j q ( t ) > a  - ( j q ( ~ ) > a l  (1.2) 
t ~  q- :r [ 

where /~L denotes the Lebesgue measure. 
We consider here a map definited on the T'- torus and propose the 

above definition of the diffusion coefficient, suggested by the asymptotic 
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behavior of the solution of the Fokker-Planck equation. Even in this case, 
if the limit exists it should be the same for all moments and almost any 
initial domain f2. 

The main result of this paper is that for the total automorphism the 
limit exists for the second moment q =  2 and for a wide choice of sets 
s  2 has the same value D = 2 1 o g 2  [~UL(3")/2rt] 2, where log2 is the 
positive Lyapunov exponent. More precisely the limit is proved for almost 
all parallelograms of q1-2. Numerical simulations show the result is still the 
same if other moments q ~-2 are considered and /2 is a polygon. In this 
respect it is more general than the result I'm for the same map of the 
cylinder, since in that case the existence of the limit is proved only when 
I2 = T 2, the invariant set of the map. 

A further step would be to analyze the distribution in both the angle 
and the action by considering the diffusion matrix, knowledge of which 
allows one to obtain the diffusion coefficient for any other dynamical 
variable by a simple change of coordinates in the FP equation. 

To conclude we observe that the analysis of the diffusive behavior on 
compact sets is physically justified. Indeed, area-preserving maps create 
invariant regions, such as the annulus between two invariant curves, where 
the dynamics can be chaotic and an analysis of diffusion is justified. In this 
case the approach to equilibrium is a relaxation process, whereas for 
noncompact sets, such as the cylinder, a true diffusion takes place. With 
some abuse of language we use the word diffusion in both cases throughout 
this paper. 

2. DIFFUSION COEFFICIENTS 

We consider first an area-preserving map of the cylinder R x T, where 
3 = R/Z, so that pL(T) = 1. The diffusion coefficient is defined by 

Dds  lim 1 . . , ,, - +~_ ~nn E a ( ( J , , -  Jo)-) (2.1) 

where j,, ~ R is the action j iterated n times, and Ea denotes the expectation 
value computed with respect to initial data, uniformly distributed in a 
domain 12 c R x T. (Having normalized the angle 0 to [0, 1 ], the action is 
defined by j= ~'p dq). Such a definition is motivated by an underlying 
assumption that the angle randomizes rapidly so that a diffusion equation 
asymptotically holds 

&p 32p 
D (2.2) 3t &j2 
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where D is a constant coefficient. Given a uniform initial distribution on 12, 
then the initial distribution of the action, which we denote Jo, is given by 

1 
P(Jo; 0 ) =  P c - - ~  J'~ dO~ ~a(Jo, 0o) (2.3) 

where/a L is the Lebesgue measure and Y'a is the characteristic function of 
the set f2. P(J0; 0) is itself uniform only if 12 is a direct product such as 
f2 = [a, b] x T. Assuming (2.2) holds for t>~0, the distribution o f j  at time 
t reads 

djo exp[ - (j-jo)'-/4Dt] (2.4) 
p(j; t) = f Jn (47tDt)l/2 P(Jo; 0) 

and for the second moment one has 

(j'-(t) )~ = IR dj JZP(J; t) = 2Ot + (j2(O) ) a (2.5) 

where (jz(o))a=~RdjoJ2op(jo;O)is the second moment of the initial 
distribution. As a consequence we can write 

D =  lim 1 ,4 +~ ~ ( [ j ( t )  -- j(0)]- '  )~  (2.6) 

If (2.2) holds for t>~0, the limit is unnecessary in (2.6); its presence is 
required if (2.2) is only asymptotically satisfied. 

The existence of the limit (1.1) even for the simplest models like the 
standard map 

~j,, = j ._ ,  + g(0,, _ ,) 
M: (O.=O,,_L+j. m o d l  

(2.7) 

where g(O) is a periodic function of -g of zero mean, is not yet known. 
In this case if we choose f2 = T z the r.h.s, of (2.1) assumes a simpler form 
since -g2 is an invariantg set of the map. As a consequence one has 

l,m' [(n i 
, , _  + ~  ~ E~,. g(Oj) 

) 

= 5  E.2(g ' (0))  + E~r2[g(0) g(O,)] (2.8) 
/ = 1  

where 01=[M~(jo, Oo)]o. W e N ,  and the existence of the diffusion 
coefficient is ensured by the convergence of the series, namy by a suitable 
decay of the correlation functions Eo[g(0)g(0~)].  
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A necessary condition for the existence of a limit process described by 
a FP equation is that D2(f2) does not depend on 12. Moreover, the 
coefficients 

D,q(f2) ~ ql __ } '/q = ~ iim 1 EoE(j,_jo)2q] 
- ( ( 2 q )  . . . . .  n q 

(2.9) 

corresponding to the even moments should be independent of q, while the 
coefficients D2q + I(~QTI) related to the odd moments should vanish. 

If the domain on which our map is defined is compact like a 2-torus 
T 2, the definition of the diffusion coefficient must be changed. Indeed the 
solution of the diffusion equation (2.2), letting T = 1~\7/, now reads 

k = l  

The coefficient D is related to the moments of the distribution 

( 2 x )  - 2  
D =  lim - - l o g l ( j q ( t ) ) a - ( j q ( ~ ) ) a [  (2.11) 

t ~  + ~  l 

for almost any O. This suggests a definition of the diffusion coefficient of 
the map according to 

Du(s = lim 
(2x) -2 
- - l o g  IEa(jq,,)-Ea(jq)l (2.12) 

In order to take the angle relaxation into account, we consider the FP 
equation for the distribution function in both variables 0, j. Assuming that 
both diffusion coefficients are constant, the FP equation reads 

ap D ~2p --~= -~+ D 820802 (2.13) 

defined on the torus T 2. The solution corresponding to an initial uniform 
distribution in a set s c-g2 

.Ta(Jo, 0o) P(Jo, 0o; 0) = (2.14) /~L(O) 

is given by 

p(j, O; t) = Iv djo G(jl Jo; t) Iv dOo (7(010o; t) P(Jo, 0o; 0) (2.15) 
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where due to separability (7 is the Green's function of the one-dimensional 
FP equation defined on the one-dimensional torus 

(7(010o; t)= 1 +2 L exp[-/3(2rtk) 2t] cos 2xk(O-Oo) 
k = l  

(2.16) 

and G(jlJo; t) is given by (2.16) changing 0, 0o, /3 into J, Jo, D. 
If the equation is defined on the cylinder, then the first integral in 

(2.15) is taken on R and G is given by 

1 [ (J-J~ (2.17) 
G(j]jo; t )=  (4xDt),/2 exp 4D-7 _1 

Assuming /3 ,> D, we see that for t >>/3-t 'we have (7 ~ 1 and therefore 
the distribution function (2.15) is identical to (2.10) and satisfies the 
one-dimensional equation (2.2). The integrated density p(j; t) 

p(j; t ) = j "  dO p(j, O; t) (2.18) 

satisfies (2.2) and agrees with (2.10) if the phase space is -g2 and with (2.4) 
if it is R•  

Referring from now on only to the diffusion equation on the torus 71-2, 
we introduce the measure ~ whose density is p(j, O; t) given by (2.15) and 
corresponds to an initial uniform density on /2. The measure of a set B, 
denoted ~(B[O; t), is given by 

1 
/l(B I.f2; t)=/,L~-I2 ) fv2 djdO ~n(J, O) 

XI~r~.djodOoG(jlJo;t)d(OlOo;t)~a(jo, Oo) (2.19) 

where/~(BI [2; 0)=  ~L(B m [2)//~L([2). The integrated density can be written 
a s  

f .  

p(j; t)dj=Jv d#(j, 01/2; t)=/1(I-j, j+dj] x TI[2; t) 

where the integration on ~- refers to the angle 0. Its moments read 

(2.20) 

(j~(t))a=Ivdjj~p(j;t)=f~r, jqdl~(j, Olf2;t) (2.21) 
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It is evident that for t --* ~ the measure tends to /JL(B) and the integrated 
density to a constant p(j; ~ ) =  1. For almost all choices of B and f2 the 
difference between #(BID; t) and/a t (B)  is bounded above and below by a 
constant times exp(-4x2Dt) .  Letting B be a direct product, we have 

D =  lim ( 2 n ) - ' l o g  I~([a,b]xTl[2;t) , ~  ~ - ~  b - - a  1 (2.22) 

and for a = j ,  b = j +  dj in (2.22) we have exactly the integrated density - 1, 
within the bars. 

For an area-preserving map the corresponding measure is given by 

/aL(B ~ M"[2) 
I~( B [ [2; n ) -  (2.23) 

~L(s'2) 

As a consequence the moments in its case are given by 

1 
f djo dOo j,qxa(jo, 0o) Ea(J~) = ~L---~- ~ ~-2 

_ 1 f .L[~) f~ J M ' q ~ l ~ J ,  2 ~,djdO ;qf  t; 0 ) =  jqdp(j, Olf2;n) (2.24) 

where j,, = [M"(jo,  0o)]j and the change of variables (j, 0) = M"(jo, 0o) is 
made in the second step using the invariance of the Lebesgue measure 
under the action of the map M. With this definition of the moments the 
diffusion coefficient is given by (2.12). The existence of the limit is related 
to a convenient decay of the correlation function of jq and Y'a(0, j). If the 
limits exist for all moments, then a weak convergence of the measure 
ll(BlI2; n) to #L(B) as n--* ~ is implied. The convergence is exponentially 
fast, too, namely for a large choice of the sets B and ~ the correlation 

IpL(B C~ M"(f2)) -/~t_(B). #c(D)I (2.25) 

must have an exponential decay. As a consequence we can write (2.22) 
simply by changing t into n. 

A well-known result in ergodic theory states that the convergence in n 
as n--* +oo of the correlations (2.25) cannot be uniform with respect to B 
and D. The existence of the above limit (2.22) is suggested by numerical 
evidence; moreover, for the one-dimensional map it has been proved that 
for a large choice of subsets of [0, 1 [ the limit exists and the decay is 
exponential (see Appendix A). 
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3. EXISTENCE OF D2(C~) FOR THE A U T O M O R P H I S M  OF 
THE TORUS 

In this section we state the main result concerning the existence of 
D2~((2) for a particular mapping M, the toral automorphism. We prove 
that the diffusion coefficient D2(I2) corresponding to a uniform initial 
density p(j, O; O) = Xa(j, O)/l~L(g2), where (2 c T 2 is a parallelogram on the 
torus, exists for almost all such sets and has the same value. The proof is 
given by using the explicit expressions for the moments Ea(j,u,), which have 
been written also when/2 is an arbitrary polygon. 

The map M we consider is the algebraic automorphism of the torus 
7/.2 , known also as "Arnold's cat map": 

1 0 ~-2 
M ( ~ ) = ( K K  1 1 ) ( j )  mod (3.1, 

for K~Z\{0};  I K + 2 1 > 2  and ( O , j ) e T  2. We denote by 2 the largest 
eigenvalue of the map, so that log 2 is the positive Lyapunov exponent 

2 + K +  [K(K+ 4)] ~/2 
,~ = ( 3 . 2 )  

2 

Although this mapping has good ergodic and statistical properties, the 
exact evaluation of D2(I2) is rather complicated. Also the numerical 
computation of the moments Ea(j,q,) involves some difficulties because the 
hyperbolic character of the map implies a fast loss of information. For 
instance, if K =  1, then the largest eigenvalue (3 + x/~)/2 is bigger than 2 
and the loss of accuracy is more than one bit per iteration; with ordinary 
accuracy ~ 50 bits the number of meaningful iterations is less than 50 and 
iterating 2000 times, as we did, demands a number of significant digits at 
least 40 times higher. 

In this respect an analytic result is relevant to guide the numerical 
investigations; for almost all initial sets s belonging to the family of 
parallelograms the coefficient D2(-Q) exists and is 2 log 2 (2rc)-2. This is not 
surprising if we keep in mind that D2(f2) is defined by (2.12); in fact the 
argument of the logarithm is the correlation between the two functions 
F~(O, j )= j  p and F2(O,j)=Xa(O,j) .  When the functions F~, F2 are 
sufficiently regular (for example, H61der continuous), then an upper bound 

"2 .3 of the form ),-2" to the correlation IEQ(J,,)--En(J~ )1 can be given (indeed 
2 2 is the eigenvalue of the Perron-Frobenius operator closest to 1). 
Whenever the functions F~ and F2 are "piecewise-H61der" on finitely many 
subdomains M~ with piecewise smooth boundary and whose union is the 
torus (and the observable F2 belongs to this class), then the symbolic 
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dynamics technique can be applied as well, as first pointed out in ref. 12. 
However, in this case and for our system, the dominant term of the decay 
of correlations obtained from symbolic dynamics is given by the total 
measure of the elements of the (iterated) Markov partition at "time n" 
intersecting the boundaries of the M; and therefore the upper bound to the 
decay of correlations is 2 - "  rather than 2 -2" . This upper bound for the 
correlation decay is considerably improved by our main theorem, which 
gives again 2-'-". A lower bound 2--'" is also proved from which the 
existence of the limit defining D2(f2) easily follows. One could notice that 
if I2 itself is a Markovian rectangle, the (local) H61der property is 
automatically verified inside it and we recover an upper bound 2-2,, to the 
correlation decay. 

The nonexistence of the limit for some sets I2 can be understood by 
considering the one-dimensional map M(x)=2xmod 1. We define the 
diffusion coefficient D2(~) as in (2.12), replacing M by M -~. Letting .(2 be 
any finite or countable disjoint union of closed intervals in [0, 1 [, it is easy 
to produce examples of domains f2 for which D_,(t2) is ~ ,  and the decay 
of correlations is faster than exponential. We refer to Appendix A for the 
precise statement of this result. 

The technique we use relies on the geometric properties of parallelo- 
grams and involves two steps: first we give an explicit expression for the 
correlation integral, and second we allow the movement of the vertices of 
the parallelogram in a subset of Lebesgue measure arbitrarily close to 1 
in order to prove the existence of the desired limit. This result obtained 
for a large class, in a measure-theoretic sense, of parallelograms and for a 
density function shows that our definition of the diffusion coefficient is 
meaningful. 

Letting x = (0, j)  e T 2, we consider two points x~, x,  e T-" on the torus 
and Ax ~ 7I -2 in order to build the parallelogram whose vertices are given by 

xl,  x l + A x ,  x2, x,_+Ax (3.3) 

We consider then two sets A ~_~-' and B ( x 2 ) _ T  2 of measure 1: 

/IL(A ) = 1, l~t_(B(x2)) = I (3.4) 

and a family of parallelograms obtained by choosing Axe A and x I e B(x2). 
This means that for any given vertex x2 one can choose the other two free 
vertices on/~,-almost  any point of the torus. 

T h e o r e m .  There exists a #L-measurable set A ~_ T-', with p.(A) = 1, 
and for every x2 ~ T 2 a ~L-measurable set B(x 2) __ 1-2, with ~ttL(B(x2) ) -----1, 
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such that VAx E A and x~ e B(x2), the limit defining the diffusion coefficient 
on the parallelogram (3.3), with vertices in the covering plane, exists and 
is twice the Lyapunov exponent times 1/4rc2: 

1 i ~ j  2 f, oo) D,_(-Q) =,,_lim+~_ - 4---~,n log ,. dp(j, Oll2; n ) -  ,_ j'- dp(j, Oil2; 

1 
= 2 log 2.4rt2 (3.5) 

where dp(j, 01,<-2; ~ )  = dpL(j, O)/Pc(T'-)--the factor 1/4• 2 will be omitted 
from now on. 

The previous statement shows that for a random choice of the 
parameters x~, x2, Ax the probability of getting a parallelogram for which 
the diffusion coefficient exists and is equal to. 2 log 2 is 1. The proof  of the 
theorem is lengthy and is described in Appendix B. We also notice that the 
same ideas of the proof  can be applied to even moments  of higher order 
and, more generally, to continuous functions of the only variable j. 

4. N U M E R I C A L  RESULTS A N D  C O N C L U S I O N S  

The result of the main theorem has been numerically checked and 
more generally the existence of the limit (2.12) defining Oq(ff2) has been 

2 . 0 5  I ' ' ' ' I . . . .  I ' ' ' ' I 

1 . 9 5  

Fig. 1. 

* s  I n i t i a l  d o m a i n  

7 T 2 
-o.s 

I i i , i I , , , , 1 , i i i I , , i , I 

5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  

Values of - (l/n) log I Eo(j,~) - Eo(.j2 )1 versus n for an initial domain consisting of 
a parallelogram. For the cat map the Lyapunov exponent is ~0.9624. 
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tested for values of q different from 2 and for arbitrary polygonal domains 
~2. The existence of the limit Dq(f2) related to the integrated density has 
also been checked and it has been found that for any choice of ~ all the 
limits have the same value Dq(s'2)=21og2. The explicit expression of 
Ea(j~) used in the numerical calculations is given by formulas (B.2)-(B.5) 
of Appendix B. The limit was checked with a good accuracy, within 0.1% 
and 0.3%, by considering typically N=2000  iterations, which were 
obtained by workinig with a number of significant digits at least 50 times 
higher with respect to ordinary floating point representation. We report 
here some results for the Arnold's cat map (3.1) with K =  1 for the follow- 
ing choices of f2: a parallelogram, a hexagon, and a pentagon�9 Using the 
explicit relations for polygonal domains, the correlations Ea(jT,) can be 
computed with high accuracy and decay, for large n, in agreement with the 
result of the theorem (see Figs. 1-3). For the second moment the following 
algorithm was used when Q is a parallelogram of vertices Xo, xt ,  x2, x3 
and sides ~ = Xl - Xo = (~o, ~i), q = x2 - xl = (~1o, qj): 

1 
Eo(j ,~)-  Ea( j~  ) -  a22,, + b + c2- z,, 

• [~2oHiofI) '(xl)+e2oHjocrp"(x3) 

-02oF! io~ ' (x ,_J-O,_oHio~"(Xo)]  (4.1) 

I ' , ' ' I . . . .  I . . . .  I . . . .  I 

I Inltiol domoin a~ 

1.95 

0 500 1000 1500 2000 

Fig. 2. Values of - ( l h l ) l o g l E a ( j ~ ) - E ~ ( j ~ ) l  versus n ~ r  an initial domain consisting 
of a pentagon, 
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I . . . .  I . . . .  I ' , , , I ' , , , I / 

2 I 0~ I n i t i o l  dornoin I 

1 . 9 8  

1 . 9 6  I 

1 , 9 4  I 

1 . 9 2  [ - I  , , , , I , , , , I , J , ~ I i , , i I 

0 5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  

Fig. 3. Values of -( l /n) loglE~(j~)-E~(j~)  versus n for an initial domain consisting 
of a hexagon. 

where 

1 
a = (2 - 2-1)2 (K~o + ~ i -  ~j2 t)(Ktfo + ~l i -  ~lj2 - l) 

1 
(2 - Z-  i)2 I-(K~o + ~j - ~i), - ' ) (K t l o  + I1 i - t l i ) , )  (4.2) 

+ (Kilo + t i t -  tb2 -1 ) (K~o  + ~ i -  ~J)')] 

1 
C= ( ) _ ) .  ])2 (K~o+~. i -~J2)(K~lo+~lJ-~lJ) ' )  

and the functions 02 and H i are defined in Appendix B. 
One can observe that  if the constant  a in (4.1) is nonzero,  then the 

moment  can be written as 2 -2' '  t imes an expression whose logar i thm 
divided by n converges to zero as specified in the previous theorem. 

F rom the computa t iona l  point  of view the exponent ial  growth 2" of 
the map  M requires an accuracy of at least )~-N if N i terat ions have to be 
computed.  Integer ar i thmetic  was used represehting the initial condi t ions  
with at least N l o g m  2 digits. 

The dependence of D,,(s on q was also checked. F o r  q = 3, 4, 6 the 
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same value 2 log 2 as for q = 2 was found within the numerical errors, 
which were typically less than 1% for n~2000.  The limit (2.22) for the 
integrated density was also considered and it was still found that Oq(~Q)= 
2 log 2 for a variety of polygonal domains. 

These results suggest that the moments are the same as for a diffusion 
equation, at least for a large choice of initial domains I2, and we are led to 
make the following conjecture. For almost all the initial domains O the 
limits DqOf'2 ) exist and have the same value. The numerical method we used 
can be easily extended with the same accuracy to correlation integrals of 
arbitrary functions of the variable j, integrable with respect to the Lebesgue 
measure on R. Therefore it can be used as a test in order to verify the 
accuracy of other methods to compute correlation integrals. The next step 
of the work presented here is its generalization to other, less trivial 
automorphisms of the torus, such as almost hyperbolic mappings, or 
mappings with singularities, including billiards. In this case, some good 
ergodic properties persist, but the decay of correlations would need a 
careful and deeper investigation. 

APPENDIX  A 

We consider here the endomorphism T of the one-dimensional torus 
[0 ,1 [  onto itself defined by T(x)=2xmod[O,l[, V x e [ 0 , 1  [, and 
compute the limit 

 ,;,Llyl - y )  . , , . I r a  I a . l t  

We have then ~3~ the following proposition. 

P r o p o s i t i o n .  For a given Markov interval the limit exists and 
takes the value log 2, corresponding to the Lyapunov exponent of the map. 

But if we consider a countable union of intervals f2 = U;'~_ ~ [a;, b;], 
with a;<b;<a;+ ~, Vie N, thenCa3~: 

(i) If the condition 

(b~-a~)~ ~ (b;-a,) (A.2) 
i = 1  i ~ l  

is satisfied, the limit exists and takes the value log 2. 

(ii) If on the contrary there holds 

< - a : l =  I ,-a,I IA.gal 
i = 1  i ~ l  
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together with the further constraint 

z b i _ a i  ~,, h 3 _ a  3 ~ " "'i i b T - a ~  
E--g -+  L Z 

i=t i=l 3 i=l 2 
4:0 (A.3b) 

the limit also exists, but its value is 2 log 2. 

(iii) If finally both conditions (A.2) and (A.3b) are not satisfied, so 
that 

L ( b T - a T ) = i ~  L ' " ( b i - a i )  
i= 1 1 ~.--,l~̂ .a~ 

z r  

( b ] - a ~ ) :  E ( b , - a , )  
- =  t I i = 1  

the limit is not finite. I 

The result shows that for a large choice of initial domains the limit 
(A.I) exists and takes the value log 2. In particular, in the case of finite 
unions U'i'= 1 [ai,  b~] of intervals the constraints ag < b~ < a~+ ~, Vi = 1 ..... n, 
define a nonempty open simplex of the rectangle [0, 1[", with positive 
Lebesgue measure on the same space. The undesired condition corre- 
sponding to (A.3a) describes an algebraic surface of codimension one and 
vanishing Lebesgue measure on [0, 1[". In this sense (A.3a) occurs with 
probability zero. 

A P P E N D I X  B 

In this appendix 4 we sketch the proof  of the Theorem. We first denote 
the nth iterate of the tangent matrix ~ of (3.1) by 

\c,, d,,J (B.I) 

and the largest eigenvalue of q5 by 2 =  [ K + 2 +  (K 2 +4K)]~/2/2, so that 
2L = log 2. Moreover,  Vqe N we define the function O: R ~ R given by 

O2q(y) aer v 2"+2 ),2 
= ( 2 q + 2 ) ( 2 q + l ) - E ~ ( y ~ ) - T  V y e [ - l / 2 , 1 / 2 [  (B.2) 

4 From now on we pose (0..j) = (x, .v). 
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where 2q _ E a ( y ~ ) -  I/[22q(2q + 1)], and 

02q_ l(Y) de_r yZq+ I 1 
( 2 q + 1 ) E q  (2q+l)2q.22q'y v y e r - 1 / 2 , 1 / 2 r  (B.3) 

both periodically continued with period l on R. 
We have then the following lemma, whose proof  relies on an 

application of the Gauss -Green  formula: 

L e m m a  B.1.  L e t / 2  c T 2 be a polygon with p sides whose vertices 
in the covering plane are numbered counterclockwise, with coordinates 
(xj, yj) e T 2, Yj = 0, 1 ..... p -  1, (xp, yp) = (Xo, Yo). Then the moment  of 
order m is given by 

1 p - - l  
Ea(Y'~)=Eo(ym)+ItL(/2)c" ~ ~,,,(C, Xq+l +dnyq+l;C,Xq+d, yq) 

q=O 

�9 (Yq+ l - Y q )  

l p--I 
= E ~Jm(CnXq+l+d,,Yq+l;CnXq+dnyq) E a ( y m )  liL([2)dnq=O 

�9 (Xq+,  - x q )  (B.4) 

where we set, Ya, f le  I~, 

I ~  O,,,(fl) if a #- fl 
~',.(~; P) := /~ I (B.5) 

( ,O'(ct)  if a = fl 

R e m a r k  n .2 .  The above lemma can be generalized to a countable 
/2 ~ /2;, w i th /2~c  T2, and by replacing the union of disjoint polygons = U,-= j 

observable ym with any other function g(x, y)  = g(y)  e LI(T2) .  (13) 

The existence of the limit (2.12) will be proved by taking /2 as a 
parallelogram�9 In this case the expression (B.4) for the moment  of order m 
can be rewritten in a more compact  form. 

kemma B.3. By defining Hj as the linear projection along the j axis 
in R 2, for a paral lelogram /2 of vertices Xo, x~, x2, x3e-lT: and sides 

= x, - Xo = (4o, 4i), q = x z -  xl = (r/0, r/j), the moment  of order m e N at 
time n e I%1 is given by 

1 
Ea(  y,7 ) = E a ( y ~  ) 

(c .G + d.r + d.r/j) 

x [O . ,on jo r162  

-O,,oHjoO"(x2)-O,,,oHjoO"(Xo)] l (B.6) 

822/75/1-2-12 
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We now confine ourselves to the second moment ,  by introducing 
- - f o r  simplicity's sake - - the  function 69(.t,) = O2(y) = y4/12-) , ' - /24 ,  
V.1,e [ - 1 / 2 ,  1/2[, which coincides with 02,  up to an additive constant  not 
involved in (B.6). Let us further define a parameter  t e [ -  t t ~, ~[, and, for 
fixed t, the function 

d , :  [ _  ~ 1 l ~,_~[ , R  
- o n t o  

given by 

A,(y)~e~O(y+t)= -O(y)=O(y+tmod[-~ , �89  y e [  - I  j~,_~[ 

(B.7) 

which can be periodically cont inued--wi th  period 1 - -on  R as a C 2 
function, as a difference of C 2 functions. Apart  from the case t = 0, where 
the function A,(y) is trivially constant,  equal to zero, a close analysis of the 
graph of 3,  (Fig. 4) leads to the following lemma, which is crucial in the 
proof  of the Theorem. 

L e m m a  B.4. For  any fixed t e l - � 8 9 1 8 9  tV = O, any interval  l C  R of 
given length e > 0 such that ~ < (9/2t2)lt[ has an inverse image through A, 
in [ _ � 8 9  ~[, A;I(I), whose Lebesgue measure admits the upper  bound 
ItL(ATl(I))<~8(~/ltl) I/z. | 

0.004 

0.002 

-0.002 

- 0 .004  

I i 

,~(y) 

_ ~ I+ - 
Y t 

- 0 , 5  0 0.5 

Fig. 4. Graph  of the function A~(y) for t =0.25. 
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We are now ready to formulate the main lemma. 

kemma B.5. V 6 ~ ] 0 , 1 [ ,  Vx_,eT-', and u  with 6 ~ ] 0 ,  I [  
fixed, 3 a Lebesgue-measurable set B(6) _~ T-' of measure t~L(B(6)) >>. 1 -- 6 
and 3 a Lebesgue-measurable set B'(6, x , , 6 ' ) ~ T - '  of measure 
I.tL(B'(6, x, ,  6'))~> 1 - -6 '  such that VAxeB(6) and Vx z ~B'(6, xz, 6') there 
holds 

1 
3 lim - - l o g l O 2 [ H j o O " ( x , + A x ) ] - O 2 [ H j o O " ( x , )  ] 

- -O'-[ l - ( /~176 i (S.8) 

Before giving the proof of the lemma, we want to point out the 
geometrical meaning of the result. 

R e m a r k  B.6. Notice that whenever no one of the vectors ~ and 11 lies 
along the stable direction then, for large values of n ~/%/, the denominator 
in (B.6) has the asymptotic behavior (c,,~o+d,,(j)(c,,qo+d,,qj)~2 2''. 
On the contrary, if one- -and  only one- -o f  those vectors is oriented along 
the stable direction, the previous asymptotic relation is replaced by 
(c,,~o+d,,~i)(c,,qo+d,,qj)~ 1. In the first case the diffusion coefficient will 
be expressed by the following limit: 

- lim 1 log IEa(y ' , ' , ' ) -E " ,'" - ,~t3 ~)1 

= 2 1 o g l R F - l i m  l-logiO,,,oHjoO"(x~)+O,,,oHjoO"(x3) 

- o , , , o  R i o  O"(x , . )  - O,, ,o H~o r 

whereas in the second case we have 

(B.9) 

- lim 1 log  I E e a ( y ; i ' ) - E o ( y ' ~ ) l  
n ~  + oz, ] ' /  

= -  tim lloglO,,,oHioO"(x,)+O,,,oHjoO"(x3) 
- . O , , ,  o H j o  4 ,"(x2)  - O,,, o / l J  o o " ( x o ) l  (B.10) 

The statement of Lemma B.5 guarantees that for a random choice of the 
parameters Ax, x~, x 2 the probability that the diffusion coefficient exists for 
the parallelogram of vertices Xo=Xt + Ax, x~, x2, x3 =x_, + A x  and takes 
the value 2 log 121 is arbitrarily close to one. We point out that the set of 
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Ax ~ B(6) along the stable direction has zero Lebesgue measure; moreover, 
for fixed x 2, the set of x~ E B'(6, x 2, 6') such that the vector x2 - xl is along 
the stable direction is in turn of zero measure. 

Proof of l_emma B.2. With the previous notation, let us define the 
following quantity, which is a particular value of the parameter t intro- 
duced in (B.7) especially adapted to study the function in the logarithm 
of (B.8): 

t ~f Hjo ~"(Ax)  m o d [  - 1/2, 1/2[ 

= c,,. Ax + d,,. zly m o d [  - 1/2, 1/2[ 

=IljoM"(Ax)mod[-1/2, 1/2[~  [ - 1 / 2 ,  1/2[ (B.11) 

We will require that Itl > e,,, where e,, = v/n k, with v > 0 and k > 1 constants 
which will be determined in the following. This prescription will follow 
from a choice of Ax =der (/iX, Ay). 

We also define e~,=v'/n k', where con v ' > 0  and k ' >  1 will be 
determined in such a way that 

9 
2e', < ~ i  e,, Vn~N (B.12) 

Let us define the set 

cdef C(k , v )=  0 M-"({(a,b)~T2/a~[ - l  l = _~, i [  and Ibl < e , , } ) c  T 2 
n =  1 

(B.13) 

It is easy to see that /aL(C) -.~ Y'.,, = ~ e,,. 
We now introduce the complementary set B =dcr Ta\C,  and assuming 

that Ax ~ B, we have that 

Vnel~:  t=FljoM"(Ax)=c,,Ax +dbAymod[-�89 �89 

satisfies the condition Itl > e.. 
We fix x2 e ~-z and define E.  = O[IIjo Mn(X2 + AX)] - -  0[17jo Mn(X2)]. 

It is easy to see that the condition 

E . -  e;, < O [/-/y o M"(x  t + A x ) ]  - 011-1io Mn(x! )] < E .  + e;, 

will take place for a set of values of x, ~ T 2 of measure at most  

(B.14) 

8 (2e~----2'] ~/2 (B.15) 
\ e,, / 
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This set must be discarded in the choice of the initial da tum x~. We now 
define the set C' c T 2, which is the union over n e 1~ of the sets of points 
satisfying condition (B.14). The measure of this set is clearly bounded by 

8(2':,) '': 
. = I \ • , ,  ] 

The set C '  depends on the sequence e,,, i.e., on the parameters  v > 0 and 
k > 1, on the choice of x 2 E T 2, and finally on the sequence ei ,--namely the 
parameters  v' > 0  and k ' >  1--satisfying the condition (B.12). 

If we now introduce the completementary  set B ' = d e f - r 2 \ C  ' and 
arbitrarily fix x~ ~ B', we have that  Vne I~ the following bound holds: 

I O [ H j o M " ( x ,  + A x ) ]  --  {g[/-/jo M " ( X l )  ] --E,,  I ~>/3~t (B.16) 

Since by the periodicity of the function O we can replace M with q~ in the 
preceding expression, the left-hand side of (B.16) coincides with the 
argument  of the logari thm in (B.8). This argument ,  which also admits a 
trivial upper  bound,  can go to zero s n ~ +oo slower than v'/n k', so that 
the limit in (B.8) will be zero. 

We now show that  be a suitable choice of the parameters  k, k' ,  v, v' 
the measure  of the sets C and C'  can be made arbitrarily small. 

The condition (B.12) can be rewritten as 2(v ' / nk ' )<(9 /2  '2) v/n k, 
Vn~t~, so that (B.15) will take the form 8[(2v ' /nk ' )nk /v]  1/2. Then we 
simply have to take 

9 6 
k >~ 2, k'  >>. k + 4, v' < ~--fS v, v<--~rc. (B.17) 

in order to get that: 

(i) (B.15) reads 

\ v } n Ik'-~l/-----~-<8 n-5, Vnel%l 

(ii) The measure of the best B is bounded by 

(iii) 

/.tL(B)~> I - -V  ~ ~ > 0  
n =  I 

The measure of the set B' admits  the lowcr bound 

/~L(B') ~> 1 -- 8 nlk ' -  k I / " - - ~  > 0 
t ' l =  I 

(B.18) 
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If we now fix the values of k, k'  and choose v and v' small enough 
according to (B.17), we can construct two sets B and B' of measure 
arbitrarily close to 1 as 

~ t t_(B)>~l -v  L --1 = 1 - 6  
n = 1 I l k  

and 

k v / = n(k. k)/2-I 

where we have defined 

L 1 &, (2v"] ' /2 L 1 
6 = v ~-; and = 8 - -  n'*'-*)/2 

n = ) \ V J n = I 

(B.19) 

For  example, we can choose k = 2 and k '  = 6 so that, because of v' < 9v/2~% 
6 can assume any value in the interval 10, 1 [, while owing to the bound 

v < 6 / n  2, 6' will take any value in ] 0 ,  X/~g2/24[. On the contrary,  fixing 

6 e  ]0, 1E and 6 ' e  ]0, x / / 2 ~ z 2 / 2 4 1  - i s  equivalent to determining uniquely v 
and v' in accordance with (B.17), and therefore the sequences e,, and el,. As 
a conclusion we can write that V6 ~ ]0, 1[ and V6 'e  ]0, x//-}xz/24[ there 
exists a set B, dependent  on the choice of &: B =  B(6), of measure >tl - 6 ,  
and a set B', dependent  on 6, x 2 e-0 -2, and 6': B ' =  B'(6, x2, 6'), of measure 
>~ 1 - 6 %  which completes the proof. I 

Proof of  the Main Theorem. Let us consider a decreasing sequence 
(6,,),,E~ such that 6,,e ]0, 1[ Vnel%l and lim,,_ +~ 6,,=0. For  every nel~l 
let (6',,.m) .... ~ be a decreasing sequence on ]0, 1[, with lim . . . .  +~_ 61,.,,,=0 
and &i,.~ small enough- -say ,  6,, > 6;,.j > 6~ ...... Vm E I~. The main theorem 
follows from Lemma  B.5 by posing 

A := Q) B(6,,) (B.20) 
l i t  | 

and, for fixed x2 ~ T-', 

B(x2) := ("] ~ B'(6,,, x2, 6',,,,,,) (B,21) 
n = 1 m = I 

as it is straightforward to verify that both A and B(x2) are pt_-measurable 
and tha t / iL (A)=~ l t . (B(x2 ) )=  1. | 
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