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Abstract

We present a mostly numerical investigation on randomly perturbed piecewise contracting maps
(PCM) with the goal to study the extreme value limit distribution of observables related to local
recurrence. Our analysis will focus on PCM under additive noise, but we will also consider the hyperbolic
attractor of the Baker’s map when perturbed with another kind of noise, namely, the randomly applied
stochastic perturbation. A comparison of the two kind of noises will be considered with respect to the
computation of the extremal index.
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1 Introduction

Previously [6, 7], we showed that piecewise contracting maps (PCM) exhibit classical Extreme Value Laws
(EVLs), when they are randomly perturbed. In particular we studied in deep detail what we called Ran-
domly Applied Stochastic Perturbations (RASP). They belong to the broader class of random transforma-
tions that we are going to define and they revealed to be particularly useful in the context of PCM for the
explicit computation of a few important quantities in the random setting: absolutely continuous stationary
measures, transfer operator, rate of mixing, short returns. We were therefore able to show that for large
class of PCM perturbed with the RASP and for observables depending upon the choice of at most countably
many points, one gets the Gumbel’s law almost everywhere but around the attractor of the unperturbed
system, where the limiting exponential law is modified by the presence of an extremal index. This was
rather surprising because usually random perturbations make all points statistically equivalent. On the
other hand RASP is a very special kind of perturbation since it operates an aleatory reset of the state of the
dynamical system at each failure of a Bernoulli random variable. It is therefore interesting to ask whether
EVLs emerge whenever PCM are perturbed with other kind of noises, in particular with the additive noise.
We partially investigated such a question in [6]; we now present here a more wide study, mostly numerical,
but supported by formal arguments based on the theory of weakly constrictive (transfer) operators. We
recall that with such a theory Lasota and Mackay [14] were already able to get a few statistical properties
of PCM perturbed with noise. In here we will focus on the extremal properties of such perturbed systems.

Recently the results of the Extreme Value Theory have brought new techniques that allow to quantify
the geometrical and dynamical properties of a certain class of systems. In the case of absolutely continuous
invariant measures (acim), precise analytical results can be obtained in terms of classical Extreme Value
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Laws and depend on the fulfillment of general mixing conditions and on the observables considered. In fact,
those observables are designed in such a way that extreme events are equivalent to detect the recurrence of
an orbit to a neighborhood of a given point in the phase space. A collection of such events, under appropriate
normalization, is distributed according to one of the three classical EVLs, namely the Gumbel, the Fréchet
and the Weibull distributions. The values of the normalizing constants are linked to the local behavior of
the measure and, in the case of chaotic dynamics and of the measure being absolutely continuous, they
depend only on the number of extremes extracted and on the phase space dimension.

We have already shown in a preceding article [8] that random perturbations of regular systems, in
particular rotations, induce the appearance of extreme value laws since the perturbed systems acquire a
chaotic behavior. We pursue the same objective here by considering piecewise contracting maps perturbed
with additive noise. Although the main focus of this paper is on piecewise contracting maps, we will
consider in the last section random perturbations of the hyperbolic attractor of the Baker’s map. This map
is in fact another interesting test to compare the additive noise with the RASP perturbation. In the paper
[7], we presented a general theory of RASP perturbation for a large class of attractors including the limit
sets of PCM and the invariant sets of discontinuous hyperbolic maps like the Baker one. Even in the latter
case the computation of the extremal index is sensitive to the kind of perturbation we used, in particular
the extremal index converges to 1 around periodic points for additive noise, but it persists to be less than
1 for the RASP perturbation.

2 Random transformations

Let us consider a sequence of i.i.d. random variables (Wk)k∈N with values (ωk)k∈N in a space Ωε and with
common probability distribution θε. Let X ⊂ Rd be a compact set equipped with the Lebesgue measure m
defined on the Borel σ-algebra, and (fω)ω∈Ωε

a family of measurable transformations such that fω : X → X
for all ω ∈ Ωε

1. Given a point x ∈ X and a realization ω = (ω1, ω2, . . . ) ∈ ΩN
ε of the stochastic process

(Wk)k∈N, we define the random orbit of x as the sequence (fnω (x))n∈N, where

f0
ω(x) = x and fnω (x) = fωn

◦ fωn−1
◦ · · · ◦ fω1

(x) ∀n > 1.

The transformations fω will be considered as stochastic perturbations of a deterministic map f , in the
sense that they will be taken in a suitable neighborhood of f whose size will be determined by the value of
ε, see below. We could therefore define a Markov process on X with transition function

Lε(x,A) =

∫
Ωε

1A(fω(x))dθε(ω), (1)

where A ∈ X is a measurable set, x ∈ X and 1A is the indicator function of the set A. A probability
measures µε is called stationary if for any measurable set A we have:

µε(A) =

∫
X

Lε(x,A)dµε(x).

We call it an absolutely continuous stationary measure (acsm), if it has a density with respect to the
Lebesgue measure.

Given a map f : X → X, we will consider two kind of random perturbations. The first one is the
additive noise, which corresponds to the family (fω)ω∈Ωε of random transformations defined by

fω(x) = f(x) + ω ∀x ∈ X.

In this case each ω belong to the hypercube Ωε ⊂ Rd of side ε centered at zero, and equipped with the
measure θε = m

(ε)d
, which is the normalized Lebesgue measure restricted to Ωε. For these perturbations,

some additional assumptions may be necessary to ensure that the image of each fω is included in X.

1In the following when we will refer to a dynamical system (X, f, µ) we will mean that f is defined on X and preserves the
Borel probability measure µ; if we will write (X, f), this will simply correspond to the action of f on X.
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Notice that for additive noise,

Lε(x,A) = θε(ω ∈ Ωε : f(x) + ω ∈ A) ≤ θε(A) ≤ m(A)

εd
(2)

which implies that if the stationary measure exists for such random transformations, it is absolutely con-
tinuous w.r.t. the Lebesgue measure on the ambient space.

The second kind of random transformations we will consider have been introduced by Lasota and
Mackey (see [14], for instance) and correspond to randomly applied stochastic perturbations. They consist
in operating an aleatory reset of the state of the dynamical system (X, f) at each failure of a Bernoulli
random variable: if (xn)n∈N denotes the successive states of such a random dynamical systems, then at
each time n ∈ N we have xn+1 = f(xn) with probability (1 − ε) and xn+1 = ξn with probability ε, where
ξn is the realization of a random variable with value in X. This kind of perturbation corresponds to the
family (fω)ω∈Ωε

of random transformations defined by

fω(x) = ηf(x) + (1− η)ξ ∀x ∈ X, (3)

where ω = (η, ξ) is a random vector with value in Ωε = {0, 1} ×X. The two components η and ξ of ω are
independent and η is a Bernoulli variable with the probability of being 0 equal to ε, while ξ is a random
variable that we will suppose Lebesgue-uniformly distributed on X. The joint distribution θε of these two
components is the product of the Bernoulli measure with weights (ε, 1− ε) and the uniform measure on X.

In order to obtain the stationary measure µε, let us introduce the random Koopman operator Uε :
L∞ → L∞ defined for all φ ∈ L∞2 by

Uεφ(x) :=

∫
φ(fω(x))dθε.

Now, if we take two observables φ ∈ L∞ and ψ ∈ L1, it easy to check that∫
Uεφ(x)ψ(x)dx =

∫ ∫
φ(fω(x))ψ(x)dθεdx =

ε

∫ ∫
φ(x)ψ(y)dxdy + (1− ε)

∫
φ(f(x))ψ(x)dx =

∫
φ(x)Pεψ(x)dx,

where Pε is the adjoint operator of Uε, that is the random transfer operator. If we denote P the transfer
operator associated to f and ψ =

∫
ψ(y)dy, then we have

Pεψ(x) = (1− ε)Pψ(x) + εψ. (4)

The stationary measure µε verifies
∫
φ(x)dµε =

∫
Uεφ(x)dµε and in our case is given by µε = hεm where

hε ∈ L1 is a density such that hε = Pεhε. Such a density exists and is given by [14]:

hε = ε

∞∑
k=0

(1− ε)kP k1. (5)

3 Piecewise contracting maps with additive noise

In this section we study a simple one-dimensional piecewise contracting map perturbed with additive noise.
We first recall some known results about the deterministic asymptotic dynamics. Then we give numerical
results about their statistical properties when perturbed with additive noise.

2From now on L1 and L∞ will be referred to the Lebesgue measure m and the integral with respect to the latter will be
denote as

∫
(·) dx.
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3.1 Deterministic dynamics

The simplest piecewise contracting map is defined on the unit interval I = [0, 1) (or the circle, also denoted
I), by

f(x) = αx+ β mod 1 ∀x ∈ I, (6)

where α and β belong to (0, 1). If α + β > 1, then f is discontinuous at the point γ = (1 − β)/α (when
considered as a map of the interval) and each restriction of f to one of the intervals [0, γ) and [γ, 1) is a
contraction. The dynamics of this map has been studied in various works, but the most detailed study can
be found in [4]. Here we sum up the principal results of interest for our purpose.

To each couple (α, β) it is possible to associate a unique rotation number ρ ∈ [0, 1] using a lift of f to
a map F : R→ R which stratifies:

π ◦ F = f ◦ π,
where π(x) := x−bxc is the projection of R in the circle S1. If we suppose that F (x+ 1) = F (x) + 1, then
F is uniquely determined modulo an integer additive constant and for any point x0 ∈ I the limit

ρ := lim
n→∞

Fn(x0)

n
exists and does not depend on x0. The rotation number ρ is thus a characteristic of the map which depends
only on the parameters α and β. If the rotation number is rational then the attractor Λ :=

⋂
n∈N f

n(I) of
f is composed of a unique periodic orbit of period q, where q is the smallest integer such that qρ ∈ N. If
the rotation number is irrational then Λ is Cantor set supporting a minimal dynamics.

Theorem 3.1 ([4, 5]). The function ρ is continuous in any point (α, β) ∈ (0, 1) × [0, 1). For any fixed
α ∈ (0, 1) the function ρ(α, ·) is non decreasing and its image is [0, 1). For any fixed β ∈ [0, 1), the function
ρ(·, β) is non decreasing and its image is [0, β). On the other hand, we have that ρ(α, β) = ρ if and only if
β−(α, ρ) 6 β 6 β+(α, ρ), where

β−(α, ρ) = (1− α)2
+∞∑
j=0

αjd(j + 1)ρe and β+(α, ρ) = (1− α)2
+∞∑
j=0

αj(b(j + 1)ρc+ 1). (7)

For the irrational values of ρ we have β−(α, ρ) = β+(α, ρ) and if ρ ∈ Q then β−(α, ρ) 6= β+(α, ρ).
Together with Proposition 3.1, this implies that the graph of ρ(α, ·) is a devil staircase, see Figure 1.

Figure 1: Rotation number as a function of β, for α = 0.5 (left) and α = 0.8 (right).

In the forthcoming subsection we will be interested in studying the system (6) perturbed with additive
noise. To achieve this aim we will mostly consider values of ρ for which the difference β+(α, ρ)− β−(α, ρ)
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is relatively large. By this way, relatively large perturbations of β will remain in the interval πρ :=
(β−(α, ρ), β+(α, ρ)), where f has an attractor composed of a unique periodic orbit (whose period depends
on ρ). In Table 1 we give the center point and the half size of the interval πρ for some selected values of ρ
in the case α = 0.8.

ρ βm := (β−(0.8, ρ) + β+(0.8, ρ))/2 δ := |β−(0.8, ρ)− β+(0.8, ρ)|/2
1/10 0, 227 3, 01.10−3

1/8 0.245 5, 04.10−3

1/4 0.356 1, 73.10−2

2/5 0.500 1, 21.10−2

1/2 0.599 4, 44.10−2

Table 1: Center point βm and half size δ of πρ as a function of ρ for α = 0.8.

3.2 Invariant density

When perturbing with additive noise, we consider random orbits (xn)n∈N satisfying

xn+1 = f(xn) + ωn mod 1 ∀n ∈ N, (8)

where f(x) = αx+β mod 1 for all x ∈ I = [0, 1) and α, β ∈ (0, 1). The quantities (ωn)n≥1 are i.i.d. random
variables with values in a small interval Ωε := [−ε/2, ε/2], where ε ∈ (0, 1), with a common distribution
θε given by a density g, namely dθε(ω) = g(ω)dω, with

∫ ε
−ε g(ω)dω = 1. We notice that whenever I is the

(unit) interval, the strength of the noise, namely ε, should be small enough in such a way the image of I
is still in I. This problem disappears provided we take the mod-1 operation.

We now add one more assumption on the density g, namely we require that the first moment of g be
finite. This allows to show that the transfer operator Pε associated to (8) is weakly constrictive. These kind
of operators were introduced by Lasota and Mackay in order to get invariant or stationary measures and
as an alternative to the usual theorem of Ionescu-Tulcea Marinescu which in turns uses the spectral gap
provided by the Lasota-Yorke inequality. Constrictive operators do not allow to get explicitly statistical
properties of the systems, instead they permit to characterize invariant measures for perturbed systems
with very low chaotic behaviors.

An operator Pε is called constrictive if there exists a weakly precompact set F such that the L1 distance
between Pnε ψ and F goes to zero whenever n goes to infinity and being ψ a L1 non-negative function
with unit mean, we call D the space of these functions. These operators enjoy an interesting spectral
decomposition, namely: there exists an integer r, two subsequences of non-negative functions gi ∈ D and
ki ∈ L∞, i = 1, . . . , r, and an operator Q : L1 → L1 such that for all ψ ∈ L1, Pεψ may be written in the
form

Pεψ(x) =

r∑
i=1

λigi(x) +Qψ(x) where λi :=

∫
ψ(x)ki(x)dx. (9)

The functions gi and the operator Q satisfy:

1. gi(x)gj(x) = 0, for all i 6= j, which implies that the densities gi have disjoint supports.

2. For any i ∈ N, there exists a unique integer w(i) such that Pεgi = gw(i). Moreover w(i) 6= w(j) when
i 6= j, where {w(1), . . . , w(r)} is a permutation of {1, . . . , r}, so that the operator Pε permute the
densities gi.

3. The L1 norm of Pnε Qψ goes to zero when n→∞ and for all ψ ∈ L1.

4. The iterates of the operator have the form

Pn+1
ε ψ =

r∑
i=1

λigwn(i) + Pnε Qψ

where w : {1, . . . , r} → {1, . . . , r} is a permutation.

5



The last two items justify the appellation of asymptotically periodic given to the sequence (Pnε ψ)n∈N. It is
interesting to observe that if the noise density g is strictly positive almost everywhere on the circle, then the
operator Pε is also asymptotically stable in the sense that the L1 limit of Pnε ψ is the same independently
of ψ ∈ D. We also observe that the convex combination of the gi given by the spectral decomposition and
with equal weights 1

r gives a stationary measure.

We also observe that the convex combination of the gi given by the spectral decomposition and with
equal weights 1

r gives a stationary measure. Now, if ψ ∈ D satisfies

Pεψ =

r∑
i=1

λigi and P rε ψ = ψ, (10)

then
∑r
i λi = 1 and w is a ciclic permutation. It follows that

1

r

r∑
j=1

P jε (ψ) =
1

r

r∑
i=1

λi

r∑
j=1

gwj(i) =
1

r

r∑
i=1

λi

r∑
j=1

gj =
1

r

r∑
j=1

gj (11)

is an invariant density. Therefore, if we obtain a numerical estimation of a density ψ satisfying (10), we
do not need to know the densities gi of the spectral decomposition to obtain an estimation of the invariant
density.

We will suppose that the i.i.d random variables (ωn)n≥1 of (8) are uniformly distributed in [−ε/2, ε/2],
with ε ∈ (0, 1), and thus the common distribution is given by the density g = 1[−ε/2,ε/2], where 1A refers
to the indicatrice function of the set A. We study numerically the iterations of the transfert operator
associated to the random dynamical system (8), in particular the asymptotic periodicity of the sequence
(Pnε ψ)n∈N, where ψ = 1 is the uniform density on the circle.

In Figure 2, 3 and 4, we plot for n > 300 some numerical estimations of Pnε 1. The parameters of f are
fixed and equal to α = 0.8 and β = 0.5, which corresponds to a value of β in the middle of the plateau
ρ = 2/5 (see left panel of Figure 1 and Table 1). The attractor of f is thus a periodic orbit of period 5
which position depends continuously on β.

Figure 2: Histogram of Pnε 1 for n = 301, 302, 306 and 307, with α = 0.8, β = 0.5 and ε = 0, 02. Right
panel: the corresponding invariant density, denoted h.

We consider first a small noise of amplitude ε = 0.02. As expected, we observe in Figure 2 that
the support of the densities is contained in a neighborhood of the periodic orbit of f . The figure also
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shows that P 301
ε 1 and P 302

ε 1 are very similar to P 306
ε 1 and P 307

ε 1, respectively. This shows that (Pnε 1)n∈N
is asymptotically periodic of period 5. We conclude that in presence of small noise the period of the
deterministic attractor of f was conserved trough the period of an attracting density of the random transfer
operator. Now, we can obtain the invariant density by using formula (11) (Right panel if Figure 2).

Figure 3: Histogram of Pnε 1 for n = 301, 302, 303 and 304, with α = 0.8, β = 0.5 and ε = 0, 07.

In Figure 3, we increase the noise to ε = 0.07. Now, the support of the densities has 2 connected
components: one in the interval [0.46, 0.8] and another one in the interval [0.84, 1] ∪ [0, 0.34] (which in the
circle is a connected set). It is tempting to conjecture that these two components are each one the support
of two densities g1 and g2 of formula (9), and thus to deduce that (Pnε 1)n∈N is asymptotically periodic of
period 2. However, there is no significative difference between the four consecutive iterations of Pε shown
in Figure 3 and we can conclude that (Pnε 1)n∈N converges to a fixed density, which is estimated by those
of Figure 3.

Figure 4: Histogram of Pnε 1 for n = 301 and 302, with α = 0.8, β = 0.5. Left panel: ε = 0.3, right panel
ε = 0.8.

In Figure 4, we consider the strong noises ε = 0.3 and ε = 0.8. In both cases, the support of the
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densities is the full circle and (Pnε 1)n∈N is asymptotically periodic of period 1.

The system (8) can also be written as:

xn+1 = αxn + βn mod 1 ∀n ∈ N, (12)

where (βn)n≥1 is a sequence of i.i.d random variables defined by βn = β + ωn and uniformly distributed in
the interval Iβ,ε := [β − ε/2, β + ε/2].

Let ρ ∈ [0, 1] and denote πρ := (β−(ρ), β+(ρ)). We recall that f has a rotation number equal to ρ iff
β ∈ πρ. Since βn is uniformly distributed in Iβ,ε, we have that

P(βn ∈ πρ) =
l(πρ ∩ Iβ,ε)
l(Iβ,ε)

=
l(πρ ∩ Iβ,ε)

ε
,

where l denotes the Lebesgue measure. In Figure 2, 3 and 4 we consider α = 0.8 and β = 0.5. For these
values of parameters β belongs to the plateau π2/5 which extremities are given by β−(0.8, 2/5) = β − δ
and β+(0.8, 2/5) = β + δ, where δ = 1, 21.10−2 (see left panel of Figure 1 and Table 1). It follows that
in Figure 2, where ε = 0.02 < 2δ, we have Iβ,ε ⊂ πρ and P(βn ∈ π2/5) = 1. The system (8) is therefore
the composition of maps which each attractor is a period 5 orbit. This orbit is different for each map,
but its points depend continuously on β. It is therefore expected to observe a period 5 attractor for the
transfert operator. On the other hand, in Figure 3 we have ε = 0.07 > 2δ, which implies now πρ ⊂ Iβ,ε and
P(βn ∈ π2/5) = 2δ/ε ' 0.35. It follows that almost 2/3 of the realizations of βn are outside the plateau
ρ = 2/5, which result in the loss of the asymptotic periodicity (different from period 1) of the transfert
operator observed in Figure 3. Finally, in Figure 4 we have ε = 0.3 and ε = 0.8 and P(βn ∈ π2/5) ' 0.08
and P(βn ∈ π2/5) ' 0.03, respectively. In these case, more that 90% of the realizations of βn do not belongs
to π2/5. The random orbits of (8) are therefore obtained by composition of maps which in a great majority
have a periodic attractor which is not of period 5. Actually, the union of these attractors covers a large
part of the phase space.

Now, we may ask if the noise can change the period of the attracting density of the transfert operator.
More precisely, for α and β fixed, if we suppose that (Pnε 1)n∈N is asymptotically periodic of period q, we
ask if it exists ε′ such that (Pnε′1)n∈N is asymptotically periodic of period q′ /∈ {1, q}. As suggested by
our analysis of Figures 2, 3 and 4, we will suppose that the asymptotic periodicity of Pε is related to the
proportion of realizations of the random variables βn in a given set πρ.

Let p ∈ [0, 1], ε ∈ [0, 1] and ρ ∈ [0, 1]. Then, one can show that

P(βn ∈ πρ) > p iff l(πρ) > εp and β ∈
[
β−(α, ρ) + ε

(
p− 1

2

)
, β+(α, ρ)− ε

(
p− 1

2

)]
. (13)

We deduce that for any ε, if p > 0.5 then β ∈ πρ. In other words, if we want to impose that more than
50% of the realizations of βn belong to πρ, and to force by this way a given period (uniquely determined
by ρ) for the attracting density of Pε, we must chose the parameter β of the deterministic map f in πρ.
Therefore, if β ∈ πρ, it is not possible to obtain at least 50% of the realizations of βn in πρ′ , with ρ′ 6= ρ,
by mean of a suitable choice of ε.

After the above analysis it appears difficult to change to a period different from 1 the period of the
attracting density of the transfert operator by addition of uniform noise. However, the relation (13) is
specific to symmetric uniform noise. If now we consider that the random variables βn are uniformly
distributed in the interval Jβ,ε := [β, β + ε] (i.e ωn ∈ [0, ε]) then (13) becomes

P(βn ∈ πρ) > p iff l(πρ) > εp and β ∈ [β−(α, ρ)− ε (1− p) , β+(α, ρ)− εp] , (14)

It follows that, for p and ρ fixed, it is possible to chose β 6 β−(α, ρ), thus not in πρ, and to find an ε such
that P(βn ∈ πρ) > p, provided the following relation between the size of πρ and its distance to β holds:

l(πρ) >
p

1− p
(β−(ρ, α)− β). (15)

Actually, if (15) is satisfied then

P(βn ∈ πρ) > p ∀ ε ∈
[

1

1− p
(β−(ρ, α)− β),

l(πρ)

p

]
.
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Figure 5: Histogram of Pnε 1 for α = 0.8, β ' 0.475. Left: ε ' 0.0076, upper panel n = 301, lower panel
n = 309. Right: ε ' 0.0366, upper panel n = 301, lower panel n = 306.

Since (15) can be satisfied with p > 1/2, we can modify the period of the attracting density of the transfert
operator by addition of noise, as done in Figure 5. To obtain Figure 5, we chose β ' 0, 475 ∈ π 3

8
, which

corresponds to a period 8 attractor for the deterministic map and for the transfert operator perturbed with
small noise (left pannel). For this value of β, the condition (15) holds for ρ = 2/5 if p = 0, 65 (or less).
Now taking ε = l(π 2

5
)/p ' 3, 66.10−2, we have P(βn ∈ π 2

5
) > 0, 65 and we observe a period 5 attractor for

Pε (right panel).

3.3 Extreme value statistic

The study of extreme value statistics is typically concerned with the limiting distributional behaviour of
partial maxima of a stochastic process, which is determined by the likelihood of the occurrence of abnormally
high observations (or exceedances of high thresholds) along the time series. In [11, 12], motivated by [3],
the study of extreme value statistics is formally linked to the recurrence properties of deterministic systems,
namely Hitting/Return Time Statistics, for specially designed observable functions defined on the phase
space.

For well behaved systems, i.e., systems that loose memory sufficiently fast, typically, the waiting time
between exceedances (or returns to target sets) is exponentially distributed, which is consistent with the
observation of an asymptotic classical extreme value distribution for the partial maxima. As shown in [13],
in the presence of periodic behaviour, as observed at periodic points for deterministic systems, the pattern
of the exceedances is affected by clustering, whose intensity is measured by the extremal index (EI). In
fact, the EI can be seen as the inverse of the average cluster size, being that no clustering means an EI
equal to 1 and heavy clustering an EI close to 0. We refer to [10] for further reading and references.

Only very recently the study of extreme values and hitting/return times was carried for randomly
perturbed dynamical systems. We mention in particular the very recent papers [1, 16, 15, 17]. The first
one uses an annealed approach, i.e., the laws are obtained by integrating over all possible values of the
noise, while the latter use a quenched approach, where one is concerned with the extremal behaviour for
a.e. realisation of the noise.
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Figure 6: Extreme value analysis for Pnε 1. Upper panels: extremal index θ. Lower panels: shape parameter
κ. From left to right noise is increasing as specified in the titles of each subplot.

Until now, the existence of an EVL has been established, essentially, for expansive maps and rotations
of the circle perturbed with additive noise [1, 8]. We have shown [7] that piecewise contracting maps can
also admit an EVL under RASP. Here we discuss the case of additive noise.

Contrarily to the case of RASP, we are not able to produce rigorous results about the rate of decay,
but a distribution on the whole circle of random orbits of arbitrarily chosen initial conditions suggest the
presence of only one fixed point for Pε and therefore mixing. This seems the case in Figure 4 and, to a
lesser extent, in Figure 3. Indeed, the GEV statistics effectuated for the usual observable shows a pretty
good convergence towards the Gumbel’s law for strong noise. In Figure 6, we show the dependence of the
EI θ and the shape parameter κ on the choice of the points x of the phase space around which we study
the returns, when the noise is taken on a symmetric interval.

The upper panels report the results for θ and the lower panels for κ. From left to right the noise increases
and take the values 0.02, 0.07, 0.3 and 0.8 as in the experiments of the previous subsection. The comparison
with the histograms in Figures 2, 3 and 4 shows that when x is visited often enough the convergence to the
Gumbel law is good κ ' 0 and the extremal index approaches 1. When the point is not visited enough,
the extremal index is lower than 1 and the shape parameter largely deviates from 0. Increasing the noise
corresponds to have a more uniform visit of the phase space and is reflected by a better convergence to the
Gumbel law and by a more uniform extremal index θ (see right panels of Fig. 6)

4 Baker map

Let us consider the Baker’s map f defined on the unit square [0, 1]× [0, 1] iteratively for n ≥ 1, by

xn+1 =

{
γaxn, for yn < α

1
2 + γbxn, for yn > α

yn+1 =

{
1
αyn, for yn < α

1
1−α (yn − α) + γbxn, for yn > α

We analyse the effect of the RASP and the additive noise on this map. To avoid to exit from the square
we apply the mod 1 operator after having applied the additive noise perturbation. The parameters used
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for the experiment are the following: γa = 1/5, γb = 1/4, α = 1/3. We want to analyse the existence of an
extremal index θ < 1 on the boundary of the rectangles describing the invariant density.

4.1 Invariant density

Let’s look at the attractors we obtain for the additive and the RASP perturbation of the Backer map. In
Figure 7 the left panel refers to the additive noise, the right panels to the RASP perturbation and the
noise intensity is increasing from upper to lower panels. By looking at the two different perturbations,
strong differences are evident. For the additive noise the bands of the baker attractor are recognizable and
they get fatter for increasing noise intensity although, even for strong noise intensities, we have unexplored
region of the phase space. For the RASP perturbation the invariant measure consists of the usual Baker
attractor, superimposed with a uniform noise whose level depends on the noise intensity ε. If we transpose
this example to photography, additive noise would be add to a picture if the camera or the objective are
moving randomly while taking the picture, additive noise would be more the results of underexposition,
the lower the light, the higher the noise.

These results are translate in terms of invariant density in the upper panel of Figure 8. For the additive
noise we recover the density peaks corresponding to the location of the bands. For the RASP perturbation
the relative weight of the real baker dynamics and the uniform level added via RASP is visible for different
noise intensities is a set of point uniformly distributed everywhere on the rectangle. In other words, the
additive noise makes the rectangles bigger until the invariant density is almost uniform (yellow curves
corresponding to ε = 0.05). For the RASP perturbation what changes is the relative weight of the uniform
density with respect to the rectangles.

4.2 Extreme value statistics

Since the definition of boundaries depends on the noise intensity, for the EVL analysis we take several
values z for the observable φ in the rectangle [0 1], and consider distances on the x variable only. All the
analysis follows exactly the procedure described in [9]. The shape parameter κ of the GEV distribution
is shown in the central panels of Figure 8. We know that in the complete stochastic case, for the choice
of the log weighting function for φ, a GEV fit should return κ = 0. By comparing the values of κ with
the densities shown in the upper panels, we observe that around the points such that the density is large
enough, ξ '= 0. This is even clearer for the lowest noise intensity (blue) for which convergence κ → 0 is
bad everywhere except in the band of the baker attractor. On the contrary for the largest noise intensity
(yellow) we approach the stochastic limit and κ = 0 almost everywhere. Convergence is very poor for the
RASP perturbation and low level noise at the boundaries between the attractor and the region of uniform
noise.

Finally we present the computation of the extremal index θ for all the cases considered (lower panels
of Figure 8). Let us focus on the azure line (ε = 0.02) and look at the additive noise (left panel) only.
We compare θ with the density reported in the upper panel. The boundaries of the attractor for this level
of noise are localized around x = 0.8 where the azure curve decrease and then interrupts (no points) for
x > 0.82. If we look this area, we see that: for the points in the Baker attractor, θ < 1 and we have values
around θ = 0.95, when we move outside the attractor, towards the boundaries θ ' 0.82 the extremal index
decreases coherently with the theoretical results presented. If we look at the violet curve and compare
it with the density in the upper panel, we find a similar behaviour with the extremal index θ decreasing
when the density increases although for this noise level the attractor is already continuous. The value of
θ = 0.95, i.e. not one as predicted by the theory, is a finite size effect. As we have verified the values of θ
tends to 1 for increasing bin length (not shown).

Now let us focus on the RASP perturbation whose results for θ are reported in the lower right panel.
As for κ also the extremal index is very different with respect to the one computed for the additive noise.
The only region where θ < 1 appears is at the point x = 2/3. Here the extremal index decreases to the
value θ = 1/3 for all the noise intensities, although it recovers faster to one for higher noise levels. This
is not a finite size effects as we have verified by increasing the bin length. This behavior is coherent with
the theoretical results which implies that for observables with a maximum at a periodic point then the EI
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Figure 7: Baker attractors for additive noise (left) and RASP perturbation (right). Upper panels: ε = 0.01,
Central panels: ε = 0.05, Lower panels: ε = 0.1
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should be less than 1 and a combination of the EI of the original map and the η. However, one should
note that there are no theoretical results asserting that the EI is less than 1 at such periodic points for the
original map, the only result in that direction is in a recent paper by Carvalho et al [2] but it only applies
to toral automorphisms.
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