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We prove the ergodicity for the discontinuous sawtooth map, adapting a tech- 
nique previously used in billiard theory. The core of the proof is the construction 
of a Hopf chain passing through a countable dense set of discontinuity lines. 
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1. I N T R O D U C T I O N  

The discontinuous sawtooth map (SM) is probably the easiest example of 
a low-dimensional discontinuous map for which the proof  of the ergodicity 
is far from being trivial. This map is still under investigation both from 
mathematical and physical points of view since it is a relatively simple 
approximation for some physical problems(14): plasma confinement in 
nuclear fusion, charged particles in magnetic fields, stochastic ionization, 
etc. In fact, it describes the motion, in the phase space, of a particle subject 
to a periodic one-dimensional potential or alternatively a rotor subject 
to a sequence of periodic impulses. The SM depends on a real positive 
constant K: when K is integer, the map resuces to a linear automorphism 
of the torus and the proof of the ergodicity is simple and standard'S); also 
the statistical properties (for example, rate of decay of the correlations) can 
be worked out exactly, (6) ultimately because a finite Markov partition can 
be easily constructed. 

When K r  N, the situation changes considerably: the map becomes dis- 
continuous and the torus is filled by a dense countable set of discontinuity 
lines for the powers of the map and its inverses. If this does not prevent the 
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existence almost everywhere of local stable and unstable manifolds, 
nevertheless, since these manifolds can be arbitrarily short, it could become 
very difficult to apply the Hopf argument, which is the standard tool to 
prove ergodicity for such systems. The technique we use to overcome this 
difficulty is a direct application of the so-called Transversal Fundamental 
Theorem for billiards. It was firstly introduced by Sinai and Chernov (7) to 
obtain local ergodicity of semidispersing billiards and was recently 
generalized by Kr/tmli eta/. ~8'9) to prove the global ergodicity of systems of 
three and four elastic hard balls on the multidimensional torus. The same 
theorem has been utilized by Bunimovich (1~ to prove the ergodicity of 
two-dimensional hyperbolic billiards; we have also learned of a recent work 
by Liverani and Wojtkowski (m to generalize it to a large class of symplec- 
tic maps with singularities. 

The situations occurring there are much more difficult than our pre- 
sent case, especially because one must guarantee all the hyperbolic proper- 
ties (for example, existence of the local stable and unstable manifolds, and 
absolute continuity) that are quite easy to prove for the SM. 

However, the core of the proof of the ergodicity is essentially the same, 
although the limited amount of technical details makes the argument very 
transparent and, we hope, pedagogically clear. 

We briefly recall that other techniques to prove the local or global 
ergodicity for smooth dynamical systems with singularities have been 
utilized, namely, in billiard theory by Sinai and Bunimovich (16 ~8) and 
Gallavotti and Ornstein(X9'2~ for mappings: by Collet and Levy, (21) 
Young, (22) and Rychlik (23~ for the Lozi map, by Wojtkowski (14) for a class 
of piecewise linear continuous transformations of a torus, and by Burton 
and Easton (24) and Przytycki (25) for linked twist maps. An important con- 
tribution for the description of ergodic properties of smooth dynamical 
systems is the work of Katok and Strelcyn, (26) where the Pesin theory is 
generalized to maps with singularities in order to prove that the invariant 
sets with nonzero Lyapunov exponents have countably many ergodic com- 
ponents. This last fact is automatically true for the SM since it is almost 
hyperbolic for K > 0  in the sense defined in ref. 14. Recently a new tech- 
nique to investigate the statistical properties of the discontinuous SM has 
been introduced, (12~ allowing us to compute, in particular, a rigorous finite- 
time estimate for the diffusion coefficient: such a technique requires a very 
precise description of the discontinuity lines, which we can skip here by 
working "in measure" and by using systematically the almost hyperbolicity 
of the map. We guess that those statistical properties would be completely 
understood if one could construct a (possibly infinite) Markov partition. 
We consider this the natural continuation of the present work. 

The plan of the paper is the following: in Section 2 we characterize the 
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discontinuity lines and we construct almost everywhere the local stable and 
unstable manifolds. 

In Section 3 we prepare the local coverings needed in the proof of the 
main result, Theorem 3.2, and we investigate the consequences of this 
theorem, namely: the construction of a Hopf chain in any open set whose 
closure is included in a finite number of polygonal regions covering 
(mod 0) the torus, and then the extension of the chain from a polygonal 
region to another one, thus realizing the global ergodicity. Finally, in 
Section 4 we prove the main theorem. 

2. DmSCONTINUITY  LINES A N D  LOCAL STABLE A N D  
U N S T A B L E  M A N I F O L D S  

The sawtooth map T is an area-preserving automorphism of the torus 
~-2 with coordinates (I, 0) mod 2~, defined by 

T(I, O) = (I+ Kg(O), I+ 0 + Kg(O)) 

where K > 0  and g(O)=O for 0 e [ - = , ~ t ) .  We denote by f.t(dldO)= 
dldO/4rc 2 the Lebesgue measure on q1-2 preserved by T. The SM becomes 
discontinuous when Kr  N, which is the case considered in the present 
paper. We put the coordinates (6/OI, ~/~?0) on the tangent space of-l] -2 and 
the metric naturally induced from the Euclidean structure of ~2. This 
metric defines a distance p(., - ) and the corresponding length of a segment 
A will be denoted as length(A). The differential of T, in the points x -  = (/, 0) 
where it is defined, is given by the constant matrix 

DT(x) = AK= 1 + K 

which has eigenvalues 2+_=l+[K+_(4K+K2)l/2]/2, 2 = 2 ~ 1 < 1 .  We 
put 2 =2. 

We denote by V_ and V+ the corresponding eigenvectors. 
In the following we will identify the tangent space of ~2, at each point, 

with its universal covering R 2. Let V_(I, 0)=  {(I, 0 )+  tV_ }, te  R, be the 
line at (L 0) parallel to the eigenvector V_. 

We set W_(I, O)= {V_(I, O ) - m o d  y2}, the curve emanating from 
(/~ 0)E ~2 on the square [ - ~ ,  ~)x  [-Tr, 7r) identified with ~-2 with the 
natural projection. If W (I, 0) denotes the largest connected subset of 
W (I, 0) containing (I, 0) and where T and hence DT are continuous, then 
TW (I, 0)~ W (T(I, 0)). Moreover, if A12 c l~_(I1, 01) is the segment 
joining (I1, 01) to (I 2, 02)~ ~/ (/1, 01), we have length (TA12)=2 length 
(A12). 
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In a similar way, we define V+(L 0) = {(/, 0) + tV+ }, t~ ~, the line at 
( / , 0 ) ~ R  2 parallel to the eigenvector V+, and the sets W+(I,O)= 
{V+(/, 0 ) - r o o d  T 2} and I~+(/, 0) are correspondingly defined. In 
particular, if A12 c I~+(I1, 01) is the segment joining (I1, 01) to (I2, 02)~ 
I~+(I1, 01), we have length(T-1A12)=2 length(A12 ). 

It follows from the definition that the discontinuity lines Dn for the 
mapping T n and the discontinuity lines D ,  for T " are respectively given 
by 

n 1 n - - 1  

D , =  (..) T-~7 and D _ , =  ~ T~+1~7 
s ~ 0  s = 0  

where T-1A denotes the preimage of A and 7 is the set 0 = _+re, - re  < I <  ~. 
We put 7, = T "y and ~, = TnT. We are not really interested in the detailed 
structure of these sets. Apart from T7 = ~1, which is a closed curve on the 
torus intersecting 7 transversally, each set of the type 7, (for 37, the argu- 
ment is similar) is the (disjoint) union of segments parallel to each other 
and whose endpoints lie on the same segment belonging to 7p, P < n, or on 
two different segments belonging to 7p and 7p, with p'  ~< p < n. We will refer 
to these segments as the connected components of 7, (or ~,). 

Then if V1 and V2 are two linear subspaces of R 2, we call (2(V~, V2) 
the smallest positive angle between them. 

I .ornma 2.1. If (2(7,, V_) denotes the angle between any connected 
component of 7, and any local stable manifold (i.e., the direction V ), then 
t2(7 . ,  V ) converges to zero for n ~ + ~ ;  similarly, (2(~,, V+ ) ~ 0 and the 
convergence is monotone. Finally, 7n and 7m always intersect transversally 
for n # m, and the same holds for ~7 and ~m" 

Proof. The lemma simply follows upon observing that 0(7, V +) # 0 
and if we call Vr a vector in the direction 7, then AK V~ is in the direction 
T~ (the transformation TI0=~: 7 -+ q]-2 is in fact a continuous linear func- 
tion of I ~ 71-1). Then, i f w e s e t  V ~ = C + V + + C  V , w i t h C + , C  ~ , w e  
have 

~(7.,  V _ ) = ~ ( A ~ " V ~ ,  V_)=f2(C+,~'V+ +C_;~ "V , V ) n ~ '  0 

Moreover, 

Q(7,, 7m)=Q(AK'V~, AKmV~)=Q(AK("-m)vT, ~'~) 

where n > m  and P~=A~mV~ 

But the r.h.s, of this equality is different from zero since V 7 is not an eigen- 
vector of AK. Similar considerations apply to ~,. 
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We now prove that the convergence of I2(7., V ) and f2(~., V+) 
to zero is monotone. Let in fact Z . = t a n e .  be the tangent of the 
angle ~. between ~. and the 0axis. Then we apply AK to ~ : Z . + ~ =  
1 - 1 / ( Z . + I + K ) ,  Z o = + O e .  Since Zz<Z~, it is easy to show by 
induction that Z .  + ~ < Z . ,  Vn > 0. 

In the same way, applying Ax ~ to ?. ,  we get, setting again 
Z .  = tan c~., where c~. is the angle between 7. and the 0 axis, 

( I + K ) Z , - K  
Z . + I -  , Z0 = - ( 1  + K )  

1 - Z .  

Since Z 2 > Za, by induction it follows that Z. + 1 > Z., Vn > O. 

Now we want to show, using a classical argument, C~6) that for almost 
all the points in ~-2, the segment I~_(L 0) [resp. W+(L 0)] contains a 
local stable (resp. unstable) manifold of finite length. We specialize the 
proof for the stable manifold; the argument for the unstable manifold is 
similar. 

We start by defining the sets, for n > 0, 

d.(~r)={x~q~2;p(T"x, 7 ) < ~ }  

where we put for simplicity x - (/, 0); o- > 0 and c is a fixed constant. 

I . e m m a  2.2. If x C d ( a ) = 0 . ~ > 0 d . ( o - ) ,  then x has a local stable 
manifold of length at least a. 

ProoL We put l(T"x)=lTV_(Tnx); clearly, length (W (T'x))>~ 
crc/(n+l)2; then we denote by [(Xn-m) the connected component of 
T ml(T"x) containing Tn-mx, 0 <~ rn <~ n. Note that [(x. m) C 7V_(T"-mx). 
Then let m* be the last time that f(x.  m) intersects 7; since xCd(a) ,  it 
follows that the length of ]'(X.-m*) is bigger than ac(n-m*+ 1) -2. If we 
now set l . ( x )=  T-('-m*)[(X._m.), we have 

length( l .  (x))/> ac2-"+m*(n -rn* + 1) .2 ~> o- 

provided we choose c l = i n f x > 0 2 _ X ( x + l ) - 2  [the minimum being 
attained for x = - 2 / ( l o g  2 ) -  1 ]. The local stable manifold at x, wl~176 is 
clearly given by wl~ = A.~>o 12(x) �9 

From now on we also set W~C(x), the local unstable manifold at x. 
The only question left is: how big is ~/((r)? 

Lemma 2.3: 

I~(d(o)) <~ c'a for some c' > 0 

822/67/1-2-17 
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ProoL Since T is area-preserving, we easily get 

kt(~c(a))~< ~ /~(d,(a))~< ~ 2Lca(n+l)-Z<~c'a 
n = O  n - O  

where L denotes the length of the discontinuity line 7. 

Consequently, the points that have a local stable manifold of positive size 
are all the points xr Nx~l d(1/k).  But 

/z ~r ~< lim # d = = 0 
k = l  k ~ c o  

3. C O N S T R U C T I O N  OF T H E  H O P F  C H A I N  

In this section we begin the proof of the ergodicity: first of all we show 
how to construct sufficiently many open neighborhoods each of which 
belongs to an ergodic component of T; then we extend the ergodicity to the 
whole torus. The standard tool in this kind of proof is the classical Hopf 
argument~13): the central step is to join almost all the couples of points by 
a chain of local stable and unstable manifolds, provided the (Lebesgue) 
measure/~ is absolutely continuous along the partitions given by the local 
stable and unstable manifolds, which is true in our case since the local 
manifolds are segments and are defined almost everywhere. 

Now if f (x) is a continuous function on T 2 and if we define the "time 
averages" in the future and in the past, respectively, as 

n - - 1  1 n - - 1  

f + ( x ) =  lim -1 ~ f(Tex); f - ( x ) =  lim - ~ f(T-ix) 
n ~ F /  i = 0  n ~  /'/ i = 0  

then by the Birkhoff-Khinchin ergodic theorem, f +  (x) and f - ( x )  exist and 
are equal to each other for x belonging to a subset of 71-2 of full measure. 
Moreover, f+(x) [resp. f - ( x ) ]  is constant, when it exists, on the local 
stable (resp. unstable) manifold at x, by uniform continuity. This fact and 
the existence of the chain between almost all the couples of points ensure 
that in these points f +  (x) and f - l (X)  assume the same value. Clearly the 
existence of local manifolds almost everywhere does not guarantee the 
Hopf chain, since, for example, given two points x and y, the chains leaving 
x and y could accumulate in a point without intersecating: this could 
happen if the local manifolds are of arbitrarily small length, which is our 
present case. 

The first step is then the construction of open domains where the time 
averages f +  (x) and f - ( x )  assume the same value on a set of full measure. 
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We put O = f 2 ( V ,  V+); then we fix a positive number s also 
satisfying the following conditions: 

sin ~p 
(i) e < - - ~  and e<~p 

sin 0 sin e 
(ii) ~< 2e 

sin(O - e) 

This last condition can be satisfied since the function, in e, on the left-hand 
side is convex increasing with derivative in zero equal to one. The prescrip- 
tions (i) and (ii) will be justified in the following. 

By Lemma 2.3 there will be a number n~ > 0 such that ~?(Tn, V ) <  
and ~2(],, V + ) <  e for n >n~. Then we choose any connected open set U 
whose closure does not intersect any 7, and ~n for n < n~; then U will be 
contained in the interior of a closed polygonal region whose sides are just 
connected pieces of 7n and ~7~, for n < n~. Next, for each 6 ~ ~ + sufficiently 
small, we construct a covering N(U, 6) of U with the following properties: 

(a) The elements GiE(q(U, 6) are rectangles with each pair of 
opposite sides parallel to V+ and V_, respectively, and of equal length 6. 
Moreover, G i n  7,z = Gi c~ 7n = ~b for each i and n < n~. These rectangles are 
clearly the image of true rectangles in ~2 under the natural projection. 

(b) The elements Gi must satisfy some intersection properties, which 
can be formulated in a very general setting. (7 ~o) Instead, we prefer to con- 
struct explicitly the covering (r 6) and those properties will be a direct 
consequence of our construction. To do this, we cover U with a grid of rec- 
tangles of size ~6, 0 < ~ < l, satisfying (a) and then we enlarge each rec- 
tangle to size 6, provided (a) is still satisfied. Then we put c~ = 1 - 3e/sin ~; 
this and the bounds (i) on e imply that each rectangle intersects eight other 
rectangles of the covering and for two intersecting rectangle Gi and Gj 
which have in common the two stable (resp. unstable) sides, i.e., the sides 
in the direction V_ (resp. V+), we have #(Gi~Gj)=3e(~ 2 (see Fig. 1). As 
we will see in a moment, these properties largely suffice for our purposes. 

Given an element G~ of the covering, we call E~ a neighborhood of its 
stable faces, namely Ei=E[-(1)uET(2 ), where one side of ET(j), 
j =  1, 2, is a stable side of G~ and the other is along the unstable side and 
of length 3eg/sin ~. In the same way we define a neighborhood E + of the 
unstable faces and the length along the stable sides of each component of 
E + is still 3~6/sin ~. Then #(E+(j))= 3c52~, j =  l, 2 (see Fig. 2). 

D o f i n i t i o n  3.1. We call stable (resp. unstable)-proper an element 
G~N(U, ~) if the measure of the points in ET(j) [resp. E + ( j ) ] ,  j =  1, 2, 

822/67/l-2-17" 
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V_ 

/ 
8 

Gk 

35E 
. ' 7 " ' -  

38e 
sin V 

Fig. 1. Construction of the covering. 

for which Wl~ [resp. W~+~(x)] intersects both the unstable (resp. stable) 
sides of Gi is positive. If this is not the case, the rectangle is said to be 
stable (resp. unstable )-improper. 

Finally, we call ~ I (U ,  6) the union of the stable-improper rectangles 
and ~[(U, 6) the union of the unstable-improper ones, and ~I(U, 6)= 
~;(u,  6)u~;(u ,  6). 

Our main result (the Transversal Fundamental Theorem for the 
sawtooth map) can now be stated as follows. 

V 

+ 
Ei(1) 

f 

E ~ ( 1 / ~ i  / / 2 )  

+ P 
Ei(2 ) 38c 

sin 
Fig. 2. Stable and unstable faces of a rectangle. 
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T h e o r e m  3.2: 

lim #(N~(U, 5)) 0 
5 ~ 0  + 5 

The proof is given in Section 4; now we want to derive and discuss the 
main consequences about ergodicity. 

R e m a r k  3.3. Theorem 3.2 and the absolute continuity of/~ imply 
ergodicity, 

It can be shown that a partition of the torus into segments of local 
stable and unstable manifolds is measurable, with conditional measures 
equivalent to arc length, uS) Here we will simply show that an application 
of the Fubini theorem on the rectangular domains of the covering will 
suffice for our purposes. 

We note that the preceding prescriptions on the covering f#(U, 5) 
imply that if Gi and Gj are two stable proper rectangles (for the unstable 
ones, the argument is similar) intersecting in, say, Gij= E i ( 1 ) =  E j  (2), 
then there is a set of positive measure of points x ~ Gij for which 

length(wl~ o Gi) = length(Wt~ n Gj) = 5 

If we consider any interesting couple ET(ll), ES(12) belonging or not to 
the same proper (both stable and unstable) rectangle, denoting with V i 
and Vj + the subsets, respectively, of E 7 (li) and E f  (12) of positive measure 
prescribed by the definition of properness, we want to prove that 
~( Vy n V f  ) > 0 (see Fig. 3). 

B 

V 

A - V +  

+ 

Ei ,4/- 
W(x)'@7 ~ 

A 
D 

Y~ 

/ 

Fig. 3. Construction for the absolute continuity of the measure. 
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First of all note that V[ ~ V fl e Z  and moreover Vf  c~ V 7 can be 
written as the Cartesian product 4 x ~ ,  where A = A n  Vs and 

= B c~ Vfl, with A an unstable side of E~ (ll) and B a stable side of 
E f  (12). If #A and/~8 denote, respectively, the Lebesgue measures restricted 
to A and B, we put 2 A = #A and 2B = sin ~ #s  and we call them conditional 
(with respect to/2) along segments in the directions V_+. Since V 7 -- 4 x 
and V f  = B x B, where ,~ and B are, respectively, the stable side of E 7 (ll) 
and the unstable side of El(12), we have by the Fubini theorem that 
#( V~ ) = 6 sin ~ 2A(4) > 0 and #( V + ) = 62s(B) > 0 and this implies 

# ( v 7  n v [ ) = # ( 4  x ~ )  = ; ,~(4)  , ~ ( ~ )  > 0 

We call the BK set (from Birkhoff Khinchin) the set of full measure where 
the time averages in the future and in the past exist and are equal to each 
other. The result, proved previously, reads: for ).A-almost the points x e A, 
)~s-almost the points in Wl~ V f  belong to the BK set and this shows 
how to construct a chain of local stable and unstable manifolds whose 
intersection points belong to the BK set. But this is clearly restricted to the 
set Vi + of positive measure in the proper rectangles. To extend it, we note 
that an argument like that used before shows that for ),A-almost the points 
x e / l ,  we have that 2w(x)-almost the points in W(x)~  V~ belong to the 
BK set: 22 is the conditional measure on the stable side A of E 7( l l )  and 
2w(x) the conditional measure on the segment W(x) passing through x in 
the direction V+ and touching the opposite sides of E,7(/~); note that 
), w(~)(W(x) (~ V~ ) = )oA (4)  (see Fig. 3). 

A similar construction holds for the set of type E+(-) .  Now we 
exclude from U the set Uo composed by the union of all the segments 
W+(x) n U, x e U [see Section 2 for the definition of the line W•  
each of which includes subsets of the complement of the BK set of positive 
conditional measure. The set Uo is of zero #-measure again by the Fubini 
theorem. Then, for any other point of U/Uo not belonging to the sets { V + } 
but with a stable or unstable local manifold intersecting both the opposite 
sides of a set of type E + (.), the local manifold will meet the corresponding 
V + in a set of positive conditional measure, from which one can start the 
chain. We can effectively connect any two points in U/Uo with the chain, 
making use of the following argument. We will prove in a moment that, if 
~p(U, 6) denotes the largest connected union of proper (both stable and 
unstable) rectangles, then 

#(U/%(U, 6)) ~-o+ ' 0 

We claim that, given two points in U/Uo, their local manifolds will meet 
the set ~p(U, 6) [-in particular, intersecting completely a set of type 
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E+( . ) ] ,  for 6 sufficiently small. If this is not the case, two situations could 
o c c u r :  

(a) For any 6, the shortest of the local manifolds of two points of 
length, say, A is covered by improper rectangles. But the measure of these 
rectangles is at least 62sin 0[(A + t / ) / (6 - r / ) ] ,  where 11 =4e6/sin ~ arises 
from the mutual intersection of the rectangles, and so, dividing by 6 and 
sending 6 to zero, we get a term of order 1, which contradicts Theorem 3.2. 

(b) For any 3 the same shortest local manifold is covered by 
improper and proper rectangles not belonging to N~(U, 6). These proper 
rectangles belong to a connected component which, however, cannot cover 
all of U: then each of these connected components will be "encircled" by 
improper rectangles, thus leading to a situation of the type described in (a) 
in the limit 6 ~ 0. 

What is left to prove is then: 

Proposition 3.4: 

~,(u/%(u, 6)) ~o+ ' o 

Proof. If the statement is not true, there is a sequence {6, } decreasing 
to zero for which 

~,(%(u. 6 . ) ) ~  g< ~(u) 

We treat now the case g > 0; the case g = 0 is essentially similar and we 
refer to Appendix A for the details. Let us consider the rectangles of 
fqp(U, 5.) whose sides are not completely included in another element of 
ffp(U, 6.) and among these sides choose those, {/~}, not belonging to the 
complement of U. These sides will intersect an improper rectangle of 
if(U, 5.) and we put L ( 6 . ) = Z :  length(/~). The measure of the improper 
rectangles intersecting the {l~} is surely bounded from below by 
1L(6~) 6~ sin ~ d(e), where the factor 1/4 arises from the fact that we could 
have four transversal l~ giving only one improper rectangle, and d(e) is a 
positive factor given by the measure of the intersections of the improper 
rectangles [for example, d(e) can be chosen as 1 - 2 7 e / s i n ~  with 
e<  (sin (p)/27; see condition (i) on the choice of el. Now there exists a 
subsequence 6., for which L ( 6 ~ , ) ~  ~ > 0, because otherwise we could 

find another subsequence 6.j for which L(6,j) ~ 0 and consequently 

~(%(u, 6.)) ~ ~,(u) 
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In fact, the limit L(6,j)--* 0 implies that the complement of ~p(U, 6,j) in U 
has measure tending to zero in the limit j--* oo, by the isoperimetric 
theorem. Then, for the subsequence 6 , ,  the measure of the improper 
rectangles considered before gives 

L(6.,) 6~, sin ~ d(e) 
lim > 0 
~ oo 46,, 

which contradicts Theorem 3.2. 
Now we are ready to prove the global ergodicity. 

Proposition 3.5. The transformation Tis  ergodic on the torus ~-2 
with respect to the Lebesgue measure. 

Proof. We know that the closure of U is included in the interior of 
a polygonal region, say R, bounded by connected segments of 7, and y,, 
for n < n~. Among them take a connected subset y,, c ~/m, m < n~, such that 
we can find an open connected set O including ~m but not intersecting any 
y, for n < n~. On the set O we can perform the covering in rectangles of size 
6 described above and find that the largest connected union of proper 
"unstable" rectangles will cover O (rood 0) in the limit 6--* 0. Then there 
will be sets of points of positive Lebesgue measure whose local unstable 
manifolds connect open domains in R and in the complement of R, thus 
continuing the Hopf chain outside U. 

Proposition 3.6. The transformation T i s  Bernoulli. 

Proof. Since Proposition 3.5 can be easily extended to all the powers 
of T and our map is a piecewise linear almost hyperbolic transformation, 
we can apply the results in ref. 14 to conclude that it is also Bernoulli. 

4. P R O O F  OF T H E O R E M  3.2 

We perform the proof only with respect to the stable direction, the 
other case being completely equivalent. 

The strategy of the proof is the following: we start by computing the 
measure of the set of rectangles, denoted by N<N(6), crossed by two or 
more transversals ?n, n~ < n ~< N. We include these rectangles in the stable- 
improper set ~I(U,  6) and we get ]2(~g~<N((~))~CI(N)(~ 2, where CI(N) 
depends only on N (and e, which is fixed). An important remark is that 6 
can be chosen depending on N so small that no rectangle contains parallel 
components of ?n for n ~< N. 

This suggests that we define N as a function of ,~. Let us in fact call 
v(N) the minimum distance between parallel components of 7n, n~ < n ~< N; 
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clearly v(N) is a positive function going to 0 for N--* oe. At the same time 
the function C1(N) introduced above (see later for its precise definition) is 
a finite function of N growing to ~ for N--* oe. This makes it possible to 
find, for 6 smaller than a J sufficiently small, a function N(6) > n~ growing 
to infinity for 6 -~0  and satisfying, for 6 < 3, v(N(6))>diameter(Gi) and, 
for example, C~(N(6)) < 6 -~, fi < 1, implying C~(N(6)) 6 ~ 0 when 6 --* 0. 
(Proof: see Appendix B.) 

We will use these facts in a moment; from now on we fix 6 < 3, and 
for simplicity of notation we put N -  N(6). Note, however, that we could 
keep N constant; in fact, the relation (**) below shows that we can send 
N--* oe at the end (since 2 <  1). 

Then, given a single 7n, n~<n<~N, intersecting a rectangle, we 
compute the measure of the set of points whose local stable manifolds are 
prevented by 7n from crossing entirely the rectangle. 

The measure of this set is at most 2e62 and if this set belongs, in the 
worst case, to a set of type E i ( . ) ,  we see that we still have a region of 
measure e62 that needs to be filled with too short local stable manifolds in 
order to declare the rectangle stable-improper. 

Then the set of points with too short stable manifold in a rectangle 
crossed by one 7n, n~ < n ~< N, belongs to D = Up= 1 ON+p, where DN+ p is 
defined as follows: given y~q]-2, call O~N+p(y ) the point of the set 
W (y )o  ~N+p closest to y, and Iy,~+~(y I the segment of endpoints y and 
etU+p(y ) in W (y). Then 

ON+p ----_ { y e  ~-2; length(/y,~u+ ~(y)) ~< 3, 

and ly,~u+ p(y. ) c3 ,/j = ~ ,  0 <~ j ~ N +  p - 1 } 

We will show that #(D)~< 4~62N/(1 --2); moreover, we include a rectangle 
Gi in Nf-(U, 3) if 

# (a ,  c~ D) ~> 62e/> ~ #(ai)  (*) 

The last information allows us to compute the measure of the union of all 
the rectangles, denoted ~>N(6),  satisfying (*), namely #(if>N(6))<-. 
C262 N, where C 2 is a constant depending only on e and 2. 

In conclusion, the measure of all the stable-improper rectangles will be 
bounded by 

#((ffI(U, 6))~#(~<N(6))-]-U((ff >N(6))~C1(N)62-t-Cz63~ N (**) 

Dividing by 3, sending 6 to zero, and remembering the properties of 
N =  N(6), we get 

lira # ( N i ( U '  3 ) ) - 0  
6 ~ 0  6 
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Now we illustrate the simple geometric considerations to justify the 
preceding arguments. 

Let us suppose a rectangle Gi intersects two connected components of 
7,, n~ < n ~< N; we call 7m and 7p the straight lines starting from the point 
0 at angle Omp and intersecting Gi. The problem is now to find a circle of 
center 0 including Gg. Referring to the situation sketched in Fig. 4, where 
the distance between 0 and DD' is larger than the distance between 0 and 
PP', since the convergence of the 7, is monotone by Lemma 2.1 and 
supposing that the angle (measured counterclockwise) between the two 
oriented vectors P.,~ and 72"in Fig. 4 is smaller than s, there are two cases 
to consider, namely 

~7,~ ~ DD' ~ (25 f Tm n DD' = 
(i) [Tp c~ DD' ~ ~25 and (ii) [Tp c~ DD' 4: 

The largest segment, of length S, intercepted by 7m and 7p on the straight 
line DD' occurs when ('2(PA, Tm)=O and ff2(V,Tp) approaches 0. 
A simple geometrical construction gives 

I sin s 3 
S=6 l+sin~- )J--6Sl(S,~) 

The two cases considered above correspond to two different types of 
triangles, those having a vertex at 0, one side along 7p,  another side 
joining 0 to D [-case (i)] or 0 to E (not to D, just to simplify the computa- 
tion) [case (ii)], and finally the third side along DD'. A straightforward 
investigation shows that the largest of the two sides intersecting at 0 (which 

V 

s jJ f S  

/ / ' "  Yn ~Ym 

P' P / l~p  (i) (ii) 

Fig. 4. Possible  intersect ions of a rectangle with two discont inui ty  lines. 
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will be the radius of the circle we are looking for) is, in both cases, 
bounded by 6S~(e, O)[cot  Omp + 1]. This allow us to compute the measure 
of the set of rectangles in U which are intersected by more than one (non- 
parallel) 7,, n~ < n ~< N; we have 

I~(~x(3))  <~ 32C1(N) 

where 

Ca(N) -= ~S2(e, ~) sup{ (cot Omp + 1 )2; n~ < m, p ~< N 

and ?;c~ U r  ~m('~ U ~ }  

�9 :~ {intersection points in U among the V,, n~ < n ~< N} 

Note that the cardinality of the intersection points is finite since the 7, have 
finite length and meet transversally. 

The next step is to estimate the area intercepted by one singularity line 
7,,, n~<n<<.N, in the rectangle Gi. Since t?(V , 7 , ) < e ,  it is an easy exer- 
cise to show that this area is always bounded by (3 2 sin ~ sin e ) / s i n ( 0 -  e) 
for the two possible cases sketched in Fig. 5. By suitable choice of e, that 
area is smaller than 2e32 and this justifies the prescription (ii) on the choice 
of e. 

o0 Finally, we have to estimate the measure of the set D = Up=~ DN+p. 
Clearly 

Du+ p ~ BN + p -=- {y; p(TN+ py, 7) ~< )~N+ P3 } 

and, by the invariance of the measure, 

4~32 u N §  t~(Bu+p)..~47c2 3, so tha t  #(D)~< 1 - 2  

V 

"tn 

Fig. 5. Possible intersections of a rectangle with one discontinuity line. 
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As we have already said, we consider G~ stable-improper if #(Gic~ D)>~ 
(e/sin ~) #(Gi): we call it G~. Then the measure of all the stable improper 
rectangles of this type satisfies, using the property (b) of the covering, 

#(N>U(6)) ~ sin ~ ~ #(G~ ca D) 
i 

8 sin 32~ sin ~11~2 N 
~< ~9 #(~> / (5) ~ D) -..< 

e(1 - 2 )  

which concludes the proof. 

A P P E N D I X  A 

We prove Proposition 3.4 when there exists a nonincreasing sequence 
{6~} for which #(~qp(U, 6 , ) ) ~ . ~  0. In this case we have to change a 
little the argument in the proof of Proposition 3.4. If ~p(U, ~.) denotes the 
union of the proper, both stable and unstable, rectangles, we have two 
cases to consider: 

(i) lim sup #(%(U, 6,)) < #(U) 
t / ~ o O  

(ii) lim sup #(~p(U, f i r ) )=#(U)  
t /~oO 

In the first case the total measure of the improper rectangles is 
asymptotically positive, so that, dividing by 6. and taking the limit for 
q--, +o% we get a contradiction with Theorem 3.2. The case (ii) requires 
a close investigation. 2 Let 6.~ be a subsequence for which we have the 
existence of the limit in (ii); then we estimate the measure of the set of 
improper rectangles: 

#(N~(U, 5,~))~> 6,k sin O d(e) N(6"k) 
4 Z L,(6,k) 

i ~ l  

where N(b.k ) is the number of connected components of (qp(U. 6,~), includ- 
ing also simple rectangles, and Li(6,k ) is defined in the following way. Let 
%,i(U, 6.k) be the ith connected component of ~p(U, 6.k); then consider 
those rectangles of %.i(U, 6.k ) whose sides are not completely included in 
another element of Np,~(U, 6.~) and among these sides choose those, 

2 We note at this point that it is sufficient to prove the result for an open subdomain U' c U 
made of rectangles belonging to a grid of fixed size ~ with the boundary sides taken off; in 
this way the boundary of U' is a piecewise linear curve and the geometric considerations are 
very easy. 
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{li,%,~}~, not belonging to the complement of U. We now assume that 
none of the boundary sides of the Np, i(U, 6,k)' i=  1,..., N(a~), belongs to 
the complement of U: this restriction can be easily removed by observing 
that in the limit k--+ +oo the sum of the length of the l~,a,,k, ~ is larger than 
or equal to the sums of the length of the sides belonging to the complement 
of U, so that the r.h.s, in the bound (o) below must be multiplied by 1/2. 
Then we put Li(ank)----~_.~ length(li.a~k.~). But Li(6nk ) is larger than the 
perimeter enclosing f#p,i(U, 6.k ), denoted P,(f.k). Now let us suppose we 
glue together at the boundary, in some way, all the %.,(U, 6~k): doing this, 
we get a polygon whose perimeter is less than 

N(~qk) 

Pi(b.k) 
i = 1  

but with the same area of the (disconnected) union of the Np, i(U, 6,~k). Then 
by the isoperimetric theorem we get 

sin r d(e) 
/~(NI(U, 6.k)) /> 5,k 2 [Tc#(Np(U, 6,k))] ~/2 (o) 

which again implies that #(N1(U, a~k))/C~,k is different from zero in the limit 
k-+ oo. 

a~ a 

CdN~}, 

..,.,...O 

Cd,u 

. . . . . . . .  .ale 

' , ,  

i " ' , .  v(.,V~) iI -. - / 

2,~ . . . . . . . . . . .  _ ' Q " -  . . . . .  7 n 

* i i 
0 i : i 

N~ 

Fig. 6. Graph of CI(Nk) and V(Nk) versus N~ and construction of the function N(6). 
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A P P E N D I X  B 

We know that l imN~ ~ C~(N)= + ~  and limN~ ~ v(N)= 0. Then it is 
always possible to choose a subsequence Ark, k~> 1, with the following 
properties: (i) CI(N~) and v(Nk) go to the respective limits monotonical ly;  
(ii) C~(N1)>~v(N~); (iii) N~>n~. N o w  we fix 3 and fl in such a way that 
~< v(N~)/2 (we use the fact that  the diameter of a rectangle Gi of  size 6 is 
simply bounded  by 26), and 6 - ~ > C ~ ( N ~ ) ;  for example, we can take 
3 <  inf{ 1/CI(N~); v(Nl)/2} and then [ log Cl(N1)/log $ - 1 ]  < fl < 1. Then 
for any 6 < J w e  can always find an Ne, e>~ 1, such that CI(Ne)<6 -~ and 
v(Ne) > 2~ (see Fig. 6). Choose  finally, for the given 6, N(6) = N~ in such a 
way that  N(6)  grows to ~ for 6 ~ 0+:  this is surely possible by the already 
stated asymptot ic  properties of the sequences CI(Nk) and v(Nk). 
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