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For conformal mixing repellers such as Julia sets and nonlinear one-dimensional 
Cantor sets, we connect the pressure of a smooth transformation on the repeller 
with its generalized dimensions, entropies, and Liapunov exponents computed 
with respect to a set of equilibrium Gibbs measures. This allows us to compute 
the pressure by means of simple numerical algorithms. Our results are then 
extended to axiom-A attractors and to a nonhyperbolic invariant set of the line. 
In this last case, we show that a first-order phase transition appears in the 
pressure. 

KEY WO R DS: Thermodynamic formalism; topological pressure, generalized 
Liapunov exponents; generalized dimensions; Renyi entropies; repellers; strange 
attractors. 

1. I N T R O D U C T I O N  

The thermodynamic description of dynamical systems is a powerful method 
for investigating chaotic behavior. A relation between the free energy and 
the generalized dimensions was recently established (1'2) by means of this 
formalism. We want to extend these results and show how to compute the 
pressure by simple numerical algorithms. 

We start by focusing our analysis on the one-dimensional linear 
Cantor set, since it is perhaps the simplest nontrivial dynamical system for 
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which one can exactly compute all the relevant dynamical, geometrical, 
and thermodynamic variables. Moreover, an approximation scheme (3'4) 
allows one to extend all the results valid for the linear Cantor set to 
expanding repellers. The method is constructive and its convergence 
properties have been proved. It can thus be used for computations with the 
desired accuracy in nonlinear repellers. 

In this paper we compute, for a large class of expanding maps of the 
interval, the generalized Renyi dimensions and entropies as well as the 
generalized Liapunov exponents (with respect to some remarkable ergodic 
measures) and show that they are directly related to the pressure function. 
We also extend our methods to repellers in dimension larger than one and 
to strange attractors. 

Using the thermodynamic formalism (see, e.g., Refs. 5-7) we give the 
analytic expression of the pressure for a nonhyperbolic repeller, the map 
T(x)=x2-2 defined on the interval [ - 2 ,  2]. In this case the pressure 
exhibits a phase transition in agreement with a previous result obtained by 
Bohr and Rand/s) 

For several other models, such as the quadratic maps with totally 
disconnected Julia sets, the Baker transformation, and the H6non and 
Zaslavskii maps, the pressure is computed analytically or numerically and 
the corresponding values for the generalized dimensions, entropies, 
and Liapounov exponents are given. 

2. PRESSURE A N D  GENERALIZED D Y N A M I C A L  VARIABLES:  
D E F I N I T I O N S  

2.1. Pressure 

The pressure of a continuous function ~0 with respect to a continuous 
transformation T on the totally T-invariant compact set J is determined by 
the variational principle(V): 

P(T, q0)= sup (K(l~)+;jcp(x)d#(x)) (2.1) 
I~ ~ M T ( J )  

where Mr(J  ) is the set of the T-invariant probability measures # on J 
and K(#) is the Kolmogorov entropy of #. If J is a mixing repeller, 
the supremum is achieved for a unique ergodic measure, called the 
"equilibrium Gibbs" measure for ~o. In the following we only consider the 
pressure of the function 

q~(x)= - f l log  IlOxTlr with /~e~ (2.2) 
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where IkDx T[I is the norm of the tangent map of the transformation at x (in 
a suitable metric on J) and we write for convenience 

P(fl) = P( T, - fl log tlOx Tll) (2.3) 

When ~0(x) has the form (2.2), the topological definition of the pressure r 
becomes rather simple [the variational principle (2.1) follows from this 
definition]. In fact, let dr176 be an open cover of the invariant set J and 
3 ( d  r176 be the diameter of the covering. We then define 

Z,,(fl, d ( ~  ~ sup IlOxZ"ll -~ 
( A E ~  x~A 

with ~ finite subcover of d ("- ~)} (2.4) 

where d ~"- 1) denotes the dynamical cover: 

n-- I  
d ( n  1 ) =  V T - i ~ ~  (2.5) 

i =0  

It is possible to prove the existence of the following limit: 

P(fl, d ~~ = lira 1 log Z,(f l ,  d ~~ 
n ~ o o  /1/ 

(2.6) 

and the pressure of the function (2.2) can be written as 

P(fl) = lim (sup P(fl, d~~ 3 ( d  ~~ < e) 
~ 0  

(2.7) 

We use this definition in Appendix B in order to compute the pressure of 
the Baker transformation. 

2.2.  G e n e r a l i z e d  D i m e n s i o n s  

The generalized dimensions ~ are a useful tool for describing the 
singularity spectrum of a measure. Let d (~ be a cover of the set J by 
closed sets of small diameter that intersect only in the boundaries (a 
"partition" of J with a nonrigorous terminology), such that the dynamical 
partition d (n) [see (2.5)] has a diameter which vanishes in the limit n ~ 
(generating partition). We can thus define the partition function for real q 
and r: 

#(A(~n))q (2.8) 
Hj(q,  r, n ) =  ~ cS(A~,)) ~ 

A~ n) ~ d(n) 

822/51/1-2-8 
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where A~ n) is an element of d ("), 6 ( A ) = d i a m  A and # is a T-invariant 
Borel probability measure on J. If for fixed q and n ~ oe there exists a 
"changeover point" ru(q) such that for ~ < %(q), Oj"* 0 and for ~ > r,(q), 
H j  ~ oo, we call 

D u ( q )  = r . ( q ) / ( q  - 1 ) (2.9) 

the generalized dimension of order q of the set J. These dimensions 
obviously depend on the measure/~ (see, e.g., Ref. 4) and, in general, also 
on the partition sJ (~ 

2.3. Renyi Entropies 

The Renyi entropies (1~ are defined with regard to a T-invariant 
measure # on the set J. If d (~ is a y-measurable generating partition, let us 
define the q-order entropy of the partition d ~") as 

1 
~ ( q ,  n) = T2--2 log ~ ~(A~"))  q (2.10) 

l - q  
A~ n} E ~(n) 

The Renyi entropies are then the thermodynamic limits of o ~ ,  which are 
independent of the partition d (~ if it is generating: 

h~(q)= lim l ~ ( q ,  n) (2.11) 
n~oo  

The Kolmogorov entropy K(/~) is recovered in the limit q--. 1, while the 
topological entropy hToe is recovered in the limit q--* 0. 

2.4. Generalized Liapunov Exponents 

The generalized Liapunov exponents (11) have been introduced as an 
indicator of the intermittency degree in chaotic systems and can be com- 
puted by means of simple numerical algorithms if the evolution equations 
are explicitly known, (11'12) in contrast with the Renyi entropies. 

Let us now define these exponents with regard to an invariant ergodic 
measure/~ on J such as 

Ll~(q) = nlim ~ sup 1 log fj t]DxTnllq d~(x) (2 .12)  
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For expanding systems the characteristic maximal Liapunov exponent 2(#) 
is given by the derivative of L,(q) at q = 0: 

2(~t) = .~lim sup -nl fglOg [ID~T~[I d#(x) 

_ dLUdq q=O = q~olim L~,(q)q (2.13)  

3. C O N N E C T I O N  OF T H E  D Y N A M I C A L  V A R I A B L E S  W I T H  T H E  
P R E S S U R E  

We first consider two classes of repellers, the linear and nonlinear 
Cantor sets, which provide natural partitions on which all the dynamical 
variables can be easily computed. We can thus establish the relations 
with the topological pressure in the case of two relevant measures: the 
"balanced" measure #B, which maximizes the Kolmogorov entropy [i.e., 
K(#B) = hToP----h~,(q = 0), for all #] ,  and the "uniform" measure #u, which 
maximizes the Hausdorff dimension of the measure. ~15) We shall show that 
all the Renyi entropies are equal to hToP for the "balanced" measure, while 
all the generalized dimensions are equal to DH, the Hausdorff dimension of 
the support, for the "uniform" measure. In this sense, the "uniform" 
measure is not multifractal, (91 in contrast to the "balanced" measure. Let us 
now consider a map T from an open neighborhood V~ [0, 1 ] into ~ of 
class C 2 on V with the following properties (see Fig. 1): 

Fig. 1. 

T(xl 

Example of expanding map T(x) of the interval [0, 1] with its piecewise linear 
approximation L~. 
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(i) T - l ( [ - 0 ,  l ] ) =  [-0, 1] .  

(ii) T is expanding on T-l([-0, 1]), that is, IT'(x)[ >~B> 1 for all 
x ~ T - l ( [ 0 ,  1]) Ehere and in the following T'(x) also indicates the 
derivative of T with respect to x]. 

(iii) T 1([0, 1])=U]r where Ik are closed, disjoint intervals 
Ik ('7 Ij= ~ for k r j. 

The repeller J of the map 

J :  (~ T-"(E0, 1]) (3.1) 
n=0 

is an invariant Cantor set. 
An important subclass is given by the maps T(x) that are piecewise 

linear on T 1([0, 1 ]) (see Fig. 1 ). In this case we call the repeller J a linear 
Cantor set. Letting Tk l (x )  be the inverse of the restriction of T(x) to the 
interval Ik where it is univalent, we shall write 

T ; l ( x ) = a k + G ~ k x ,  e~= +1, x ~  [0, 1] 

and refer to the positive constants ?k < 1 as scales of the linear Cantor J. 
We notice that [T'(x)l =7~-~> 1 for x~I~ ,  in agreement with (ii). 

The partitions are easily constructed in this case: indeed, 
~r : U]~: 1 (Ik m J) ,  while 

~r U Aki,...,k,, A~l , . , . , k=[Tkl . . .T~l ( [O,  1 ] ) ] n J  (3.2) 
kl,...,kn 

with k j  = 1,..., s for J =  1,..., n. We observe that 

Ak,,...,k = T~l(Akl,..,k,_~): Tk, l([O, 13)=Ik,  

As a consequence we have, for x ~ Ak~,...,k,, 

][DT(x)I[ =TL 1, IIDT'(x)][ =Tkl  1 . . . . .  7knn I (3.3) 

This observation allows us to obtain the pressure of the function (2.2) 
restricted to the Cantor set J. In fact, choosing the sets A in (2.4) as 
Ak,,...,k ~ d ( ,  1), we have 

Zn(fl)= 2 (?~11 . . . . .  ~ ) ~ r l ) - f l = ( ] / l f l q  - "- -+?~)"  ( 3 . 4 )  
kl ,...,kn 

and finally 

P(fl) = log(y~ + ... + 7~) (3.5) 



Pressure Function for Strange Sets 115 

We can introduce on the linear Cantor set a family of T-ergodic probability 
measures #,(~4) with the properties 

/z(Ik) =p~,  ~ Pk = 1 (3.6) 
k = l  

#(Akn,...,kj) =Pkl Pk2" ' 'Pk ,  (3.7) 

The constants Pk are the weights of the measure. 
Two measures are particularly interesting: the balanced measure #~, 

whose weights are equal ( p l = p 2  . . . . .  p s = S  ~), and the Gibbs 
DH "uniform" measure #u, whose weights are pk=,% , where D ,  is the 

Hausdorff dimension of J. 
It is also possible to consider a balanced measure for the nonlinear 

Cantor sets defined by 

# B ( A )  = _1 #B( T A )  (3.8) 
S 

where A is any measurable subset of J where T is injective. Now putting in 
the partition functions of Section 2 a measure # with weights Pl,-.., P, and 
repeating the straightforward combinatorial arguments that lead to (3.4), it 
is simple to compute the generalized variables for the nonlinear Cantor 
sets. Indeed, the generalized dimension D~,(q) satisfies the relation (9) 

~ p q , ~ O . ( q ) ( q -  1) = 1 (3.9) 
i = 1  

while the Renyi entropies and the generalized Liapunov exponents are 

h~(q)(1 - q) = log(pq + .. .  ps q) (3.10) 

Lu(q)  = log(p 1 ~1 q + . . .  + ps~/ s q) (3.11 ) 

For  the balanced measure we thus obtain by comparing (3.5), (3.9), and 
(3.11) 

P [  - D~B(q)( q -- 1 )] = qP(O) (3.12) 

L~B(q) = P ( - - q )  -- P(O) (3.13) 

beyond the trivial relation h,B(q ) = In s =  P(0), for all q's. On the other 
hand, for the Gibbs "uniform" measure p~ = 2ff H one has 

hu~(q)(1 - q) = P(q  . DH) (3.14) 

L~,,(q) = P ( D H  - q) (3.15) 

beyond D~,~(q)= DH for all q's, which directly follows from (3.9). 
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3.1. Dynamical  Variables for Nonl inear  Cantor  Set 

All the preceding relations can be extended to the invariant Cantor 
sets J of nonlinear expanding maps T by approximating T by a sequence of 
piecewise linear maps. (3"4) Let us in fact consider the nth level of 
dissociation of the unit interval: 

?,,~ = 6(A~ 1), ~ = 1  ..... s" (3.16) 

where A~ ~ is the c~th element of the partition d ( ' - l ) =  T-(n-1)~ 1(~ with 
d ( ~  T-~[0, 1] c~J. The 7,,~ can be identified with the scales of a linear 
endomorphism whose invariant set is C,,  and the pressure P ,  restricted to 
C, is just given by (3.5). It has been shown (3'4) that the Hausdorff 
distance (35) between C, and J vanishes when n ~  + ~  and that the 
pressure P(/3) with respect the mapping T is 

P(/3)= lim -llog ~ 6(A"~ ~)~= lim 1p,(/~) (3.17) 
n----~ +oc) n A ( n - l } d ( n  1) n ~  + ~  ,1'/ 

This result can be also proved by means of the Ruelle-Perron-Frobenius 
operator. (36) In fact, for an expanding one-dimensional map and more 
generally for a conformal mixing repeller (~5) one has uniformly in x e J: 

P(fl)= lim -llog ~ 1 (3.18) 
,,~ + ~ n  I(Tn)'(y)l ~ 

y ~  T~: n 

Any preimage y of order n of x belongs to a different element A~"-1) of 
T-'I-0, 1] and the derivative [(T') '(y)l a is uniformly bounded, with 
respect to n, by the inverse of the diameter of A~" 1). This follows from the 
identity (A4) in Appendix A and by the distortion argument used in the 
proof of Proposition 2 (see below). One thus recovers (3.17) in the ther- 
modynamic limit. Let us note that (3.18) is quite useful if one wants to 
compute the pressure for connected repellers such as Julia sets. (37) 

Using (3.17), we can compute the generalized dimensions with respect 
to the balanced measure. The partition function (2.8) in fact becomes 

l.lB(A(~n)) q 
Hj(q, z, n)= ~ 6(A(fl))~ 

A(n) ~.~9'(n) 

= Z 6(A(fl )) ~ 
A(~ n) E ,~4(n) 

=exp ( n + l )  - - q l o g s + n - - ~ l o g  ~ 6(A~'/) ~ (3.19) 
A (n) E ~41n) 
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It follows that in the limit n---, +o% %~(q) must satisfy the relation 

P( - %B(q)) = q log s = q. h T o  P = q. P(0) (3.20) 

which has been proved in Refs. 1 and 2. Let us now compute the Renyi 
entropies with respect to #B and to #v. In the first case one sees that 

h~B(q ) = log s = h T o P ,  Vq ~ (3.21) 

since /~B(A(~"))=s (n+l) 
We have to stress that the ("inverse temperature") coefficient/3 in (2.2) 

parametrizes a whole class of equilibrium measures, s a y / ~ ,  which realize 
the maximum in the variational principle (2.1). The value/3 = DH picks up 
the "uniform" measure /~u, since #v  is equivalent to the DH-Hausdorff 
measure on j,(15,16)while the infinite-temperature l imi t /3= 0 picks up the 
maximum entropy measure /~B. In Appendix A we prove the following 
relation for the "uniform" measure: 

P r o p o s i t i o n  1 

huu(q)(1 - q) = P(q. DH) (3.22) 

It is also simple to see that the generalized dimensions D,v(q ) are constant 
and equal to DR by inserting the bound (A.5) into (2.10) and recalling the 
Bowen-Ruelle formula ~15) 

P(DH) = 0 (3.23) 

Let us recall that there is another remarkable measure for which it is not 
difficult to compute the Renyi entropies. It is the measure tLSSR 
corresponding to /3 = 1, for which it has been shown that (4"81 

K(/~sB~) -- 2(/~SBR) = --P (3.24) 

where p is the escape rate ~18) and 2(~) is the Liapunov exponent computed 
with respect to the measure/~. Bohr and Rand ~8) have called this measure 
the "Sinai-Bowen-Ruelle" measure for repellers, on the basis of its formal 
analogy with the physical measure for attractors and proved that 

h,ssR(q)(1 -- q) = P(q) -- qP(1) (3.25) 

We will get this relation as a particular case of Proposition 3 below. 
Let us finally consider the generalized Liapunov exponents Lu(q). For 

the systems we are studying the definition (2.12) is equivalent to the 
following. 
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Proposit ion 2 

1 
Lu(q)= lim SUPnlOg ~ cS(A~")) q.#(A~ ")) (3.26) 

n ~ + o 9  A(n)  ~ ~c(n)  

Proof of  Proposition 2. By considerations quite similar to those 
adopted in the proof of Proposition 1, it can be shown that there is a con- 
stant G >/1 such that for every pair of points (x, y ) e  A~") and for each 
n > 0, one has (see also Ref. 19) 

G 1 ](T")'(y)] ~< [(T")'(x)] ~< G I(T")'(y)] (3.27) 

Using (3.27) and the identity (A.4), we can bound the integral in (2.12), 
supposing without any restriction that q > 0: 

G 1 ~ O(A(~'~))-q~(A(~"))<~fj](T"+l)'(x)]qd# 
A (n) E .~(n} 

~< G Z 6(A(~ ")) q #(A~")) (3.28) 
A(n)  ~ s l ( n )  

and the equivalence between (3.26) and (2.12) immediately follows from 
(3.28). The definition (3.26) is rather useful when the measure of an atom 
A~") is known. In the case of the balanced measure #B(A~"))=s -("+1), so 
that one sees 

L,B(q ) = P(--q)  -- log s = P(--q)  -- P(0) (3.29) 

where P (0 )=  hvoP by the variational principle of the pressure. 
In the case of the "uniform" measure/~v, using the bounds (A.5) on 

the measure of an atom of the partition, one easily gets 

L~,(q) = P(D u - q) (3.30) 

which was conjectured in Ref. 11. Let us stress that for #u and #B, the 
existence of the limit (3.26) can be proved. Moreover, the relation between 
the pressure and the generalized Liapunov exponents is useful for 
reconstructing the pressure itself, since the numerical calculations of L,(q) 
(Ref. 11) are much more direct than those of either Du(q) (Ref. 20) or hu(q) 
(Ref. 21). 

Up to now we have given the relations that link the generalized 
exponents to the topological pressure P(/3) for the equilibrium measures 
realizing the maximum in (2.1) wi th/~= 0, 1, and DH respectively. Indeed, 
these measures are the most commonly considered for their relevance in 
numerical experiments. It is, however, possible to extend those relations to 
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every equilibrium measure corresponding to a real ft. In the context of 
Walter's theory, (36) one can show that an equilibrium measure /~ is 
equivalent, with continuous Radon-Nikodym derivative, to a probability 
measure vr such that 

f~ I T'(x)le 
va(TA)  = exp[ - -P ( f l ) ]  dye(x)  

taking any measurable subset A of J where T is injective. This relation is 
similar to (A1) and thus, by using the same arguments as in the proof of 
Proposition 1, one can prove 138) the following result. 

Proposition 3. For  the expanding repellers, the generalized 
exponents computed with respect to the equilibrium measures /~a are 
connected to the topological function P(fl)  by 

P [ f l q -  D , , ( q ) (q  - 1)] = qP(fl)  

hu~(q)(1 - q) = - q P ( f l )  + P(q  . fl) 

L~,t~(q) = P(fi  - q) - P(f l)  

Proposition 3 is quite easy to prove (37) for the linear Cantor sets with 
scales 71,...,7,, since in this case the equilibrium measures become 
particular balanced measures whose weights are given by 

Pk = 7 7~, k = 1,..., s 
k 1 

[see (3.6)]. 

3.2. Genera l ized  T h e r m o d y n a m i c  Relat ions 

It is worth stressing that a knowledge of the set of the L~,~(q) with 
respect to a particular equilibrium measure /~  that satisfies the variational 
principle (2.1) with q~ given by (2.2) is fully equivalent to a knowledge of 
the Liapunov exponents 2~-=2(/~) computed with respect to the whole 
class of equilibrium measures #B at varying ft. 

Indeed, one sees from (2.4) and (2.6) that the derivative of the 
pressure 4 gives the Liapunov exponents of the equilibrium Gibbs measures: 

2~= dP(fl) (3.31) 

4 If T is real analytic, the pressure is an analytic function of ]~ (14) 
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and thus that 2~ is the analog of the internal energy as well as -P(fl)/fl of 
the free energy in thermodynamics. 

For  instance, from (3.29) and (3.30), we get 

dLuB(q) = d P ( - q )  = 2r  -q (3 .32)  
dq q=cl dq q=q 

and 

dLuv(q)dq q=O -dP(DH-q)dq q : ~ = ~ f l =  DH c~ (3.33) 

which reduce to the trivial identity (2.13 ) in the limit q ~ 0, since #~ = 0 = #B 

and #8 = DH = #U" 
We have thus seen that for a given Gibbs measure (i.e., for a given 

"temperature" fl-~), the temporal intermittency (the finite-time fluctuations 
of the chaoticity degree) characterized by Lup(q ) depends on the asymptotic 
behavior characterized by the whole set of 2~'s. This is in full analogy with 
thermodynamics, where the finite-volume fluctuations of the energy at a 
given temperature are connected to the diagram of the free energy as 
function of the temperature. (22) 

We can also generalize the well-known formula for conformal mixing 
repellers(4.23.24): 

2(p) = K(p)/D1(#) (3.34) 

which holds for any ergodic measure on J and where DI(#) is the 
Hausdorff dimension of the measure # (information dimension), that is, 
roughly speaking, the Hausdorff dimension of the smallest subset J of full 
#-measure. (25) 

Inserting (3.20) into (3.29), we thus obtain, for the balanced measure, 

LF'B(ZuB(q)) huB(q) hToP 
- - (3.35) 

zuB(q) DuB(q) DuB(q) 

On inserting (3.22) into (3.30), we obtain for the uniform measure 

Lu~(-zuv(q)) hu~(q) huu(q) 
(3.36) -zuv(q) Duu(q) DH 

In the limit q ~  1, relations (3.35) and (3.36) reduce to (3.34) since 
ru(1) = 0, hu(1 ) = K(#), and Du(1 ) =D, (g ) ,  while limx_0 Lu(x)/x = 2(/D, 
for every equilibrium measure p. 
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Let us finish this section by giving some bounds on the generalized 
Liapunov exponents. The first trivial bound, 

L.(q) >1 q. 2(#) (3.37) 

follows from the Jensen's inequality, while giving the upper bound 1 to the 
measure of an atom and recalling (3.18), we obtain from (3.26) 

L.( q) <~ P(-q) (3.38) 

4. E X T E N S I O N  TO M O R E  G E N E R A L  S Y S T E M S  

The one-dimensional hyperbolic systems described in Section 3 have 
an important generalization in the so-called conformal mixing repellers: the 
hyperbolic Julia sets are well-known examples. Besides the expanding 
properties and the topological transitivity, (6) they have the additional 
property that the tangent map in every point of the invariant set behaves 
like a scalar time on isometry. It is possible to do a smooth ergodic theory 
for conformal repellers that live in Riemannian manifolds of any 
degree(15'4); moreover, they could be connected sets and therefore not have 
a Cantorian structure. The role of the Cantorian partitions is taken, for a 
generic conformal mixing repeller, by the Markov partitions. (6) Using the 
Markov partitions to construct the partition functions defining the various 
generalized dynamical variables of Section 2, one can exactly reproduce all 
the relations with the pressure as seen in the case of Cantorian repellers. 
We refer to Ref. 4 for the derivations; moreover, these results are used in 
Section 5 and are applied to a connected Julia set, for which the pressure 
can be computed perturbatively. Some of the previous relations can also be 

appl ied to Axiom-A attractors. There already exists an extension of the 
Bowen-Ruelle formula (3,23), which gives the Hausdorff dimension of the 
intersection of the unstable (resp. stable) manifold of a point with the basic 
set of a C 2 Axiom-A diffeomorphism T of a surface.  (26'27) For our purposes, 
we consider an Axiom-A attractor A c N2 such that the (locally smooth) 
unstable manifold WU(x) of a point x eA intersects the attractor in a 

Cantor set. We define by Dx Tu the norm of the tangent map restricted to 
the unstable subspaces at the point xeA;  successively we put on A the 
physical measure ~tpH (Sinai-Bowen-Ruelle measure), which, as is well 
known, is smooth along unstable directions and can be reconstructed by a 
time series starting from almost all the points in the basin of attraction. (5) 
Using the properties of the Markov partitions for Axiom-A attractors, (5'6) 
it is possible to construct a partition ~ of A such that, if A(x) is the 
element of d containing x, then A(x )c  WU(x) and A - l ( x ) c A ( x ) ,  where 
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A-1(x) is the element of T 1sr containing x (see Ref. 28 for more details). 
Roughly speaking, T n d  dissects the unstable manifolds as the dynamical 
Markov partition does for a mixing repeller; carrying on this analogy and 
taking account of the smoothness of #pn on the unstable manifolds (which 
approximately means that f i pH(A  (n)) ~ ,5(A(~n)), where 6(A~ ~)) is the diameter 
of A~n)e~/~= o T kd ,  and fiPH is the conditional measure along WU(x)], 
we can write two expressions parallel to Eqs. (3.30) and (3.22) for the 
repellers: 

where 

and 

1 
L~,p.(q) = lim sup - log | HDTn(x)II q dppn 

n ~ + c c  F/ aA 

1 t *  

lira sup - log | D x T~ d#l~n = P(1 - q) (4.1) 
n ~ + ~  F/ JA 

n - 1  A 

D ~ T ~ =  1-I Dr~T~; P ( f l ) = P ( T , - f l l o g D x T u )  
j = O  

1 
h,p.(q)= 1 - q  P(q)  (4.2) 

We rigorously prove these formulas in Appendix B for the attracting set of 
the Baker transformation. However, the same arguments should work in 
general for hyperbolic attractors that are locally the Cartesian product of a 
Cantor set with an interval. Combining (4.1) and (4.2), we obtain the 
relation 

L~,p.(1 - q) = (1 - q) h~,p.(q) (4.3) 

which corresponds to (3.36) with D H = 1 and %v(q)= ( q -  1). 
If this is the case, a knowledge of the generalized Liapunov exponents 

is equivalent to that of the Renyi entropies, as recently conjectured by 
Paladin and Vulpiani ~m for some generic systems. 

5. EXAMPLES 

5.1. Repellers 

Let us consider the nonlinear quadratic map 

T(x)  = x 2 - p, p > 2 (5.1) 
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whose invariant  Can to r  set J is a totally disconnected Julia set of  the 
line. ~29) When  p is large, it has been shown (3) that  J is well approximated  
by a nonlinear  Can to r  set generated by a linear map  with two equal 
scales 7: 

1 ( p  - -  q) l /2  
7 = (5.2) 

2 2q 

where q = �89 + (1 + 4p)~/2]. In this case, the pressure becomes 

P(fl) = log 2 + fl log 7 = log 2 - fl2(pB) 

where 

(5.3) 

(5.4) 

is the L iapunov  exponent  of  the balanced measure kt s. 
When  p approaches  2, more and more  piecewise linear approximat ions  

are needed and numerical  computa t ions  become essential. The pressure is 
then given by two straight lines, which can be fitted by 

( - 2 f l  log 2 for 
P(fl)=[-(f l-1)log2 for 

f l <  - 1  (5.5) 
/~> -1  

as shown in Fig. 2. A phase transit ion occurs at tic= - 1 ;  this is a con- 
sequence of  the fact that  we are entering a nonhyperbol ic  region. 

We shall return to these formulas in more  detail in Section 6. Our  
results can be extended to connected repellers. Here we only consider an 

'~ 
PI~) [ 

i 

I 

i 

Fig. 2. 

i 

0 B 

Pressure P(fl) versus fl for the nonhyperbolic map _ 2 x, + 1 - x, - p, p = 2. One can see 
that a phase transition occurs at tic = -1. 
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example, given by the Julia set of the map T(x)  = x 2 - p, x ~ C, for small p, 
which is a fractal Jordan curve homeomorphic to the unit circle. (29) By the 
perturbative calculation of the zeta function, Ruelle (15) computed the 
pressure at the second order in [p[, which reads 

P(f l)=�88 [pl2 + log 2 -  fl log 2 + O(lp[ 3) (5.6) 

From (3.20) and (3.29) and with respect to all the equilibrium measures, 
we obtain that, at the second order in IPl, the generalized dimensions are 
constant and the generalized Liapunov exponents are linear in q: We have, 
V/L 

+ IPJ 2 + 3) 
O"a(q)= l 4~og2  0(IPl  (5.7) 

L~,~(q) = q log 2 = q2(#B) (5.8) 

since, for small [p[, the #8-Liapunov exponent is log 2. (23) Let us stress that 
as far as we know this is the first perturbative calculation of the generalized 
exponents in the Julia set of (5.1). It would be interesting to know if a non- 
trivial dependence on q ("multifractality" following Parisi's terminology ~9) 
appears at higher p orders as some numerical calculations seem to 
suggest. (37) 

5.2. Strange At t ractors  

We want now to check if (4.3) holds in the case of generic attractors 
that have the physical measure, where there exist numerical methods to 
compute independently the generalized Liapunov exponents and the Renyi 
entropies. ~11'2~ Let us, for instance, consider the attractor of the H6non 
map (x ,+ l ,  Y , + I ) = ( Y , + I +  1-1 .4xZ,0 .3x , ) ,  which is not an Axiom-A 
attractor. ~31) By a numerical calculation we have estimated 

L(q = 1 ) = 0.45 

L(q = -- 1 ) = 0.40 (5.9) 

2=0.4196 

and we refer the reader to Benzi et al. ~1~) for a plot of L(q)  versus q. We 
have also done the same calculations for the Zaslavskii map 

(x,+ 1, Y,+ 1) = ( Ix ,  + v(1 + ry,)  + err cos 27zy,] mod 1, 

e r [ y , + e c o s 2 z t x , ] )  
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with r = (1 - e-r)/F, F= 3, and v = 400/3, e = 0.3: 

L(q = 1 ) = 3.80 

L(q= - 1 ) =  3.56 

2 = 3.689 

(5.1o) 

The values of L(1) and 2 are in good agreement with those for h(0) and 
h(1) obtained by Grassberger and ProcacciaJ 2~ Nevertheless, there is a 
significant difference between L ( - 1 )  and h(2). We do not know if this 
discrepancy is due to the fact that the systems are not Axiom-A. Let us also 
note that a linear extrapolation of h(2) from h(0) and h(1) gives values 
close to those obtained applying (4.3) to L ( - 1 )  in both cases. This might 
suggest that in nonhyperbolic systems a phase transition in the pressure 
can occur and that relation (4.3) is not valid for all q values. 

The Zaslavskii map can be regarded as a perturbation of the 
generalized Baker transformation, whose pressure P(fl) is real analytic. We 
therefore discuss in detail this simple mapping and its attracting set A. 

5.3. Baker's Transformation: An Exactly Solved Toy Model 

The Baker transformation T is defined on the unit square into itself 
and is given iteratively by 

X n +  1 ~- 

Y n +  l 

1 
~+ybX~ if y~>C~ 

1 (5.11) 
- y ~  if y ,<c~ 

11 (y _ ~ )  if y,>c~ 

with 0 ~< xn, Yn ~< 1, and 0 < Ya < 7b < 1/2, C~ ~ 1/2. It is well known (33) that 
A is the Cartesian product of a Cantor set and the vertical interval [0, 1]; 

if Dx T~ is the Jacobian of the map along the unstable subspaces, we have 
the following two Propositions which we prove in Appendix B: 

Proposition 4 

P(q) =-- P(T, - q  log Dx Tu) = log[~ q + (l - 0~) q] (5.12) 
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From Proposition 4, we can obtain the following expressions for the 
generalized Liapunov exponents and entropies with respect to the physical 
measure ]2pH : 

Proposit ion 5 

and 

L~,p.(q)=log[cd q + ( 1 - ~ )  l -q ]  (5.13a) 

~ _ q  1 
h~pH(q) = P(q)=--~_qlog[c~q+(1--~)q] (5.13b) 

which justify (4,1) and (4.2) for Baker's transformation. Note that taking 
the limits q--* 0, q--. 1 in (5.13a), (5.13b), one gets 

2 ( / ~ P H ) = K ( / I P n ) = c t l o g ( ! ) + ( 1 - - C 0 1 o g ( ~ I  ) (5.14) 

which agrees with the exact values obtained by the direct application of the 
definitions/2~ If we know the conditional probabilities of the physical 
measure along the stable directions, we can try to compute the generalized 
dimensions of the (Cantorian) intersection of the attractor with the stable 
manifolds. In our case, we construct the partition function 

H(q, z, n)= ~, fipH(A(n))q ~~ ~,'~ ~(A~,~), (5.15) 

where ~ '"  = T"( [-0, 1 ] x [0, 1 ]) c~ [-0, 1 ] n A is the intersection of the nth 
iterate of the unit square with (each) horizontal interval, and fipn(A) is the 
conditional measure of A along the stable directions. 

These measures are done as follows~3~ if A~ ") is a generic atom of 
diameter ~"~ - - 6(A~ ) - I lk  = 1 Y~, with c~ = a or b, then 

/ier~(A~ n)) = f l  p~, with Pa = ~, Pb = 1 - ~ (5.16) 
k = l  

with Pa = ~ and Pb -----  1 - c~. This is obviously a particular kind of balanced 
measure for the one-dimensional Cantor set Off=o d(k). Then the partition 
function (5.15) becomes 

~Xl an  k = I 

~-- E~q') )a - z  -'l- ( l  - -  G() q ~ b - t ]  n (5.17) 
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In order to have the partition function of order one when n --, +o% we put 
the expression in parentheses in (5.17) equal to 1: this defines the 
changeover point z~u~.(q) corresponding to the transverse generalized 
dimension DS~(q). Finally, remembering the smoothness of the attractor 
along the unstable manifolds, we can write the following expression for the 
generalized dimension DupH(q) = D~p,(q) + 1 of the attractor itself: 

o~q) l [aDUpH(q) - -  1 ] ( 1 - - q )  -t- (1 - ~ ) q  ~ b  [ D # P H ( q ) -  1 ] ( l - q )  = 1 (5.18) 

which coincides with the calculation of Ref. 30. 

6. AN E X A M P L E  OF N O N H Y P E R B O L I C  SET 

Let us finally discuss an example of a nonhyperbolic set by consideri,~ 
the map 

~ = T ( z ) = z Z - - p  with p = 2 a n d z 6 C  (6.1) 

In such a case we can compute exactly the Ruelle zeta function of the 
function ~0=lnlT' l  ~. Setting z = 2 c o s I ) ,  s  it follows that 
T"(z) = 2 cos(2nO) as well as 

I(Tn)'(z)l =2"  sin(2"l~) 
sin 9 (6.2) 

On the other hand, the fixed points of T n are given by 2 cos 11 = 
2 cos(2n~)). One therefore has 

(2 2n for ~1 = 0 
IT"'(Z)lz~VixT.[2.4 for ~ 0  (6.3) 

Let us introduce the Ruelle zeta function~6): 

~(u)=exp ~ (u"/n)An 
n = l  

where 

An= 2 e x p ( - B l n l D x T I )  
x E Fix  T n 

It is known that ~(u) is a meromorphic function of u for Axiom-A 
systems and that the location of the nearest pole to the origin is equal to 
the topological pressure P(3). It results from (6.3) that 

A , =  2 I T " ' ( z ) l - a = 2 - z " ~ ' + 2 - n ~ ( 2 " - 1 )  (6.4) 
z E Fix  T n 

822/51/1-2-9 
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and we thus get 

~ ( u )  - 

One easily checks that: 

1 (u - 2 e)  

2 (u - 22P)(u-  2 ~- 1) (6.5) 

1. The nearest pole is either 2 2/~ or 2 ~ 1, depending upon whether fi 
is smaller or larger than - 1 .  Defining, by analogy with the Axiom-A 
theory, the pressure by e x p [ - P ( 3 ) ]  =locat ion of the nearest pole to the 
origin, one has 

- 2 f l l n  2 if / ~ < - 1  
P( f l )=  - ( f l - 1 ) l n 2  if f l > - i  (6.6) 

2. The zero u = 2 ~ is always outside the circle of center the origin 
containing the nearest pole. 

In this case a transition occurs at 3c = - 1 ,  as already remarked ~8'32~ 
using different techniques. The presence of such a transition does not con- 
tradict the result of Ref. 15, since the set is not hyperbolic. The generalized 
dimensions can be obtained by extending formula (3.20): 

1 for q~<2 
D"B(q)= q/[2(q--1)] for q > 2  

(6.7) 

in agreement with Ref. 8. Nevertheless our approach is not equivalent to 
that of Bohr and Rand, (SJ since the zeta function can be constructed even 
when the pressure cannot be defined (if, e.g., In liD x TIp becomes infinite). 

Indeed, the (possible) existence of the zeta function seems to us the 
best way to introduce the analog of the topological pressure when the 
function (p in (2.1) is not smooth on the invariant set J. Let us finally note 
that Benzi etal. m) have found that the tent map also exhibits a phase 
transition in the pressure function. 

7. C O N C L U D I N G  R E M A R K S  

In this paper we have shown that for a large class of hyperbolic 
invariant sets, all the relevant dynamical variables can be extracted from 
the topological pressure. The reason is that, when the invariant measure 
satisfies certain uniformity properties and for a particular kind of partition 
of the set, the generalized dimensions, entropies, and Liapunov exponents 
can be expressed as partition functions whose thermodynamic limits are 
simply connected to the pressure. A special role is played by the generalized 
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Liapunov exponents. In fact, they are the easiest quantity to compute in 
numerical experiments: for example, in Refs. 11 the interested reader can 
find L(q) curves for many dynamical systems, such as the H6non map, the 
Hbnon-Heiles model, and the Lorenz model. Moreover, Proposition 3 
indicates that the L(q) are related to the pressure function more directly 
than generalized entropies and dimensions. 

Finally, by means of the Ruelle zeta function, we have tried to extend 
the thermodynamic formalism to nonhyperbolic invariant sets, provided 
that they are the closure of the fixed points of the map, but a phase 
transition could occur in this case. 

A P P E N D I X  A 

Let us prove Proposition 1. Since log IT'(x)[ is uniformly continuous 
on T-  1 [0, 1 ], for fixed e > 0 there is Z~ > 0 such that for each pair of points 
(x, y) e T-1 [0, 1 ] with I x -  Yl < Z~ we have I T'(x)i ~< IT'(y)[ eL Choose m 
so large that diameter ~4(m~<z~, put ~r and consider the 
dynamical partitions starting from ~,(o) [this obviously does not change the 
limit (2.11)]. Now, let us recall (15'16) that the uniform Gibbs measure #v is 
equivalent, with continuous Radon-Nikodyn derivative, to a probability 
"conformal" measure vc, which has the property that, for every measurable 
set B where T is injective, it satisfies 

P 

vc(TB) = JB I T'(X)I D, dvc(x) 

Applying iteratively this relation to the elements 

(A.I) 

n - - 1  

B~ n ) ~ ( " - 1 ) =  V T-k~(~ 
k = 0  

we get (note that for economy of notation we have put B~") instead of 
Bi n- 1~ as in the preceding sections) 

n 1 

(~lPu(B~ n)) 1-I min ]T'(xi)l D" 
i=O xiE TiB(~ n) 

<~ #v(T~B~ ")) 
n - - 1  

<<- tP2#v(B~") ~I max [T'(xi)[ D" 
i = 0  xi~  TiB~ n) 

(A.2) 
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where ~1 and ~2 are positive, finite constants deriving from the equivalence 
with the conformal measure. Using now the uniform continuity, we get 

~ l#u( B(")) e -'~ I(T')'(x)IDH 

<~#u( T'B(fl )) 
n~ (n) <<. r #u(B~ ) [(T")'(x)[ ~ (A.3) 

where x is any point in B(fl ). 
Since T" is a strictly monotone of B(~ ") onto [-0, 1], calling W,,~ its 

inverse and using Lagrange's theorem, we obtain 

5(B(fl)) = IW,,~(1)- W,,~(0)I = I(T')'(~)I I (A.4) 

where ~ belongs to Int(B(~ ")) and 5(B (~)) is the diameter of B(fl ). Choosing 
x = ~ in (A.3), we finally have 

~h; le-"~ c~(B(n)) DH #u(T'B(~ ")) 

<~ # u ( B  (n)) <~ ~ / l i e  ne (~(B (n)~DH " tT"B(')~ (h.5) a ) ta'U ~, u ! 

where #v(T'B(~ ")) is the finite measure of an element of the partition ~(o). 
Thus, we can bound the partition function (2.10) as (we suppose q > 0; for 
q < 0 similar bounds apply; besides, we neglect terms that remain finite in 
the limit n-* +oo): 

- n e  + log ~ 6(B(~')) uDH <<. (1 - q) ~v(q ,  n) 
B(n) 

<~ ne + log ~ (~(B(~n)) qDH (h.6) 
B(:) 

Taking the limit for n ~ ~ ,  by (3.3) and the arbitrariness of 5, we get 
Proposition 1. 

APPENDIX  B 

Let us prove Proposition 4. We use here the topological definition of 
the pressure and the relative notation given in Section 2. We consider the 
partition ~ (0 )=  {A1, A2, A3, A4} of A with the closed set Ai shown 
in Fig. 3a. To be correct, we should consider an open cover of A, 
but our choice does not affect the final result. The partition 
~ ( "  1)=V~-1 T kd(~ is done by two vertical strips intersecting the x 
axis in the intervals [0, 70] and [1/2, 1/2:t-76 ] and dividing each into 2" 
rectangles; we show in Fig. 3b the partition ~(a), n = 2. Let us now concen- 
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C4 

~i;ilili!!i!i!!iiiiiiiiiiiiiiiiiiiiiiii~iii 
:::::::::::::::::::::::::::::::::::::::::: 
::::::::::::::::::::::::::::::::::::::::::: 

@;iiiiliiiiiiiiii~; 
iiiiiiiiiii~iiiiiiiiiiiiiiiiiiiiiiiiiiiiil 

ii!iii!!ii!i!i!iiiii!i!;iiitiiiiiiiiiiii! 

iiiiiiiii{iiiiiiiiiiiiiiiiiiiii!iii!i{iill 

0 ~ 1/2 1/2 + ~b 

(a) (b)  

W 

c~ ================================= ::::::::::::::::::::::::::: 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

0 ~(~ 1/2 1/2 * ~'b 

y Y b{1/2 +~+ J b) 

U2+[-~u. L 1/2 (1 + ~ b ) -  

(c) 

Fig. 3. Construction of the partition for the attractor of Baker's transformation: (a) 
d(~ A3,A.}, (b) d ( l ) = ~ ~  ~~ (c) d l ~ 1 7 6  
(z~ '~~ v Td(~ Clearly, to get a partition of A, we have to intersect the shaded regions with A 
itself. 

trate on one of the two strips: if we pick a point x in the rectangle 
A i e d  (n- l ) ,  i =  1,...,2 n, belonging to the first strip, setting 1 /~=Z~  and 
1 / ( 1 - ~ ) = g 2 ,  we have 

A n - - J  

k = O  

with {ik} a particular sequence of  the two symbols  [1, 2] .  We obtain all 
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the possible 2" sequences by taking x in the different A~ of the first strip. By 
the definition of the pressure (2.4) and since we have two strips, we thus get 

from which 

n--1 
Z~(q, d ( ~  l~ zi~q=2[ O~q-k- (1 __~)q]n 

it ik k = 0  
(B.1) 

p(q, j ( o ) )  = log[~q + (1 -- 0~) q] (B.2) 

The partition d ~~ is clearly not generating; then we choose another, finer 
partitin d{o) according to ~ ( m  -- 1) 

"5~(0)(m-- 1) ---- (k=~/0 z - k~% r V z k ~  (0) ( 8 . 3 )  

in such a way as to make the widths of the vertical strips smaller; see 
Fig. 3c. Repeating the above arguments, it is easy to see that 

Z~(q, ~(md(O) 1))= 22mE@q..[._ (1 - - o ~ ) q l  n (B.4) 

from which the pressure of d(o) is the same as that of d (~ independent ~ ( m - -  1) 
of m. But diam ,~(o) ~ 0 for m ~ + ~ ,  and we thus have ~ ( m  -- 1 ) 

P(q) = log[a q + (1 -- ~)q] (8.5) 

We can now prove Proposition 5. The elements of the partition con- 
sidered in Section 4 (which is subordinate to the unstable foliation) belong, 
for every m ~> 1, to d ~~ c~ WU(x), x eA,  and are simply the vertical (m- i) 
pieces of the attractor inside each rectangle NI ~ 1) of d(o) ~ ( m  1)" 

The partition 

{(20 ) '} d ( - ) =  T k~(O) (x - -  ~ ( m - -  1) ('h W U 

is a refinement of d (n 1) while the lengths of the horizontal sides of the 
T-k~(0)  do not change under the backward rectangles ~I~,, )_1) s~/~=o ~ ~(m 1) 

iteration. The physical measure of such a rectangle is then the product of 
the conditional measure of the vertical side, which is equal to its length, 
and the conditional measure of the horizontal side along the stable direc- 
tion, which depends only on dl0m )_ ,) and is thus bounded by two positive 
constants, say #~)N and ~MAXa("). Moreover, it is easy to verify that the ver- 

tical length of any rectangle is exactly equal to (Dx T~ + 1))-~, x belonging 
to the same rectangle [see the expression for the "expanding" Jacobian 
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given in (B.1)]. Then we have for the Renyi entropies (a similar argument 
extends to the generalized Liapunov exponents) 

1 log ( f i~) iN)q~(DxT~+Z) -q 
n + l  

1 
log i 1 ( ~ (  n ) ]q 

n + 1 Z, t* ' , " (m - 1)J 

~< ~T-]-log (fi~A)X)q~ ( D x T ~  + (B.6) 

where the sum is over the rectangles ''(m-R(') 1) and q is chosen positive, 
without any restriction. Taking the limit for n ~ + ~ ,  we obtain that the 
q-order entropy of the partition ~r is just (1 q)- i  ~(m 1) - -  P(q). We can then 
make the partition d{~ )_ 1)--hence the measure of the horizontal side of 
the rectangles--finer and finer as m--, + ~ :  the uniform boundedness of 
the partition function (B.6) continues to hold--for every m--with different, 
but fixed constants fi(Mmi)N and ,~('~) Therefore, the thermodynamic limit is /"MAX " 
the same, independent of m. This proves (4.2). 
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