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Abstract. We address the extreme value problem of a one-dimensional dy-
namical system approaching a fixed target while constrained to avoid a fixed
set, which can be thought of as a small hole. The presence of the latter influ-
ences the extremal index which depends explicitly on the escape rate.

This work is motivated by the appearance of extreme events in specific real
world contexts. We are interested in the statistical description of a perishable
dynamics (i.e., an open system) approaching a fixed target. As examples one can
think of the process describing an environmental catastrophic event or a pandemic
outbreak (with the underlying space being the spatial distribution of the epidemic)
approaching a critical extension before it disappears. Thus, the dynamical setting
is novel in that it has two main features: in the phase space, on one hand there is
a target point which will be approximated by small balls around it, on other hand
there is an absorbing region which terminates the process on entering it.

A one dimensional prototype of such situation can be formulated as an extreme
value problem for an open system, thus allowing a rigorous study. Similar setups,
in the presence of shrinking targets or absorbing regions, have already been stud-
ied in many situations; see [4, 8, 10, 11, 16, 27, 29] for an account of the literature.
Recurrence in open systems has also been considered by Kifer [25, 26].

We consider a dynamical system where there is an absorbing region, a hole H,
such that an orbit entering terminates its evolution (i.e., it is lost forever). The
introduction of systems with holes dates back, at least, to Pianigiani and Yorke
[31]. By considering the orbits of the whole state space, it is possible to construct a
surviving set. Within this set, we fix a point and a small ball around it, the target
set B. We investigate the probability of hitting B for the first time after n steps
while avoiding H, in the n Ñ 8 limit. We will show that this question can be
formulated in a precise probabilistic manner by introducing conditionally invariant
probability measures for the open system.
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In our investigation, we will call the entrance of the system trajectory into the
target an extreme event, and the closest approach of the trajectory to the target is
measured by so-called extreme values (of a suitable function of the distance). An
extreme value distribution (EVD) will be obtained by means of a spectral approach
on suitably perturbed transfer operators (see, among others, [1, 5, 6, 12, 22, 30]).
The choice of conditionally invariant measures makes the process nonstationary;
obtaining an EVD in such a framework is a nonnegligible improvement (see [17] for
a general discussion of this matter).

The boundary levels and the extremal index of the EVD will be expressed in
terms of the Hausdorff dimension of the surviving set and of the escape rate, re-
spectively. The EVD will explicitly depend on whether the target point in the
surviving set is periodic or not, cf. our main result, Proposition 3.1. The theory
above can also be adapted to handle a sequence of target sets which shrink to a
point outside the surviving set. In this case, it predicts correctly that the EVD is
degenerate, i.e., the dynamics cannot approach the target point indefinitely. These
three cases together thus define a trichotomy of possible EVDs.

Our approach also links parameters of the EVD to other dynamical quantities;
thus it provides tools of computing dynamical indicators through approximating
the limiting distribution by the so-called Generalized Extreme Value (GEV) distri-
bution, and vice versa; this will be the object of future investigations. For example,
it is an interesting problem to investigate, theoretically and numerically, the Haus-
dorff dimension of the survival set via extreme value theory.

In Section 1 we will detail the systems we will consider. Section 2 will present
the deduction of the extreme value distribution by using a well-established spectral
approach. In Section 3 we will compute explicitly the extremal index. The full
statement of the result is Proposition 3.1 in Section 3.2. Last, in Section 4 we
show how a degenerate EVD arises when the target set becomes disjoint from the
surviving sets. For the sake of simplicity, we will restrict ourselves to uniform
expanding maps of the intervals, although generalizations are possible following
the same approach: the remarks after Proposition 3.1 discuss possible extensions.

1. The open system

To access open systems through an operator-theoretic framework, we will adapt
the theory developed by C. Liverani and V. Maume-Deschamps [29]. They consid-
ered Lasota–Yorke maps1 T : I ý on the unit interval I and a transfer operator
with a potential g of bounded variation (BV).

We denote with L the transfer (Perron–Frobenius) operator associated with T
and g; it acts on functions f P BV X L1pμgq as

(1.1) Lfpxq “
ÿ

T pyq“x

fpyqgpyq,

where μg is the conformal measure left invariant by the dual L˚ of the transfer
operator,

L˚μg “ eP pgqμg,

where P pgq is the topological pressure of the potential g (see, among others, [21]).

1I.e., uniformly expanding maps, infI |T 1| “ β ą 1, such that there exists a finite partition
of the interval I with the property that T restricted to the closure of each element is C1 and
monotone.
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For simplicity, we will restrict ourselves to the potential g “
1

|T 1| ; however we refer

to Remarks 3.2–3.3 for possible extensions of the result to other potentials. First of
all note that, in this case, the conformal measure μ|T 1|´1 will be Lebesgue (denoted

by m) and P pgq “ 0. Recall that if we equip the space of BV functions with the
norm given by the total variation plus the L1 norm,2 then the unit ball of BV is
compact in L1; this will allow us to make good use of the spectral decomposition of
transfer operators. Moreover, our probability distributions will be explicitly written
in terms of the Lebesgue measure and therefore they will be accessible to numerical
computations. We will use later on the quantity Θpgq defined as

logΘpgq :“ lim
nÑ8

1

n
log sup

I
gn, where gn “ gpxq ˆ ¨ ¨ ¨ ˆ gpTn´1xq;

in our case it simply becomes Θpgq “ β.
We then consider a proper subset H Ă I of measure 0 ă mpHq ă 1, called the

hole, and its complementary set X0 “ IzH. We denote by Xn “
Şn

i“0 T
´iX0 the

set of points that have not yet fallen into the hole at time n. The surviving set
will be denoted by X8 “

Ş8

n“1 Xn. The key objects in our study are conditionally
invariant probability measures.

Definition 1.1. A probability measure ν which is absolutely continuous with re-
spect to Lebesgue is called a conditionally invariant probability measure if it satisfies
for any Borel set A Ă I and for all n ą 0

(1.2) νpT´nA X Xnq “ νpAq νpXnq.

We use for it the abbreviation a.c.c.i.p.m.

The measure ν is supported on X0, νpX0q “ 1, and moreover

νpXnq “ αn, where νpX1q “ νpT´1X0q “ α ă 1.

Apart from being absolutely continuous with respect to Lebesgue, this measure is
numerically accessible in simulations.

Remark 1.2. Our a.c.c.i.p.m. plays a role analogous to a quasi-stationary measure
defined in a stochastic framework. However, for stochastic dynamics, the role of
(the characteristic function of) X8 would be played by a hitting probability, also
called a committor, namely that of reaching a vicinity of the target before falling
into the hole (see [19]).

The existence of a.c.c.i.p.m. in our setting is achieved by Theorem A in [29].
Note that α contains, at the same time, the information about mpHq and the
expansion of the system (see equations (3.1) and (3.2)). We now introduce our first
perturbed transfer operator defined on bounded variation function f as

(1.3) L0pfq “ Lpf�X0
q.

We will use the following facts which are summarized in [29, Lemma 1.1, Lemma
4.3]:

‚ Let ν “ �X0
h0m a probability measure with h0 P L1; then ν is an a.c.c.i.p.m.

if and only if L0h0 “ αh0, for some α P p0, 1s.

2From now on we will denote L1pmq and L8pmq by L1 and L8. The L1 norm will be written
as | ¨ |1.
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‚ Let α, h0 be as above. Moreover, let μ0 be a probability measure on I such
that L˚

0μ0 “ αμ0. Then μ0 is supported in X8
3 and the measure Λ with

Λ “ h0 μ0 is T -invariant.

‚ The measure μ0 satisfies the conformal relation:

(1.4) μ0pTAq “ α

ż

A

|T 1
|dμ0,

for every measurable set A Ă I on which T is one to one.
‚ For any v P L1pμ0q and w P L8pμ0q we have the duality relationship:

(1.5)

ż

L0v w dμ0 “ α

ż

v w ˝ T dμ0.

Actually, this duality formula will only be used to rewrite the integral (2.8)
and in that case w will be the characteristic function of a measurable set
and v “ h0 which is μ0-integrable.

We are now strengthening our assumptions by considering small holes since in this
case we can use the results in [29, Section 7] and that will allow us to apply the
spectral approach of extreme value theory. Later on, in Section 3.1 we will detail
a constrain on the size of the hole, which has to be taken into account along the
requirements of perturbative theorems. We first need a few preparatory results
which will be also essential for the next considerations.

1.1. Lasota–Yorke inequalities. Lemma 7.4 in [29] states that for each χ P pβ “

Θpgq, 1q there exists a, b ą 0, independent of H, such that, for each w of bounded
variation:

}Lnw}BV ď aχn
}w}BV ` b|w|1(1.6)

}Ln
0w}BV ď aχn

}w}BV ` b|w|1.(1.7)

The proof of the first inequality is standard; the second one relies on the fact that the
jumps in the total variation norm of the backward images of the hole grow linearly
with n and they are dominated by the exponential contraction of the derivative;
see also the proof of [2, Theorem 2.1].

1.2. Closeness of the transfer operators and their spectra. We introduce a
so-called triple norm, defined by ~P~1 :“ sup}w}BV ď1 |Pw|1, where w P BV and

the linear operator P maps into L1.4 It is easily proven in [29, Lemma 7.2] that

(1.8) ~L ´ L0~1 ď eP pgqmpHq “ mpHq.

The idea is now to take a hole of small m-measure in such a way that even the
spectra of the two operators are close. This is achieved next.

The following result is proved in [29, Theorem 7.3]. For each χ1 P pχ, 1q and
δ P p0, 1 ´ χ1q, there exists ε0 ą 0 such that if ~L0 ´ L~1 ď ε0 then the spectrum
of L0 outside the disk tz P C, |z| ď χ1u is δ-close, with multiplicity, to the one of
L. This result will allow us to get a very useful quasi-compactness representation
for the two operators, which will be the starting point of the perturbation theory
of extreme values.

3By the hypothesis of [29], X8 is not empty. Note that this fact follows trivially by compactness
whenever all the Xn are closed; however, this is not always the case (for example if one branch of
T is not onto).

4If we use a different measure “meas” instead of m we will write ~P~meas.
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1.3. Quasi-compactness of the transfer operators. First of all we should add
a further restriction for our unperturbed system, namely we will require that T
has a unique invariant measure μ absolutely continuous with respect to m with
density h and moreover the system pI, T, μq is mixing. Therefore, Lh “ h and
since L˚m “ m, we have that μ “ hm. Moreover, recalling [3], for any function v
of bounded variation, there exists a linear operator Q with spectral radius sppQq

strictly less than 1, such that

(1.9) Lv “ h

ż

v dm ` Qv.

By the closeness of the spectra the same representation holds for L0 : BV Ñ BV ,
namely there will be a number λ0, a non-negative function h̃0 P BV , a probability
measure μ0 and a linear operator Q0 such that Q0ph0q “ 0, i.e. Q0 projects on the
complement of Spanth0u, with spectral radius strictly less than 1 such that for any
v P BV:

L0h̃0 “ λ0h̃0, L˚
0μ0 “ λ0μ0(1.10)

λ´1
0 L0v “ h0

ż

v dμ0 ` Q0v.(1.11)

Notice that we normalize h̃0 in such a way that
ş

h̃0dμ0 “ 1. Thus h0 in the

expression of ν will be given by h0 “ h̃0{d where d “
ş

h̃0dm. Therefore, in the
framework of small holes we will have λ0 “ α; moreover the measure Λ “ h0μ0 will
be T -invariant and ΛpXq “

1
d .

2. Extreme value distribution

For a fixed target point z P X8 let us consider the observable

φpxq “ ´ log |x ´ z| for x P I,

and the function

Mnpxq :“ maxtφpxq, ¨ ¨ ¨ , φpTn´1xqu.

For u P R`, we are interested in the probabilities of Mn ď u, where Mn is
now seen as a random variable on a suitable (yet to be chosen) probability space
pΩ,Pq. First of all we notice that the set of x P I for which it holds tMn ď uu

is equivalent to the set tφ ď u, . . . , φ ˝ Tn´1 ď uu. In turn this is the set En :“
pBc X T´1Bc ¨ ¨ ¨ X T´pn´1qBcq where, for simplicity of notation, we denote with
Bc the complement of the open ball B :“ Bpz, e´uq, which we call the target (set).
So far we are following points which will enter the ball B for the first time after at
least n steps, but we should also guarantee that they have not fallen into the hole
before entering the target. Therefore we should consider the event: En X Xn´1

conditioned on Xn´1, i.e., conditioned on the event of not terminating at least for
n ´ 1 steps. To assure that, the natural sequence of probability measures is given
by the following.

Definition 2.1. For any Borel set A Ă I and any n ě 1 we introduce the sequence
of probability measures:

PnpAq :“
νpA X Xn´1q

νpXn´1q
.
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Suppose now that, rather than taking one ball B, we consider a sequence of balls
Bn :“ Bpz, e´unq centered at the target point z and of radius e´un . Therefore:

(2.1) PnpMn ď unq “
1

νpXn´1q

ż

I

�Bc
nXX0

pxq ¨ ¨ ¨�Bc
nXX0

pTn´1xqdν,

and we will consider the limit for n Ñ 8, where un is a boundary level sequence
which guarantees the existence of a non-degenerate limit. We anticipate that such
a sequence will be dictated directly by the proof below and it must satisfy for a
given τ

(2.2) n Λ
`

Bpz, e´unq
˘

Ñ τ as n Ñ 8.

By introducing our second perturbed operator L̃n : BV Ñ BV acting as

L̃nv “ L0pv�Bc
n

q “ Lpv�Bc
n
�X0

q,

it is straightforward to check that

(2.3) PnpMn ď unq “
1

αn´1

ż

I

L̃n
nh0 dm.

Roughly speaking, when n Ñ 8, the operator L̃n converges to L0 in the spectral
sense as �Bc

n
becomes less and less relevant in L0pv�Bc

n
q. In particular, the top

eigenvalue of L̃n will converge to that of L0 and this will allow us to control the
asymptotic behavior of the integral on the right hand side of (2.3). We now make
these arguments rigorous by adapting the perturbative strategy put forward in [22,
24]. We will work with the following hypothesis.

Standing assumptions. Assume that h´ :“ ess infsupppΛq h0 ą 0, i.e., the essen-
tial infimum is taken with respect to Λ. Let

rk,n :“
ΛpBn X T´1Bc

n X ¨ ¨ ¨ X T´kBc
n X T´pk`1qBnq

ΛpBnq
,

where rk,n is the conditional probability with respect to Λ that we return to Bn

exactly after k ` 1 steps. Assume that

rk “ lim
nÑ8

rk,n exists for all k.

We will now prove that we satisfy the necessary assumptions A1–A4 of [22, 24].

Assumption 1. The operators L̃n enjoy the same Lasota–Yorke inequalities (1.6)
with the same expansion constant χ and b in front of the weak norm. It is sufficient
to adapt the arguments of [29] by replacing �X0

with �X0XBc
n
.

Assumption 2. We now compare the two operators; here the weak and strong
Banach spaces will be again L1 and BV. We have:

(2.4)

ż

|pL0 ´ L̃nqv| dm “

ż

|L0pv�Bn
q| dm ď }v}BV mpBn X X0q,
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by expressing L0 in terms of L and since the L8 norm of v is bounded by }v}BV

in one dimensional systems; see [3, Section 2.3]. Then, for the triple norm, ~L0 ´

L̃n~1 ď mpBn X X0q and therefore for n large enough (see Section 1.2), we get the
following spectral properties, analogously to (1.10), namely:

L̃nhn “ λnhn, L̃˚
nμn “ λnμn(2.5)

λ´1
n L̃ng “ hn

ż

g dμn ` rQng,(2.6)

where hn P BV, μn a Borel measure such that
ş

hndμn “ 1 and rQn a linear operator

with spectral radius less than one; moreover supn spp rQnq ă sppQq ă 1.

Assumption 3. Next, we need to show that

(2.7) sup
!

ż

pL0 ´ L̃nqv dμ0 : v P BV, }v}BV ď 1
)

ˆ }L0ph0�Bn
q}BV ď C7Δn,

where

Δn :“

ż

L0p�Bn
h0q dμ0 “ αΛpBnq

and C7 is a constant. Notice that the first term on the left hand side of (2.7) is the

triple norm ~L0 ´ L̃n~μ0
.5 This is bounded by αμ0pBnq, as can be obtained by an

argument analogous to (2.4), combined with (1.5).6 The second factor is bounded
by the Lasota–Yorke inequality with a constant Ch0

depending on h0. Then by the
first standing assumption αCh0

μ0pBnq ď
αCh0

h´
ΛpBnq.

Assumption 4. We now define the following quantity for k ě 0 :

qk,n :“

ş

pL0 ´ L̃nqL̃k
npL0 ´ L̃nqph0q dμ0

Δn
.(2.8)

By the duality properties enjoyed by the transfer operators with respect to our
standing assumption, it is easy to show that

(2.9) qk,n “ αk`1rk,n.

We observe that by the Poincaré Recurrence Theorem with respect to the invariant
measure Λ, as rk,n is the probability that the system returns to Bn in exactly k`1
steps, we have

8
ÿ

k“0

α´pk`1qqk,n “

8
ÿ

k“0

rk,n “ 1.

We denote by θ the extremal index (EI), which will be therefore between 0 and 1:

θ :“ 1 ´

8
ÿ

k“0

rk.

5The reader could wonder why we used two different triple norms, the first in (2.4) with respect
to m and the second in (2.7) with respect to μ0. The first was used to get the quasi-compactness

representation for the operator L̃n given in (2.5) and we should use there the same couple of
adapted function spaces L1 and BV as prescribed by the main theorem in [24]. The second

allowed us to compare the maximal eigenvalues of L0 and L̃n and it requires the eigenfunction of
the dual of L0, which is μ0 as prescribed in [23].

6We used here that supI v ď vp0q ` |v|TV, where | ¨ |TV denotes the total variation seminorm.
Since μ0 is not atomic (see next section), we can take vp0q “ 0. A similar estimate was used in
the bound given in the proof of [29, Lemma 7.2].
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In order to apply the perturbation theorem by Keller and Liverani [23], we need that

the eigenfunction of L̃n be chosen in such a way that
ş

hndμ0 “ 1 and
ş

hndμn “ 1.

This can be accomplished by replacing the previous quantities in [23] with ĥn “
hn

ş

hndμ0
and μ̂n “ μn

ş

hndμ0. With our standing assumption, since we satisfy A1–

A4, the mentioned perturbation theorem gives (we recall the top eigenvalue of L0,
λ0, is equal to α)

(2.10) λn “ α ´ θ Δn ` opΔnq “ α exp
`

´
θ
αΔn ` opΔnq

˘

, as n Ñ 8,

or equivalently,

(2.11) λn
n “ αn exp

`

´
θ
αnΔn ` opnΔnq

˘

.

We now substitute (2.11) in the right hand side of (2.3) and use (2.5) to get

PnpMn ď unq “
1

αn´1

ż

λn
nĥn dm

ż

h0 dμ̂n ` λn
n

ż

rQn
nh0 dm

“ α expp´
θ
αnΔn ` opnΔnqq

ż

ĥn dm

ż

h0 dμ̂n ` λn
n

ż

rQn
nh0 dm.

It has been proved in [23, Lemma 6.1] that
ş

h̃0 dμ̂n Ñ 1 for n Ñ 8. Therefore
ş

h0 dμ̂n “
1
d

ş

h̃0 dμ̂n Ñ
1
d .

Now we observe that by (2.4) and by the perturbative theorem in [24], we have

that |hn ´ h̃0|1 Ñ 0 as n Ñ 8. Analogously L̃n can be considered as a perturbation
of L0 acting this time on the weak space L1pμ0q. The proof of Lemma 7.4 in [29]
shows that uniform Lasota-Yorke inequalities still hold for the operators L0 and
L̃n, and moreover they are close in the triple norm with respect to μ0, see (2.7).
Therefore the spectral projectors on the one-dimensional eigenspace generated by
h̃0 and hn will converge in the L1pμ0q norm still by [24], which implies that |hn ´

h̃0|μ0
Ñ 0. Then

ş

ĥndm “

ş

hndm
ş

hndμ0
Ñ

ş

h̃0dm
ş

h̃0dμ0
“ d

ş

h0dm. Moreover

ż

h0 dm “
1

α

ż

L0h0 dm “
1

α

ż

Lph0�X0
q dm “

1

α

ż

h0�X0
dm “

1

α
νpX0q “

1

α
,

and this term will compensate the α in the numerator in the equality above. Note
that the choice given by (2.2) is equivalent to nΔn Ñ ατ. In this case λn

n will be

simply bounded in n and
ş

| rQn
nph0q| dm ď sppQqn}h0}BV Ñ 0. In conclusion we

have

(2.12) lim
nÑ8

PnpMn ď unq “ e´τθ,

which is the Gumbel’s law.

3. The extremal index

3.1. Smallness of the hole. We briefly return to Section 1.2 to quantify the
distance between the maximal eigenvalue of L, which is 1, and that of L0, which
is α ď 1. In the previous section we described the asymptotic deviation of λn from α
as n Ñ 8. For the next considerations we will compare α to 1. This is given in
[23, formula p2.3q], and with our notation reads as (see (1.8)):

(3.1) 1 ´ α ď Ĉ~L0 ´ L~1 ď ĈmpHq,
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where the constant pC is computed explicitly in [22, Section 2.1] and depends on
the density h0. We now strengthen the assumption on the “smallness” of the hole
by requiring that mpHq is such that for a fixed 1 ă D ă β “ infI |T 1| it holds

(3.2) α ą
D

β
;

for instance take mpHq ď
1
Ĉ

p1 ´
D
β q. This has two interesting consequences; one

will be established at the end of this section when we will compute the extremal
index for periodic points. The other one states that the measure μ0, and therefore
Λ, is not atomic. The proof is a straightforward adaption of [20, Lemma 2], where
the conformal structure of μ0 is used and their “d” is replaced by our “D”. Another
proof of the non-atomicity of Λ for more general holes is given in [29, Lemma 4.3].

3.2. Position of the target point. We now return to the computation of the
extremal index θ, which relies on the rk,n. By using the fact that we restricted
our considerations to the potential 1

|T 1| we can easily reproduce the arguments on

the invariant set X8. These give two types of behavior according to the nature
of the target point z; see [1, 14, 15] for similar computations for different kinds of
dynamical systems. Recall that we write Bn instead of Bpz, e´unq. By recalling the
definition of Lasota–Yorke maps, let z be a non-periodic point and not belonging
to the countable union S of the preimages of the boundary points of the domains of
local injectivity of T. On IzS, the maps Tn, n ě 1, are all continuous and moreover
ΛpIzSq “

1
d . Now, we fix k and go to the limit for large n in (2.9). By exploiting

the continuity of T k and by taking n large enough, all the points in Bn will be
around T kpzq and at a positive distance from Bn, so that rk,n is zero and no limit
in n is required any more.

Suppose now z is a periodic point of minimal period p; all the rk,n with k ‰ p´1
are zero for the same reason exposed above. When k “ p´1 any point in Bn will be
at a positive distance from Bn when iterated p´2 times; this again is a consequence
of continuity for large n. But for k “ p´1, T k`1pzq “ T ppzq “ z; by taking again n
large enough there will be only one preimage of T´pBn, denoted T´p

z Bn intersecting
Bn. Since the map T p is uniformly expanding, such a preimage will be properly
included in Bn. We are thus led to compute

(3.3)
ΛpT´p

z Bnq

ΛpBnq
“

ş

T´p
z Bn

h0dμ0
ş

Bn
h0dμ0

.

We now make an additional assumption, namely that h0 is continuous at z; we
recall that the set of discontinuity points is countable, since h0 P BV. Since z is
periodic with period p we have to compare the density at the numerator and at the
denominator in (3.3) in two close points and both close to z. Therefore

ΛpT´p
z Bnq

ΛpBnq
„

ş

T´p
z Bn

dμ0
ş

Bn
dμ0

,

and the equality will be restored in the limit of large n when the previous two
close points will converge to z. So we are left with estimating the ratio

μ0pT´p
z Bnq

μ0pBnq
;

we point out again that Bn “ T ppT´p
z Bnq and that T p is one-to-one on T´p

z Bn.
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Therefore, by considering T p and iterating (1.4), we obtain

μ0pT´p
z Bnq

μ0pBnq
“

μ0pT´p
z Bnq

ş

T´p
z Bn

αp|pT pq1|pyqdμ0pyq
.

Passing to the limit and exploiting again the continuity of T p at z, we finally have

rp´1 “
1

αp|pT pq1|pzq
, and θ “ 1 ´

1

αp|pT pq1|pzq

where α|T 1pzq| ą D ą 1. By collecting the previous result we have proved the
following:

Proposition 3.1. Let T be a uniformly expanding map of the interval I preserving
a mixing measure. Let us fix a small absorbing region, a hole H Ă I; then there
will be an absolutely continuous conditionally invariant measure ν, supported on
X0 “ IzH with density h0. Write α “ νpT´1X0q. If the hole is small enough
there will be a probability measure μ0 supported on the surviving set X8 such that
the measure Λ “ h0μ0 is T -invariant; we will assume that h0 is bounded away
from zero. Having fixed the positive number τ , we take the sequence un satisfying
nΛpBpz, expp´unqqq “ τ, where z P X8. Then, we take the sequence of conditional

probability measures PnpAq “
νpAXXn´1q

νpXn´1q
, for A Ă I measurable, and define the

random variable Mnpxq :“ maxtφpxq, ¨ ¨ ¨ , φpTn´1xqu, where φpxq “ ´ log |x ´ z|.
Moreover we will suppose that all the iterates Tn, n ě 1 are continuous at z and
also that h0 is continuous at z when the latter is a periodic point. Then we have:

‚ If z is not a periodic point:

PnpMn ď unq Ñ e´τ .

‚ If z is a periodic point of minimal period p, then

PnpMn ď unq Ñ e´τθ,

where the extremal index θ is given by:

θ “ 1 ´
1

αp|pT pq1|pzq

Note that in the literature the escape rate η for our open system is usually defined
as η “ ´ logα; thus we can see the extremal index as

θ “ 1 ´
1

e´pη|pT pq1|pzq
.

Remark 3.2. We presented here the simplest possible case. However, starting again
from the transfer operator (1.1), it could be possible to perform the same analy-
sis with a different potential, adapting the construction of the spaces to handle
different weights. As a starting point, [29] contains elements to treat conditional
measures in such situations.

Remark 3.3. In light of [4, 11], it would be interesting to construct a statement
analogous to our main Proposition 3.1, when either the hole is not of a given size
or the dynamics generated is mixing at a subexponential rate.

Remark 3.4. An analogous billiard statement, following [9], could be constructed
from the above provided there is enough hyperbolicity to beat the complexity
growth. In a nutshell, given a billiard, one can consider the Poincaré map given
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by the collision with the scatterers. One has then the freedom to choose absorbing
scatterers and target scatterers as long as the absorbing part is not too wide.

Remark 3.5. As the approach to study the extremal index is perturbative in nature,
it should not come as a surprise that one could consider a one-parameter family of
maps Tε which are small perturbations of T . It could be possible, following some
of the techniques of [1, 18], to establish the behavior of the extremal index with
respect to deterministic perturbations or noisy perturbations in our framework of
targets and holes.

For simplicity we restricted ourselves to one target point z and “an” observable,
i.e., the logarithmic distance. These hypotheses are not essential, and are merely
there to simplify the presentation. The theory could be rewritten after considering
a finite set of target points tz1, z2, z3, . . . , znu and adjusting the sequence of balls
Bn to have multiple connected components as long as each point satisfies the same
kind of law: we avoid doing so not to clutter the exposition. Moreover, suppose
that one is not interested in reaching a certain target point or avoiding a region,
but one has an observable of interest (say for example the speed of some object, or
the depth of some path) and wants to compute the probabilities with respect to the
values of such observable. Obviously, before applying our setup, one has the extra
problem of identifying regions of the phase space that correspond to such values of
the observables: in one dimension this does not create additional difficulties (see
also [7]).

3.3. On the choice of the boundary sequence. Let us now comment on (2.2),
i.e., the scaling behavior nΛpBpz, e´unqq Ñ τ . As we already argued, the measure
Λ is not atomic, ΛpBq varies continuously with the radius of the ball. Therefore,
for any fixed τ and n we could choose un so that

(3.4) ΛpBpz, e´unqq “
τ

n
.

Unluckily, the measure Λ is often not computationally accessible. However, we can
use the following approximation scheme to construct a sequence of un which still
satisfies (2.2). Let

dnpzq :“
log ΛpBpz, e´unqq

log e´un
.

Since the density h0 is bounded away from zero by the standing assumptions, for δ
arbitrarily small and n large enough we have that

dnpzq ě
log μ0pBpz, e´unqq

log e´un
´ δ.

By [29, Theorem B], whenever the map T has large images and large images with
respect to the hole H (see the discussion before [29, Theorem B]), then for all
z P X8, there exists t0 ą 0 such that

lim inf
nÑ8

log μ0pBpz, e´unqq

log e´un
ě t0

and the Hausdorff dimension of the surviving set HDpX8q satisfies

HDpX8q ě t0.

Therefore, if we fix again δ and take correspondingly n large enough we have that
dnpzq ě t0 ´ δ ´ δ ě t0 ´ 2δ which implies ΛpBpz, e´unqq ď e´unpt0´2δq, and,
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together with (3.4), finally τ ď ne´unpt0´2δq. In other words, un ď ´
log τ
t0´2δ `

logn
t0´2δ ,

which can also be written as

(3.5) sup
n

�

un ´
log n
t0

(

ď ´
log τ

t0
,

as long as (3.4) still holds true. In the computational approach to extreme value
theory, the boundary level un is chosen with the help of an affine function (see [28]):

un “
log τ´1

an
` bn.

The sequences an and bn can be obtained with the help of the Generalized Extreme
Value (GEV) distribution in order to fit Gumbel’s law. The inequality (3.5) suggests

that for n large an „ t0 and bn „
logn
t0

, therefore we could attain a lower bound

for the Hausdorff dimension of the surviving set. We defer, for instance, to [13] to
show how to use the GEV distribution to estimate the sequences an, bn, and we
will show in future studies how to use such estimates to approach HDpX8q.

4. How far are we from the surviving set? The degenerate limit

We noted several times that the support of μ0 is the surviving set X8. This
means that if we pick the open ball Bn “ Bpz, e´unq centered in a point z R

X8 or even in the hole, then when the radius of the ball is sufficiently small,
we have μ0pBnq “ 0, since X8 is a closed set. This immediately implies by the
argument similar to that we used in (3.1) that

|λn ´ α| ď const ˆ ~L0 ´ L̃n~μ0
ď const ˆ αμ0pBnq “ 0.

The fact that the perturbed eigenvalue could become equal to the unperturbed one
for a finite size of the perturbation, is already a part of [23, Theorem 2.1] and is
also detailed in [22, Footnote p3q]. Therefore, if we call n̂ the first n for which
Bn X X8 “ H, for any n ě n̂ we have that

PnpMn ď unq “ α

ż

ĥn dm

ż

h0 dμ̂n ` αn

ż

rQn
nh0 dm.

As explained above, for n Ñ 8 the first term on the right goes to 1 and
ş

rQn
nh0 dm Ñ

0; we thus have that

(4.1) PnpMn ď unq Ñ 1, n Ñ 8.

Trivially, (4.1) states that if the target point is off the surviving set, then the
trajectories will not be able to approach it arbitrary close. This result has two
interesting consequences for applications, in particular the second one will provide
a full description of the extreme value distribution (EVD) for any choice of the
target set.

First, we observe that the limit (4.1) holds for any sequence un going to infinity,
and for simplicity we now put un “ log n. Then we could reasonably argue that for
the smallest n̂ for which

Pn̂pMn̂ ď log n̂q«1,

then

distpz,X8q«
1

n̂
,

where « means “approximately equal”.
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Second, let us return to the statement of our main Proposition 3.1. Whenever we
take the point z P X8 and by a suitable choice of the sequence un as we explained
in Section 3.3, we get a non-degenerate limit for our EVD, in particular different
from 1. Instead, if we pick the point z outside the surviving set and no matter what
the sequence un is, provided it goes to infinity, we get a degenerate limit equal to
one for the EVD.
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[1] Hale Aytaç, Jorge Milhazes Freitas, and Sandro Vaienti, Laws of rare events for deterministic
and random dynamical systems, Trans. Amer. Math. Soc. 367 (2015), no. 11, 8229–8278, DOI
10.1090/S0002-9947-2014-06300-9. MR3391915

[2] Wael Bahsoun and Sandro Vaienti, Escape rates formulae and metastability for randomly per-
turbed maps, Nonlinearity 26 (2013), no. 5, 1415–1438, DOI 10.1088/0951-7715/26/5/1415.
MR3056132
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