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Abstract. We study Markov interval maps with random holes. The
holes are not necessarily elements of the Markov partition. Under a
suitable, and physically relevant, assumption on the noise, we show that
the transfer operator associated with the random open system can be
reduced to a transfer operator associated with the closed deterministic
system. Exploiting this fact, we show that the random open system
admits a unique (meaningful) absolutely continuous conditionally sta-
tionary measure. Moreover, we prove the existence of a unique proba-
bility equilibrium measure supported on the survival set, and we study
its Hausdorff dimension.

1. Introduction

A dynamical system is called open if there is a subset in the phase space,
called a hole, such that whenever an orbit lands in it, the dynamics of this
orbit is terminated. Statistical aspects of such open systems have been
addressed by many authors, see for instance [2, 11, 13]. Open dynamical
systems have found interesting applications in physics [2, 18, 28], and more
recently, after the pioneering work of [8, 23], it was found that open systems
are intimately related to studying metastable dynamical systems [3, 4, 5,
12, 14, 17, 20] and their applications in geophysical sciences [9, 16].

Following the work of [5], in this paper we study dynamical systems with
random holes, called random open systems. One of the main motivation
for studying random open systems is that they contribute to understand-
ing the long-term statistics of random metastable systems. In [5] random
perturbations of interval maps that initially admit exactly two invariant er-
godic densities were studied. Under random perturbations, which generate
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random holes, leakage of mass between the two initially ergodic subsystems
forces the random system to mix and admit a unique invariant density. It
was shown in [5] that the invariant density of the random system can be
approximated in the L1 norm (with respect to Lebesgue measure), by a
particular convex combination of the two invariant ergodic densities of the
initial system. In particular, the weights in the convex combination is iden-
tified as the ratio of the escape rates from the left and right random open
systems.

However, although almost every point (with respect to Lebesgue) from
each initially ergodic subsystem escapes to the other ergodic component,
some points survive in their initial set and do not visit the other ergodic
component.

The main motivation of this paper is to study statistical properties of
orbits which survive escaping from a random open system, and to determine
the Hausdorff dimension of their set. From applications point of view, one
can use our results to study statistical properties and dimension theory of
orbits that do not visit other ergodic components in a random metastable
system, such as the ones studied in [5], and to provide insight to geophysical
models that study regions of the ocean with slow or poor mixing properties
[9]. Mathematically, previous results on the Hausdorff dimension of the
survival set were obtained in [19, 15, 10, 25, 27] for maps with deterministic
holes. In our random setting, an interesting feature of our current work is
that it uses tools from deterministic and closed systems to obtain results
in random open systems: the transfer operator associated with our random
open system can be reduced to a transfer operator associated with the closed
deterministic system.

In section 2 we introduce the class of maps that we study, the associated
transfer operator and the space of functions that it acts on, and known
results from deterministic closed systems. In section 3 we introduce a class
of maps with random holes, the notion of a conditionally stationary mea-
sure and prove a theorem highlighting its significance. Section 4 contains
a topological characterization of the survival set of the random open sys-
tem. In section 5 we introduce the transfer operator associated with the
random system and show how to reduce it to a transfer operator of the
original closed deterministic system. Exploiting this fact, we show that
the random open system admits a unique (meaningful) absolutely continu-
ous conditionally invariant measure. Moreover, we prove the existence of a
unique probability equilibrium measure supported on the survival set, and
we study its Hausdorff dimension. Section 6 contains two simple examples
that highlight our results.

2. Setup and Preliminaries
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2.1. Class of maps. Let I := [0, 1] and T : I → I be a Markov map; i.e.,
there exists a finite partition of open intervals P = {Pi}li=1 such that:

(1) I = ∪li=1Pi, and Pi ∩ Pj = ∅ when i ̸= j;
(2) ∃ 0 < α < 1 such that T|Pi is C

1+α;

(3) if T (Pi) ∩ Pj ̸= ∅ then Pj ⊂ T (Pi).
(4) supP∈P(n) diam(P ) → 0 as n→ ∞, where P(n) := ∨n−1

i=0 T
−iP .

We further assume that
(5) ∃N ∈ N such that, for all i = 1, . . . l, TN(Pi) = I.

Remark 2.1. Under assumptions (1)-(4), it is well know that there ex-
ists a semi-conjugacy between a one-sided subshift of finite type (Σ, σ) and
([0, 1], T ). To avoid using (Σ, σ) and to keep our presentation mainly on
[0, 1], we present some of the arguments using the map T (x) = 2x mod 1.
All the results of this paper are true for the class of maps introduced above
in subsection 2.1.

2.2. Space of functions and the transfer operator. We define our
space of functions following the prescriptions at the beginning of Sect. 1 in
[1]. Let J := {T (Pi)}li=1. Since J is contained in the sigma-algebra σ(P)
generated by P , there exists a coarser partition G such that σ(J ) = σ(G).
Let

Hloc
α := {ϕ : I → R| ∃C > 0, s.t. ∀x, y ∈ Gj, Gj ∈ G, |ϕ(x)−ϕ(y)| ≤ C|x−y|α}

For ϕ ∈ Hloc
α we let Cα(ϕ) denote the semi-norm

Cα(ϕ) = sup
x ̸=y∈Gj
Gj∈G

|ϕ(x)− ϕ(y)|
|x− y|α

.

When equipped with the norm || · ||Hloc
α

:= Cα(·)+ || · ||∞, Hloc
α is the Banach

space of locally Hölder continuous functions with exponent α. If a function
f : I → R is Hölder with exponent α, on the whole interval I, we simply
write f ∈ Hα.

Let ϕ ∈ Hloc
α . The transfer operator, associated with T and with potential

ϕ, acting on Hloc
α is defined as

Lϕ(f)(x) :=
∑
Ty=x

eϕ(y)f(y).

Let σ(Lϕ) denote the spectrum of Lϕ as an operator on Hloc
α , and let L∗

ϕ

denote the dual operator of Lϕ.

2.3. Conformal measure. Let A be a Borel measurable set. A measure
m is called ϕ-conformal if

m(T (A)) =

∫
A

e−ϕdm

whenever T : A→ T (A) is injective.
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2.4. Known results about the deterministic system T . The following
is well known result (see for instance [7, 6])

Proposition 2.2. Let T satisfy assumptions (1)-(5). The following holds:

(i) Lϕ : Hloc
α → Hloc

α has a dominant simple eigenvalue λ and its corre-
sponding eigenfunction, ρ, is strictly positive.

(ii) σ(Lϕ) \ {λ} ⊂ B(0, r), with r < λ.
(iii) There is a unique probability measure ν such that L∗

ϕν = ν;

(iv) For all f ∈ Hloc
α we have

lim
n→∞

||λ−nLn
ϕf − ρ

∫
I

fdν||∞ = 0,

and the probability measure µ := gν is an equilibrium state associ-
ated with ϕ.

It is well known that the measure ν is also ϕ-conformal.

3. Perturbations and random holes

Let (ωk)k∈N be an i.i.d. stochastic process with values in the interval S :=
[0, 1/2], and with probability distribution θ; we will set S := S⊗N for the
direct product of S upon which the direct product measure θ⊗N is defined.
We fix a point x0 ∈ [0, 1] and consider “random” holes around it. More
precisely, for ω ∈ [0, 1/2] we associate the interval Iω := (x0 − ω, x0 + ω).
We call such an interval a random hole.

To explain the dynamics of the system with random holes, consider a
finite path of the stochastic process, say, (ω0, ω1, . . . , ωk). For this path, we
first restrict T to Icωo , then any point in Icωo that gets mapped by T into

Iω1 , its orbit gets terminated. At time n = 2, any x ∈
(
Icω0

∩ T−1(Icω1
)
)

that gets mapped by T into Iω2 its orbit gets terminated, and so on. The
following measure, which was first introduced in [5], plays a central role in
our analysis:

Definition 3.1. A Borel measure α̂ on [0, 1] satisfying

α̂(A) =
1

λ̂

∫
S

dθ(ω)α̂(T−1A ∩ T−1Icω);

where

λ̂ =

∫
S

dθ(ω)α̂(T−1Icω),

is called conditionally stationary measure. The escape rate, with re-
spect to α̂, from the random open system is given by − ln λ̂. Moreover, we
have

(3·1) λ̂nα̂(A) =

∫
S̄

dθ∞(ω̄)α̂(T−nA ∩ T−1Icω1
∩ T−2Icω2

∩ · · · ∩ T−nIcωn).
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3.1. Significance of conditionally stationary measures. Consider the
following random variable:

τω̄(x) = sup{i ≥ 0 : T i(x) ∈ Icωi}.
If τω̄(x) = n, it means that, given the path ω̄, the orbit of x escapes through
a random hole, Iωn+1 , exactly at time n+1. We are interested in estimating
the following expectation

(3·2) Eθ[Em[τω̄(x)]].
Note that the first expectation is taken with respect to the ambient measure
m. If the expectation in (3·2) is finite, it means that for almost every path
ω̄, m-almost every point x will not survive.

The following theorem provides a useful estimate to (3·2). In particular
it shows that whenever α̂ is a conditionally invariant measure which is
equivalent to m, for almost every path ω̄, m-almost every point x will not
survive.

Theorem 3.2. If α̂ is a conditionally stationary measure then:

(1) Eθ[Eα̂[τω̄(x)]] = λ̂

1−λ̂ ;

(2) Eθ[Eα̂[τω̄(x)]2]− (Eθ[Eα̂[τω̄(x)]])2 = λ̂

(1−λ̂)2 .

Proof. Given a path ω̄, set

Rn,ω̄ := T−1Icω1
∩ T−2Icω2

∩ · · · ∩ T−nIcωn .

By (3·1), we have

(3·3) Eθ(α̂(Rn,ω̄)) = λ̂n.

Therefore, by (3·3), we have

Eθ[Eα̂[τω̄(x)]] = Eθ[
∞∑
n=0

n(α̂(Rn,ω̄))− α̂(Rn+1,ω̄))]

=
∞∑
n=0

n[Eθ(α̂(Rn,ω̄))− Eθ(α̂(Rn+1,ω̄))]

=
∞∑
n=0

n(λ̂n − λ̂n+1) =
λ̂

1− λ̂
.

(3·4)

In the above computation we have used Tonelli’s Theorem to exchange the
sum and the expectation, and in the last step we have used the fact that

∞∑
n=0

nλ̂n =
λ̂

(1− λ̂)2
.

Similarly, for (2), using the fact that
∞∑
n=0

n2λ̂n = λ̂
1 + λ̂

(1− λ̂)3
,
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we have

Eθ[Eα̂[τω̄(x)]2]− (Eθ[Eα̂[τω̄(x)]])2 =
∞∑
n=0

n2((λ̂n − λ̂n+1)− λ̂2

(1− λ̂)2

= (1− λ̂)
∞∑
n=0

n2λ̂n − λ̂2

(1− λ̂)2
=

λ̂

(1− λ̂)2
.

(3·5)

�

Remark 3.3. In [5], it was proved that piecewise expanding maps with
random holes admit a conditionally invariant measure which is equivalent
to Lebesgue. Moreover, the index of dispersion provided by Theorem 3.2

Eθ[Eα̂[τω̄(x)]2]− (Eθ[Eα̂[τω̄(x)]])2

Eθ[Eα̂[τω̄(x)]]

plays a crucial role in approximating invariant densities of metastable ran-
dom maps.

Conditionally invariant measures are quite tricky. In the case of deter-
ministic holes, Demers and Young provided an example of a map with a
hole that has infinite number of absolutely continuous conditionally invari-
ant measures (accim) with overlapping supports [11]. Moreover, all the
accims in the example of [11] have the same escape rate. However, it is
suggested in [11] that only ‘natural’ accims are meaningful. For instance,
‘natural’ maybe in the sense that the density of the accim belongs to a
certain class of functions that include the constant density, such that under
the iterates of the conditional transfer operator each function in this class
converges in the appropriate topology to the density of the ‘natural’ accim
(see section 5.2 of [11]).

In [5] we studied maps with random holes in the case where the potential
of the transfer operator is − ln |T ′(x)| ∈ BV , where BV is the space of
functions of bounded variation on the unit interval. For sufficiently small
holes, using the perturbation result of [22], we proved in [5] the existence
of a unique absolutely continuous conditionally stationary measure whose
density belongs to BV , and which is natural along the lines above. In
the current work, the transfer operator has a general Hölder potential, and
there is no smallness condition on the size of the holes. In Theorem 5.5
and Corollary 5.6 we obtain a unique absolutely continuous conditionally
stationary measure that satisfy the criteria of section 5.2 of [11].
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4. Topological description of the surviving set

We now introduce the random function

1(x, ω) =

{
1 x ̸∈ Iω

0 else
.

Clearly

Pθ(1(x, ω) = 1) =

∫ ∞

−∞
1(x, ω) dθ(ω)

= θ(|x− x0| ≥ ω) =

∫ |x−x0|

0

dθ

= Fθ(|x− x0|),

(4·6)

where Fθ is the distribution function of ω (We note that here Fθ(0) = θ({0}).

Let ω = ω0ω1 · · ·ωn · · · ∈ [0, 1]N. We introduce the i.i.d. (for fixed x)
stochastic functional process

gn(x, ω) := 1(x, ωn).

The function gn(T
nx, ω) describes whether the trajectory of a point x falls

into a hole at time n or not.
We are interested in the set of points that avoid, under the dynamics of

T , the random holes, i.e. those trajectories that “survive”. We first start
with a topological description.

Given a realization ω ∈ [0, 1]N we define its surviving set as

Sω := {x ∈ [0, 1] : gn(T
nx, ω) = 1 ∀n ∈ N} .

The potential surviving set is defined as

S := [0, 1] \ {x ∈ [0, 1] : x ̸∈ Sω for θ⊗N - a.e. ω}.

Theorem 4.1. Let supp θ = [a, b]. Then

S =
∪
m∈N

T−m

(∩
n∈N

T−n([0, 1] \ (x0 − b, x0 + b))

)
.

Proof. If a point’s orbit visits the interval (x0− b, x0+ b) only finitely many
times its surviving probability is positive. Hence the inclusion ”⊇” is clear.

Fix ε > 0 and x ∈ [0, 1]. If the trajectory of x hits the interval (x0 −
b + ε, x0 + b − ε) infinitely often the Borel Cantelli Lemma implies that it
will eventually fall into a hole since Pθ(gn(T nx, ω) = 0) is, uniformly in n,
bounded away from zero as long as |T nx−x0| < b−ε. This proves ”⊆”. �
Remark 4.2. For T (x) = 2x mod 1, it is easy to check that if b < 1/8, then
the potential surviving set is non-empty. In fact if b < 1/8 the hole (x0 −
b, x0 + b) is contained in two adjacent binary intervals of length 1/4. In the
binary coding these two intervals correspond (for each interval separately)
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to fixing the first two digits, i.e. a cylinder of length 2. Now the set of
symbolic sequences

{
x ∈ {0, 1}N

}
that do not contain any two a priori fixed

words out of [00], [01], [10], [11] as a sub-word contains the sequences 0∞, 1∞

or (01)∞.

5. Statistical aspects of the surviving trajectories

To study the long-term statistics of the surviving trajectories, we first
introduce the averaged transfer operator associated with the system with
random holes. We will introduce in this section a interesting condition1

that allows us to reduce the transfer operator associated with the system
with random holes to a transfer operator (with a new potential) associated
with the deterministic and closed system T .

5.1. The averaged transfer operator. In random dynamical systems
[24], it is often useful to study the average transfer operator of the random
system, which is the integral, with respect to the noise, of the transfer
operators associated with the perturbed maps. Here in our setting, the
map is fixed at all times. However, a hole is randomly selected at each time
step.

Let ϕ ∈ Hloc
α . The averaged transfer operator with potential ϕ, associated

with the system with random holes and acting on Hloc
α , is defined by:

L̂ϕ(f)(x) :=

∫
S

Lϕ(f · 1(·, ω))(x) dθ(ω).

Its dual operator, which acts on the space of finite measures, will be denoted

by L̂ϕ

∗
. Notice that without further assumptions on the hole Iω the operator

L̂ϕ(f) will not leave the space Hloc
α invariant. We provide in this way; we

first recall the definition of Pθ in (4·6) and we write

g(x) := Pθ (1(x, ω) = 1) and ψ(x) := log g(x).

Then we will make the following
Assumption: ψ ∈ Hα.

5.2. When does ψ ∈ Hα? And what does it physically mean?

Definition 5.1. A measure θ on [0,+∞) is called Ahlfohrs upper semi-
regular if there is a constant K > 0 and a real number α > 0 such that for
all non-empty open intervals I ⊂ [0,+∞)

θ(I)

(diam I)α
< K.

1The justification and the interpretation of this condition will be discussed below in
this section. See subsection 5.2.
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Remark 5.2. Ahlfors upper semi-regular measures include fractal measures
like the measures of maximal dimension of dynamically defined Cantor sets,
i.e. Cantor sets that arise from smooth expanding repellers.

Theorem 5.3. The function g is Hölder continuous if θ is Ahlfors upper
semi-regular. If in addition θ({0}) > 0 then ψ is Hölder continuous.

Proof. Let x, y ̸= x0 and Ix,y = (|x− x0|, |y − x0|) ⊂ R+. Then diam Ix,y ≤
|x− y|. If θ is Ahlfors upper semi-regular we conclude

|g(x)− g(y)| = |Fθ(|x− x0|)− Fθ(|y − x0|) =

∣∣∣∣∣
∫ |x−x0|

0

dθ −
∫ |y−x0|

0

dθ

∣∣∣∣∣
=

∣∣∣∣∣
∫ |x−x0|

|y−x0|
dθ

∣∣∣∣∣ = θ(Ix,y) ≤ K(diam Ix,y)
α

≤ K|x− y|α.

If x = x0 then

|g(x0)− g(y)| =

∣∣∣∣∣θ({0})−
∫ |y−x0|

0

dθ

∣∣∣∣∣
=

∣∣∣∣∣θ({0})−
(
θ(0) + lim

ε→0+

∫ |y−x0|

ε

dθ

)∣∣∣∣∣
= lim

ε→0+
θ((ε, |y − x|) ≤ K|x− y|α.

If in addition θ({0}) > 0 we have that Fθ(|x−x0|) > 0 for all x ∈ [0, 1] and
hence g > 0. That together with the Hölder continuity of g implies that
ψ = log g is Hölder continuous. �

Remark 5.4. θ({0}) > 0 has a physical interpretation. It means that the
system randomly switches on a random hole and it has the possibility of not
switching on any hole at all. More precisely, at any moment n the system
is closed (no trajectory falls into a hole) with positive probability.

5.3. Conditionally invariant measures and equilibrium states.

Theorem 5.5. For ψ ∈ Hloc
α we have

(i) For f ∈ Hloc
α we have L̂ϕ(f) = Lϕ(f · g) and

L̂ϕ(f) = Lϕ+ψ(f).

(ii) supp g = [0, 1] \ (x0 − a, x0 + a) where supp θ = [a, b].

(iii) L̂ϕ : Hloc
α → Hloc

α has a dominant simple eigenvalue λ̂ and its cor-
responding eigenfunction, ρ̂, is strictly positive. There is a unique

eigenmeasure ν̂ with L̂ϕ

∗
(ν̂) = λ̂ν̂. The associated measure is given

by µ̂ϕ,θ := ρ̂ν̂.
(iv) supp µ̂ϕ,θ =

∩
n∈N T

−n ([0, 1] \ (x0 − a, x0 + a))
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(v) The associated equilibrium state to the potential ϕ + ψ is fully sup-
ported.

Proof. (i) By definition we have

L̂ϕ(f) =

∫
S

∑
Ty=x

eϕ(y)f(y)1(y, ω) dθ(ω) =
∑
Ty=x

eϕ(y)f(y)Pθ(1(y, ω) = 1)

= Lϕ(f · g) = Lϕ+ψ(f).

(ii) We have

0 = g(x) = Fθ(|x− x0|) ⇐⇒ |x− x0| < a

(iii) Follows from (i) and Proposition 2.2.
(iv) We notice that with Snϕ(z) =

∑n−1
k=0 ϕ(T

kz)

L̂ϕ

n
(f) =

∑
Tny=x

(
eSnϕ(y)

n−1∏
k=0

g(T ky)f(y)

)
.

Hence, for all n ∈ N

supp ρ̂ = supp L̂ϕ(ρ̂) = supp L̂ϕ

n
(ρ̂) =

n−1∩
k=0

supp g ◦ T k.

But
∞∩
k=0

(
supp g ◦ T k

)
=
∩
n∈N

T−n ([0, 1] \ (x0 − a, x0 + a)) .

(v) This follows from the previous arguments and the fact that the
Hölder continuity of ψ = log g implies that supp g = [0, 1].

�

Using (iii) of Theorem 5.5, we have

Corollary 5.6. The measure α̂ given by

α̂(A) :=
1

λ̂

∫
X

∫
S

1A1Icω ρ̂dθdm

is a conditionally stationary measure which is equivalent tom. Its associated
escape rate is given by − ln λ̂, where

λ̂ =

∫
S

dθ(ω)

∫
X

ρ̂1Icωdm.

Moreover, for all f ∈ Hloc
α we have

lim
n→∞

||λ̂−nL̂ϕ

n
f − ρ̂

∫
I

fdν̂||∞ = 0.
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Proof. We L̂ϕρ̂ = λ̂ρ̂, with
∫
I
ρ̂dm = 1. By using the definition of L̂ϕ, it

follows that:

λ̂ =

∫
S

dθ(ω)

∫
I

ρ̂1Icωdm.

By using again the fact that L̂ϕρ̂ = λ̂ρ̂, with
∫
I
ρ̂dm = 1 and the definition

of L̂ϕ, we see that the above defined measure α̂ satisfies the following:

α̂(A) =
1

λ̂

∫
S

dθ(ω)α̂(T−1A ∩ T−1Icω);

λ̂ =

∫
S

dθ(ω)α̂(T−1Icω);

and

λ̂nα̂(A) =

∫
S̄

dθ∞(ω̄)α̂(T−nA ∩ T−1Icω1
∩ T−2Icω2

∩ · · · ∩ T−nIcωn).

The fact that for all f ∈ Hloc
α

lim
n→∞

||λ̂−nL̂ϕ

n
f − ρ̂

∫
I

fdν̂||∞ = 0

follows from Theorem 5.5 and (iv) of Proposition 3.2. �
Remark 5.7. Since α̂ is equivalent to m, by (i) of Theorem 3.2, for almost
every ω, m almost every x will not survive. This yields to the natural
question: what is the ‘dimension’ of the set of points that never escape
through the random holes?

5.4. Properties of µ̂ϕ,θ. The relation between L̂ϕ and Lϕ+ψ yields that the
associated measure µ̂ϕ,θ is the usual equilibrium state µϕ+ψ, for the closed
deterministic system T , with respect to the Hölder continuous potential
ϕ+ψ. It is well known (see for instance [6]) that the measure µϕ+ψ has the
Gibbs property

C−1 <
µϕ+ψ([x1 · · · xn])

eSnϕ(x)+Snψ(x)∑
[y1···yn] e

Snϕ(y)+Snψ(y)

< C

where C > 1 and [z1 · · · zn] denotes the set of all numbers having z1 · · · zn
as their first dyadic digits. We also call µ̂ϕ,θ the measure of conditional
surviving probability2.

2Let us elaborate on calling µ̂ϕ,θ the measure of conditional surviving probability.

Given a point y ∈ [0, 1] and a finite path of its trajectory y1, y2, · · · , yn. Then eSnϕ(y) is
up to normalization the probability with respect to the equilibrium state µϕ of choosing

this particular path. On the other hand eSnψ(y) is up to normalization the probability
that y survives along this particular path. Since choosing the path is independent of
activating the holes we get

µ̂ϕ,θ([y1 · · · yn]) ∼
µϕ([y1 · · · yn]) · Pθ(y survives)∑

[y1···yn] µϕ([y1 · · · yn]) · Pθ(y survives)

∼ µϕ([y1 · · · yn]) · Pθ(y survives)

Eµϕ
(y survives up till time n)

.
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5.5. Asymptotic behaviour and the Hausdoff dimension. When the
set3 S ̸= ∅, we consider three families of potentials: t(ϕ + ψ), ϕ + tψ and
tϕ + T (t)ψ where in the latter case T (t) is defined by supν− ergodic{hν +∫
[0,1]

(tϕ + T (t)ψ) dν} = 0. We are interested in the asymptotics of the

corresponding equilibrium states as t→ ∞.

Theorem 5.8. Any accumulation measure µS
∞ of µt(ϕ+ψ) as t → ∞ has

support on the set of trajectories with highest conditional surviving proba-
bility. Moreover it has maximal entropy on this set.

Proof. The statement of the theorem follows from standard results in er-
godic optimization [21]. Any accumulation point maximizes the integral∫
[0,1]

(ϕ + ψ) dν and is hence supported on the set with maximal possible

ergodic averages. The interpretation from the last theorem concludes the
proof. More details are contained in the proof of the more general statement
of the next theorem. �
Theorem 5.9. Any accumulation measure µS

∞ of µ(ϕ+tψ) as t → ∞ has
support on S. Moreover,

sup{hν +
∫
[0,1]

ϕ dν : ν- invariant and ν(S) = 1} = hµS∞ +

∫
[0,1]

ϕ dµS
∞.

Therefore it is an equilibrium state with respect to the potential ϕ on the
surviving set S.

Proof. By the variational principle

sup
ν− invariant

{
hν +

∫
[0,1]

ϕ dν + t

∫
[0,1]

ψ dν

}
= hµϕ+tψ +

∫
[0,1]

ϕ dµϕ+tψ + t

∫
[0,1]

ψ dµϕ+tψ.

Since ∥ϕ∥ < ∞ and hν ≤ log 2 it follows that µS
∞ maximizes (over all

invariant measures) the integral
∫
[0,1]

ψ dν. Let

S̃ :=
∪
n∈N

T−n([0, 1] \ (x0 − b, x0 + b)).

This set is the set of points that never (not only in finite time) enter the
critical region and hence have surviving probability 1. We also remark that
any invariant measure on S is indeed concentrated on S̃. Since S̃ ̸= ∅
and S̃ is compact and forward invariant there is a maximizing measure ν
supported on S̃ with

∫
[0,1]

ψ dν = 0. Let B ∩ S̃ = ∅. Then µS
∞(B) =

The expectation in the denominator decays exponentially in n. Hence the measure
µ̂ϕ,θ([y1 · · · yn]) is the conditional probability of a cylinder to be chosen and surviving
rescaled with the average probability of a cylinder of length n to survive under the
condition that all trajectories survive until time n.

3Recall that in Remark 4.2 it is verified that for T (x) = 2x the set S ̸= ∅.
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0. Otherwise since g|B < 1 the integral of ψ would be negative. Hence

µS
∞(S̃) = 1 and consequently µS

∞(S) = 1.
Assume that there is an invariant (and hence also an ergodic) measure ν

supported on S and an ε > 0 with

(5·7) hν +

∫
[0,1]

ϕ dν > hµS∞ +

∫
[0,1]

ϕ dµS
∞ + ε.

Since
∫
[
0, 1]ψdν = 0, we have

(5·8) hν +

∫
[0,1]

ϕ dν + t

∫
[0,1]

ψ dν = hν +

∫
[0,1]

ϕ dν.

Using (5·7) and (5·8), we get

(5·9) hν +

∫
[0,1]

ϕ dν + t

∫
[0,1]

ψ dν > hµS∞ +

∫
[0,1]

ϕ dµS
∞ + ε.

Then for sufficiently large t, and by using the fact that t
∫
[0,1]

ψ dµϕ+tψ ≤ 0,

we have

hν +

∫
[0,1]

ϕ dν + t

∫
[0,1]

ψ dν > hµϕ+tψ +

∫
[0,1]

ϕ dµϕ+tψ +
ε

2

≥ hµϕ+tψ +

∫
[0,1]

ϕ dµϕ+tψ + t

∫
[0,1]

ψ dµϕ+tψ +
ε

2
.

This contradicts the variational principle. �

For the interpretation of the last family we consider the symbolic repre-
sentation Σ = {0, 1}N corresponding to the dyadic expansions of the real
numbers in the interval. We introduce a metric on Σ by

diam([x1 · · · xn]) := Snψ̃(x)

where ψ̃ := log g∫
[0,1] g dx

. Then this space Σ becomes a Cantor set. The

pointwise dimension

dϕ,θ(x) =
log µϕ([x1 · · · xn])
diam([x1 · · · xn])

at a point x is a measure of the deviation from the expected dying out
probability of a given path.

From standard multifractal analysis [26] we know

Theorem 5.10.

dimH {x : dϕ,θ(x) = −t′(t)} = T (t) + T ′(t) · t = dimH µtϕ+T (t)ψ.
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6. Examples

In the previous sections, we studied the dimension of the survival set
under the condition that θ({0}) > 0. To interpret what this means, one
can imagine that the random holes are possible ‘gates’ where orbits under
the dynamics of the map T escape. The condition θ({0}) > 0 means that
in certain situations all gates are closed, and thus no orbit escape. In fact
this interpretation explains that the condition θ({0}) > 0 provides interest-
ing dynamics that cannot happen in a deterministic setting such as in the
systems studied in [25]. Moreover, we believe that the condition θ({0}) > 0
may provide interesting examples of survival sets that are ‘fat’. Having said
that, it would be also natural to ask what happens when θ({0}) = 0? We
present some examples to shed some light on this direction. Since in the
examples below, the measure θ is discrete, unlike, in Theorem 5.5, we first
state an analogous result to that of Theorem 5.5 in a simple discrete case.

• There are K holes, K ≥ 2, denoted by {Hωi}Ki=1 and selected indepen-

dently according {pi}Ki=1; i.e., pi > 0 and
∑K

i=1 pi = 1;
• {Hωi}K−1

i=1 are elements of the Markov partition of T ;
• HK = ∅ (the case of no hole4);
• H̃loc

α := {Locally Hölder functions w.r.t. the Markov partition of T}.

The following result leeds to an analogous conclusion as that of Theorem
5.5.

Proposition 6.1. Let ϕ ∈ H̃loc
α . Then for any f ∈ H̃loc

α we have L̂ϕ(f) =

Lϕ+ψ(f), with ψ ∈ H̃loc
α .

Proof. Let Xωi = [0, 1] \Hωi . We have

L̂ϕ(f)(x) =
K∑
i=1

piLϕ(1Xωif)(x) = Lϕ(
K∑
i=1

pi1Xωi · f)(x) = Lϕ+ψ(f),

where ψ(x) = log
(∑K

i=1 pi1Xωi (x)
)
. Note ψ ∈ H̃loc

α because
∑K

i=1 pi1Xωi ∈
H̃loc
α and

∑K
i=1 pi1Xωi (x) > 0 since5 HK = ∅. �

Example 6.2. We consider the following example: T (x) = 2x mod 1. Let
H = (0, 1/2) be a hole. We now consider random holes in the follow-
ing way: at each time n, H is either ‘closed’ with probability p, or H is
‘open’ with probability 1− p . When acting on piecewise constant functions

with respect to the partition [0, 1/2), [1/2, 1), the transfer operator L̂ϕ, with
ϕ(x) = − ln |T ′x|, can be represented by the following matrix (acting by

4This is equivalent to the condition θ({0}) > 0 in the continuous noise case.
5In general one can replace the condition HK = ∅ by asking

∑K
i=1 pi1Xωi

(x) > 0 and

Proposition 6.1 would still hold. We asked explicitly for HK = ∅ to be one of the events
because this is the most interesting case in our work.
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multiplication from the left):

(6·10) Âϕ := p

[
1/2 1/2
1/2 1/2

]
+ (1− p)

[
0 0
1/2 1/2

]
=

[
p/2 p/2
1/2 1/2

]
.

The dominant eigenvalue of the above matrix6 is given by

λ̂ =
1 + p

2
.

The corresponding left and right eigenvectors are, respectively,

ρ̂ = [1 1] and ν̂ = [
p

p+ 1

1

p+ 1
].

Consequently, for any measurable set A, the absolutely continuous condi-
tionally invariant measure α̂ is given by:

α̂(A) =
1

λ̂

∫
I

∫
Ω

1A1Xω ρ̂dθ(ω)dm

=
2p

p+ 1
(m(A ∩ [0, 1/2])) +

2

p+ 1
(m(A ∩ [1/2, 1])) .

To find the measure µ̂ϕ,θ, we consider Â∗
ϕ, the transpose of the matrix defined

in (6·10). Let Q be the stochastic matrix defined by

Qij = (Â∗
ϕ)ij

ρ̂j

λ̂ρi

whose stationary probability vector q is defined by

qi = ρ̂i · ν̂i;

i.e.,

(6·11) Q :=

[
p/(p+ 1) 1/(p+ 1)
p/(p+ 1) 1/(p+ 1)

]
, q = [p/(p+ 1) 1/(p+ 1)].

Then µ̂ϕ,θ, defined on cylinder sets, is given by

µ̂ϕ,θ (Z(j, a0, a1, . . . , an−1)) = qa0 ·Qa0a1 · · ·Qan−2an−1

with

µ̂ϕ,θ (Z(j, a0)) = qa0 ,

and each ai ∈ {1, 2} ≡ {[0, 1/2), [1/2, 1)}. Notice that

(
p

1 + p
)n ≤ µ̂ϕ,θ (Z(j, a0, a1, . . . , an−1)) ≤ (

1

1 + p
)n.

Thus, we conclude that the support of µ̂ϕ,θ is a fat set.

6The dominant eigenvalue, and the corresponding eigenfunction, of L̂ϕ when acting
on Hölder functions, is the same as those of the above matrix reprsentation. The same

is true for the dual operator L̂ϕ
∗
using the above matrix with multiplication from the

right.
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Example 6.3. We now consider another example to get a sense on the
difference between the case ‘θ({0}) > 0’ (as in Example 6.2) and the case
when ‘θ({0}) = 0’: T (x) = 3x mod 1. Let H1 = (0, 1/3) and H2 =
(0, 2/3) be two holes. We now consider random holes in the following way:
at each time n, we either have a ‘small’ hole H1 with probability p, or a
bigger hole H2 with probability 1− p. Again the transfer operator L̂ϕ, with
ϕ(x) = − ln |T ′x|, can be represented by the following matrix (acting by
multiplication from the left):
(6·12)

Âϕ := p

 0 0 0
1/3 1/3 1/3
1/3 1/3 1/3

+(1−p)

 0 0 0
0 0 0
1/3 1/3 1/3

 =

 0 0 0
p/3 p/3 p/3
1/3 1/3 1/3

 .
The dominant eigenvalue of the above matrix is given by

λ̂ =
1 + p

3
.

The corresponding left and right eigenvectors are, respectively,

ρ̂ = [1 1 1] and ν̂ = [0
p

p+ 1

1

p+ 1
].

Note that for any measurable set A, the absolutely continuous conditionally
invariant measure α̂ is given by

α̂(A) =
1

λ̂

∫
I

∫
Ω

1A1Xω ρ̂dθ(ω)dm

= µ̂ϕ,θ(A) =
3p

p+ 1
(m(A ∩ [1/3, 2/3])) +

3

p+ 1
(m(A ∩ [2/3, 1])) .

To find the measure µ̂ϕ,θ, we consider Â∗
ϕ, the transpose of the matrix defined

in (6·12). Let Q be the stochastic matrix defined by

Qij = (Â∗
ϕ)ij

ρ̂j

λ̂ρi

whose stationary probability vector q is defined by

qi = ρ̂i · ν̂i;
i.e.,
(6·13)

Q :=

 0 p/(p+ 1) 1/(p+ 1)
0 p/(p+ 1) 1/(p+ 1)
0 p/(p+ 1) 1/(p+ 1)

 , q = [0 p/(p+ 1) 1/(p+ 1)].

Then µ̂ϕ,θ, defined on cylinder sets, is given by

µ̂ϕ,θ (Z(j, a0, a1, . . . , an−1)) = qa0 ·Qa0a1 · · ·Qan−2an−1

with

µ̂ϕ,θ (Z(j, a0)) = qa0 ,
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and each ai ∈ {1, 2, 3} ≡ {[0, 1/3), [1/3, 2/3), [2/3, 1)}. Notice that

0 ≤ µ̂ϕ,θ (Z(j, a0, a1, . . . , an−1)) ≤ (
1

1 + p
)n.

In particular, for any Z(j, a0, a1, . . . , an−1) such that ai = 1 for some j ≤
i ≤ j + n − 1 we have µ̂ϕ,θ (Z(j, a0, a1, . . . , an−1)) = 0. Thus, we conclude
that the support of µ̂ϕ,θ is a thin set.

Remark 6.4. The above examples suggest the following interesting problem:
In Example 6.2, where θ({0}) > 0 the measure µ̂ϕ,θ is supported on a fat
subset of the interval [0, 1]. In Example 6.3, where θ({0}) = 0, the measure
is only supported on a thin subset of [1/3, 1]. It would be interesting to work
out analogous theorems to those in the previous sections in the case when
θ(0) = 0. Based on the above examples, we believe that for the same map T ,
one may get a ‘fat’ survival set when θ({0}) > 0; however, when θ({0}) = 0
the survival set would be ‘thiner’.

Acknowledgment. We would like to thank anonymous referees for their
suggestions which improved the presentation of the paper.
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