
EXTREME VALUE THEORY WITH SPECTRAL TECHNIQUES:1

APPLICATION TO A SIMPLE ATTRACTOR.2

JASON ATNIP, NICOLAI HAYDN, AND SANDRO VAIENTI3

Abstract. We give a brief account of application of extreme value theory in dynamical
systems by using perturbation techniques associated to the transfer operator. We will
apply it to the baker’s map and we will get a precise formula for the extremal index.
We will also show that the statistics of the number of visits in small sets is compound
Poisson distributed.

1. Introduction4

Extreme value theory (EVT) has been widely studied in the last years in application to5

dynamical systems both deterministic and random. A review of the recent results with an6

exhaustive bibliography is given in our collective work [25]. As we will see, there is a close7

connection between EVT and the statistics of recurrence and both could be worked out8

simultaneously by using perturbations theories of the transfer operator. This powerful9

approach is limited to systems with quasi-compact transfer operators and exponential10

decay of correlations; nevertheless it can be applied to situations where more standard11

techniques meet obstructions and difficulties, in particular to:12

- non-stationary and random dynamical systems,13

- observable with non-trivial extremal sets,14

- higher-dimensional systems.15

Another big advantage of this technique is the possibility of defining in a precise and16

universal way the extremal index (EI). We defer to our recent paper [7] for a critical17

discussion of this issue with several explicit computations of the EI in new situations.18

The germ of the perturbative technique of the transfer operator applied to EVT is in19

the fundamental paper [23] by G. Keller and C. Liverani; the explicit connection with20

recurrence and extreme value theory has been done by G. Keller in the article [22], which21

contains also a list of suggestions for further investigations. We successively applied22

this method to i.i.d. random transformations in [5, 7], to randomly quenched dynamical23

systems in [2], to coupled maps on finite lattices in [14], and to open systems with targets24

and holes in [17].25

The object of this note is to illustrate this technique by presenting a new application26

to a bi-dimensional invertible system. We will see that the perturbative technique could27

be applied in this case as well provided one could find the good functional spaces where28

the transfer operator exhibits quasi-compactness.29

We will find a few limitations to a complete application of the theory and to its gen-30

eralization to wider class of maps in higher dimensions, see Remarks 3.2 and 3.3.31
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When the first version of this paper circulated, the spectral technique discussed above1

did not allow us to get another property related to limiting return and hitting times2

distribution in small sets, namely the statistics of the number of visits, which takes3

usually the form of a compound Poisson distribution. This has been recently achieved in4

the paper [3], and it could be easily applied to the system under investigation in this paper.5

We will briefly quote this technique in section 5. As for the EVT, such a technique suffers6

of the limitation imposed by the choice of the parameters, see remark 3.3. In particular,7

it does not allow us to treat the case of the fat Baker’s map, where the invariant set8

is the full square. This is instead possible with another technique developed by two of9

us, see [20], which allows to recover compound Poisson distributions for invertible maps10

in higher dimension and arbitrary small sets. By using this approach, we will be able11

to construct an example for the fat baker map with a compound Poisson distribution12

which is neither the standard Poisson nor the Pòlya-Aeppli,which are the most common13

compound distributions. We will finally discuss the extension to compound Poisson point14

process on the real line.15

2. A pedagogical example: the generalized baker’s map16

We now treat an example for which there are not apparently established results for17

the extreme value distributions. This example, the generalized baker’s map, from now18

on simply abbreviated as baker’s map, is a prototype for uniformly hyperbolic trans-19

formations in more than one dimension, two in our case, and in order to study it with20

the transfer operator, we will introduce suitable anisotropic Banach spaces. Our original21

goal was to investigate directly larger classes of uniformly hyperbolic maps, including22

Anosov ones, but, as we said above, the generalizations do not seem straightforward; we23

will explain the reason later on. With the usual probabilistic approaches extreme value24

distributions have been obtained for the linear automorphisms of the torus in [8].25

26

We will refer to the baker’s transformation studied in Section 2.1 in [10], but we will
write it in a particular case in order to make the exposition more accessible. The baker’s
transformation T (xn, yn) is defined on the unit square X = [0, 1]2 ⊂ R2 into itself by:

xn+1 =

{
γaxn if yn < α

(1− γb) + γbxn if yn > α

yn+1 =

{
1
α
yn if yn < α

1
υ
(yn − α) if yn > α,

with υ = 1 − α, γa + γb ≤ 1, see Fig. 1. To simplify some of the next formulae, we will27

take α = υ = 0.5 and γa = γb < 0.5. This last value must be strictly less than 1/2 since28

Lemma 3.1 requires the stable dimension ds strictly less than one, which corresponds to a29

fractal invariant set (thin baker’s map). This condition will be relaxed in the example 5.330

(fat baker’s map), but using an approach different of the spectral one leading to Lemma31

3.1.32

The map T is discontinuous at the horizontal line Γ : {y = α}. The singularity curves33

for T l, l > 1 are given by T−lΓ and they are constructed in this way: take the preimages34

T−l
Y (α) of y = α on the y-axis according to the map:35

TY (y) =

{
1
α
y, y < α

1
υ
y − α

υ
, y ≥ α.

(1)

Then T−lΓ = {y = T−l
Y (α)}. Any other horizontal line will be a stable manifold of T.36

The invariant non-wandering set Λ will be at the end an attractor foliated by vertical37
2
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Figure 1. Action of the baker’s map on the unit square. The lower part
of the square is mapped to the left part and the upper part is mapped to
the right part.

lines which are all unstable manifolds. We denote by Ws(Wu) the set of full horizontal1

(vertical) stable (unstable) manifolds of length 1 just constructed. We point out that a2

stable horizontal manifold Ws will originate two disjoint full stable manifold when iterate3

backward by T−1, not for the presence of singularity, but because the map T−1 will only4

be defined on the two images of T (X) as illustrated in Fig. 1.5

In order to obtain useful spectral information from the transfer operator L, its action is6

restricted to a Banach space B. We now give the construction of the norms on B and an7

associated “weak” space Bw in the case of the baker’s map, following partly the exposition8

in [10]. In this case, those spaces are easier to define and the norms will be constructed9

directly on the horizontal stable manifolds instead of admissible leaves, which are smooth10

curves in approximately the stable direction, see [11]. As we anticipated above, we follow11

[10], but we slightly change the definition of the stable norms by adapting ourselves to12

that originally introduced in [11]. Let us explain why. First of all we will consider the13

collection Σ of all the intervals W of length less or equal to 1 that are contained in the14

stable manifolds W ⊂ Ws ∈ Ws. Instead in [11], Σ was the set of full horizontal line15

segments of length 1 in X. The reason of our choice is that we will introduce small sets16

Bn, which could be identified as (fake) holes, and the preimages of such sets will cut the17

Ws. The smaller pieces generated in this way will enter the three norms given below and18

therefore it will be useful to count such pieces in Σ.19

Then we denote Cκ(W,C) the set of continuous complex-valued functions on W with20

Hölder exponent κ ≤ 1 and define the norm21

|φ|W,κ := |W |κ · |φ|Cκ(W,C), (2)

where |W | denotes the length of W and

|φ|Cκ(W,C) = |φ|C0 +Hκ(φ), Hκ(φ) = sup
x,y∈W
x ̸=y

|φ(x)− φ(y)|
|x− y|κ

.
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For h ∈ C1(X,C) we define the weak norm of h by1

|h|w = sup
W∈Σ

sup
φ∈C1(W,C)
|φ|C1(W,C)≤1

∣∣∣∣ ∫
W

hφdm

∣∣∣∣
where dm is the unnormalized Lebesgue measure along W, instead with mL we will denote2

the Lebesgue measure over X. We now take1 (κ, β) ∈ (0, 1) with 0 < β ≤ 1 − κ. The3

strong stable norm is defined as:4

∥h∥s = sup
W∈Σ

sup
φ∈C1(W,C)
|φ|W,κ≤1

∣∣∣∣ ∫
W

hφdm

∣∣∣∣. (3)

We then need to define the strong unstable norm which allows us to compare expectations
along different stable manifolds. If W1 is a subset of the stable manifold Ws we could
parameterize it as (t, sW1) where sW1 is the common ordinate of the points in W1 and
t ∈ [a1, b1] ⊂ [0, 1]. If W2 is a subset of another stable manifold, parametrized as (t, sW2)
with t ∈ [a2, b2], we pose

d(W1,W2) = |sW1 − sW2 |+ |[a1, b1]∆[a2, b2]|+ |[a1, b1] ∩ [a2, b2]|,

where ∆ means the symetric difference, and for test functions φi ∈ C1(Wi, C), i = 1, 2 :

d0(φ1, φ2) = sup
t∈[a1,b1]∩[a2,b2]

|φ1(sW1 , t)− φ2(sW1 , t)|.

The strong unstable norm of h is defined as5

∥h∥u = sup
ϵ≤1

sup
W1,W2∈Ws

d(W1,W2)≤ϵ

sup
φi∈C1(Wi,C)
|φi|C1(W,C)≤1

d0(φ1,φ2)≤ϵ

1

ϵβ

∣∣∣∣∫
W1

hφ1dm−
∫
W2

hφ2dm

∣∣∣∣ , (4)

Finally we can define the strong norm of h by6

∥h∥ = ∥h∥s + b∥h∥u,

where b is a small constant to be fixed later on. We set B to be the completion of C1(X,C)7

with respect to the norm ∥·∥, and, similarly, we define Bw to the completion of C1(X,C)8

with respect to the norm |·|w.9

Let us note that B lies in the dual of C1(X,C) and its elements are distributions. More10

precisely, any h ∈ B induces the linear functional φ→ h(φ) with the property that11

|h(φ)| ≤ |h|w|φ|C1 , for φ ∈ C1(X,C), (5)

see [11, Remark 3.4] for details2. In particular, for h ∈ C1(X,C) we have that (see [11,12

Remark 2.5])13

h(φ) =

∫
X

hφdmL, for φ ∈ C1(X,C). (6)

The transfer operator L associated to the map T is defined as14

(Lh)(φ) = h(φ ◦ T ), for h ∈ C1(X,C) and φ ∈ C1(X,C),

which, by completeness, can be extended to any h ∈ B.15

1The bound β ≤ 1− κ is needed in the proof of Lemma 3.1 in [9].
2The proof of this fact will follow from similar statements shown in section 3.
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For h ∈ L1(X,C), the space of mL summable functions with complex values, we have,1

see [11, Section 2.1]:2

Lh =

(
h

|detDT |

)
◦ T−1 =

h ◦ T−1

α−1γa
, (7)

where the last equality on the r.h.s. uses the particular choices for the parameters defining3

the map T.4

3. The spectral approach for EVT5

3.1. Formulation of the problem. We now take a ball B(z, r) of center z ∈ X and6

radius r and denote with B(z, r)c its complement, where d(·, ·) is the Euclidean metric.7

Let us consider for x ∈ X the observable8

ϕ(x) = − log d(x, z) (8)
and the function9

Mn(x) := max{ϕ(x), · · · , ϕ(T n−1x)}. (9)
For u ∈ R+, we are interested in the distribution of Mn ≤ u, where Mn is now seen
as a random variable on the probability space (X,µ), with µ being the Sinai-Bowen-
Ruelle (SRB) measure. Notice that the event {Mn ≤ u} is equivalent to the set {ϕ ≤
u, . . . , ϕ ◦ T n−1 ≤ u} which in turn coincides with the set

En := B(z, e−u)c ∩ T−1B(z, e−u)c ∩ · · · ∩ T−(n−1)B(z, e−u)c.

We are therefore following points which will enter the ball B(z, e−u) for the first time after10

at least n steps, and u → µ(En) is the distribution of the maximum of the observable11

ϕ ◦ T j, j = 0, . . . , n − 1. It is well known from elementary probability that the distribu-12

tion of the maximum of a sequence of i.i.d. random variables is degenerate. One way to13

overcome this is to make the boundary level u depend upon the time n in such a way the14

sequence un grows to infinity and gives, hopefully, a non-degenerate limit for µ(Mn ≤ un).15

16

From now on we set: Bn = B(z, e−un) and Bc
n the complement of Bn.17

We easily have18

µ(Mn ≤ un) =

∫
1Bc

n
(x)1Bc

n
(Tx) · · · 1Bc

n
(T n−1x) dµ. (10)

By introducing the perturbed operator, for h ∈ B:19

Lnh := L(1Bc
n
h), (11)

we can write (10) as20

µ(Mn ≤ un) = Ln
nµ(1). (12)

21

We explicitly used here two facts which deserve justification.22

• 1Bc
n

and 1Bc
n
h are in the Banach space, whenever h ∈ B. If we prove it for 1Bc

n
,

the same will hold for 1Bc
n
h since both 1Bc

n
and h will be the limit, in the B norm,

of a sequence of functions in C1(X,C). Let us sketch the argument for 1Bc
n
. Take

a sequence of C∞ real functions 0 ≤ θk ≤ 1 defined on X, which are equal to 1
on Bc

n and equal to 0 on the complement of an open set U containing Bc
n and at

distance |U \Bc
n| ≤ 1/k. Then for the weak norm of 1Bc

n
− θk we have to compute

the integral ∣∣∣∣∫
W

(1Bc
n
− θk)φdm

∣∣∣∣
5



where W is stable interval of length at most 1. We have
∣∣∫

W
(1Bc

n
− θk)φdm

∣∣ ≤
4
∣∣∣∫W∩U\Bc

n
φdm

∣∣∣ . The set W ∩U \Bc
n will consist in fact of at most four connected

pieces of stable manifold, therefore

|1Bc
n
− θk|w ≤ sup

W∈Σ
sup

φ∈C1(W,C)
|φ|C1(W,C)≤1

≤ 4|W ∩ U/Bc
n|∥φ∥C0(W,C) ≤

4

k
∥φ∥C0(W,C) ≤

4

k
,

which goes to 0 when k → ∞. Similar argument hold for the strong stable and un-1

stable norms; this follows easily by using, for instance, the computations presented2

for such norms in item A2 below.3

• 1Ah(ϕ) = h(1Aϕ), when h is a Borel measure. The proof in the preceding item4

holds for any compact set A. If we approximate, by density, h with C1(X,C) func-5

tions, we see that the equality we want to prove follows from the representation6

(6).7

It has been proved in [10] that the operator L is quasi-compact, in the sense that it8

can be written as39

L = µ⊗ Z +Q, (13)
where µ = Lµ is the SRB measure normalized in such a way that µ(1) = 1 and spanning10

the one-dimensional eigenspace corresponding to the eigenvalue 1; Z is the generator11

of the one-dimensional eigenspace of L∗ in the dual space B∗ and corresponding to the12

eigenvalue 1 and normalized in such a way that Z(µ) = 1; finally Q is a linear operator13

on B with spectral radius sp(Q) strictly less than one.14

3.2. The perturbative approach. We now introduce the assumptions which allow us15

to apply the perturbative technique of Keller and Liverani [23]. They are split in two16

blocks: A0, A2 and A3 are needed to get the quasi-compact decomposition (16), which17

extends to the perturbed operators Ln the same decomposition for L required by A1. The18

assumptions A4 and A5 together with (16) are finally needed to apply the perturbative19

technique in [23] we referred to at the beginning of this section.20

• A0 B is continuously embedded into Bw.21

• A1 The unperturbed operator L is quasi-compact in the sense expressed by (13).22

• A2 There are constants 0 < ρ < 1, D1, D2, D3 > 0,M > 0, ρ < M, such that ∀n23

sufficiently large, ∀h ∈ B and ∀k ∈ N we have24

|Lk
nh|w ≤ D1M

k|h|w, (14)
||Lk

nh|| ≤ D2ρ
k||h||+D3M

k|h|w. (15)
This will be proved below.25

• A3 We can bound the weak norm of (L−Ln)h, with h ∈ B, in terms of the norm
of h as:

|(L − Ln)h|w ≤ χn||h||
where χn is a sequence converging to zero. We give immediately the proof of26

this fact since it is achieved by a simple adaptation of the computation of the27

strong stable norm in the proof of item A2 below. Looking in fact at the28

notations and at the steps of such a demonstration, we have to control the29

term:
∫
W
(L − Ln)hdm =

∫
W
L(1Bnh)φdm =

∑
i=1,2

∫
Wi∩Bn

h(y)φ(Ty)α dm(y) ≤30

∥h∥s|Bn|κ. Then χn = |Bn|κ.31

32

3If φ is a test function, eq. (13) means that (Lh)(φ) = Z(h)µ(φ) +Q(h)(φ).
6



Thanks to the assumptions A2 (uniform Lasota-Yorke inequalities) and A3
(closeness of the operators in the triple norm), we can apply the spectral theory
in [24],4 and get that the decomposition (13) holds for n large enough, namely

λ−1
n Ln = µn ⊗ Zn +Qn, (16)

Lnµn = λnµn, (17)
ZnLn = λnZn, (18)

Qn(µn) = 0, ZnQn = 0, (19)

where λn ∈ C, µn ∈ B, Zn ∈ B∗, Qn ∈ B, and supn sp(Qn) < sp(Q). We observe1

that the previous assumptions (16)–(19) imply that Zn(µn) = 1, ∀n; moreover µn2

can be normalized in such a way that µn(1) = 1 and Z(µn) = 1, see [23].3

4

We now state assumption A4 deferring A5 to the next section.5

• A4 If we define6

∆n = Z(L − Ln)(µ), (20)
and for h ∈ B7

ηn := sup
||h||≤1

|Z(L(h1Bn))|, (21)

we must assume that8

lim
n→∞

ηn = 0, (22)
9

ηn||L(1Bnµ)|| ≤ const ∆n. (23)
It remains to prove A2 and A4.10

11

Let us start with the former, A2; notice that the proof we present is also valid for12

the unperturbed operator, and this will be explicitly used in the following. The proof13

is basically the same as the proof of Proposition 4.2 in [10], with the difference that we14

allow subsets of the stable manifolds of length less than one. By density of C1(X,C) in15

both B and Bw, it will be enough to take h ∈ C1(X,C). We have to control integrals of16

type:
∫
W
Lnhφdm, where W ∈ Σ and φ ∈ C1(W,C) (resp. Cκ(W,C)), according to the17

estimate of the weak (resp. strong) norm. Let us start for the weak norm and consider18

for instance L2
n, we have19 ∫
W

L2
nhφdm =

∫
W

1Bc
n
(T−1x)L(1Bc

n
h)(T−1x)φ(x)

α−1γa
dm(x) = (24)∑

i=1,2

∫
Wi

1Bc
n
(y)L(1Bc

n
h)(y)φ(Ty)

α−1
dm(y), (25)

whereWi, i = 1, 2 are the two preimages ofW and we performed a change of variable along20

the stable manifold with Jacobian γa. The measure m along Wi is again the unnormalized21

Lebesgue measure. Iterating one more time we will produce at most two new pieces of22

stable manifolds, and we get:23 ∑
j=1,··· ,4

∫
Wj

α2h(y)φ(T 2y)1Bc
n
(y)1Bc

n
(Ty) dm(y). (26)

4This spectral theory also requires that if z is in the spectrum of Ln and |z| > ρ, then z is not in the
residual spectrum of Ln. This last fact is guaranteed by A0 which implies that the spectral radius of Ln

is bounded by ρ.
7



In the integral we replace each Wj with (Wj ∩ Bc
n ∩ T−1Bc

n) getting again at most two
small pieces W (n)

j of stable manifolds, since Bc
n ∩ T−1Bc

n could have only one connected
component by the (linear) structure of the inverse of the map5. In order to compute the
weak norm of L2

n we must take a test function φ verifying |φ|C1(W,C) ≤ 1. If we now take
two points y1, y2 ∈ W

(n)
j we have

|φ(T 2(y1))− φ(T 2(y2))| ≤ H1(φ)|T 2(y1)− T 2(y2)| ≤ H1(φ)γ2a|y1 − y2|,
and therefore |φ◦T 2|

C1(W
(n)
j ,C) ≤ 1. By multiplying and dividing (26) by |φ◦T 2|

C1(W
(n)
j ,C)

we finally get: (26) ≤ 2
∑

j=1,··· ,4 α
2|h|w ≤ 2|h|w, where the last bound comes from our

choice of α = 1
2
. The proof generalizes immediately to any power Lk

n, k ≥ 2, by replacing
the factor 2 in front of the sum with k, see the previous footnote:

|Lk
nh|w ≤ k|h|w.

To compute the strong stable norm, we closely follow the same calculations of section 4.11

in [10] and we write, still for the second iterate of the perturbed operator and using the2

notations above:3 ∫
W

L2
nhφdm = 2

∑
j=1,··· ,4

∫
W

(n)
j

α2h(y)[φ(T 2y)−φj,n]dm(y)+

∫
W

(n)
j

α2h(y)φj,ndm(y), (27)

where
φj,n =

1

|W (n)
j |

∫
W

(n)
j

φ(T 2y)dm(y).

Since |φj,n|C1(W
(n)
j )

≤ supW |φ|, we have immediately that the rightmost term in (27) is4

bounded by 2|h|w. Instead the first piece on the right hand side is bounded by5 ∑
j=1,··· ,4

α2∥h∥s|φ ◦ T 2 − φj,n|(W (n)
j ),κ

. (28)

But |φ◦T 2−φj,n|Cκ(W
(n)
j )

≤ |φ◦T 2−φj,n|C0+supx ̸=y
|φ(T 2x)−φ(T 2y)|

|x−y|κ ≤ |φ(T 2x)−φ(T 2x∗)|+

H(φ)γ2κa ≤ 2H(φ)γ2κa , being x∗ some point in W (n)
j by the mean value theorem. Therefore

|φ ◦ T 2 − φj,n|W (n)
j ,κ

≤ 2γ2κa |φ|W,κ ≤ 2γ2κa and (28) ≤ 4γ2κa ∥h∥s. Generalizing to any k we
finally get

∥Lk
nh∥s ≤ k|h|w + 2kγκka ∥h∥s.

In order to treat the strong unstable norm, we follow section 4.3 in [11] adapted to6

our case, which is considerably much easier. Therefore, take two stable manifolds W1,27

at distance at most ϵ, and φi on Wi, i = 1, 2 with |φi|C1(Wi,C) ≤ 1. Call U1 ⊂ W1 and8

U2 ⊂ W2 the connected intervals parametrized respectively by (sW1 , t), (sW2 , t), with t9

belonging to the same interval. We call matched these two pieces. We call V1,2 the two10

unmatched pieces in W1,2; notice that the length of these two pieces is less than ϵ. Define11

now by U
(j)
1,k , U

(j)
2,k , j = 1, . . . 2k two preimages of order k respectively of U1 and U2 with12

the same history, which means that if s
U

(j)
1,k
, s

U
(j)
2,k

are the common ordinates of the points13

in respectively U
(j)
1,k and U

(j)
2,k , then s

U
(j)
1,k

and s
U

(j)
2,k

belong to the same inverse branch of14

5If we consider higher iterates of L, for instance of order k, we should control terms like W ∩ Bc
n ∩

T−1Bc
n ∩ · · · ∩ T−(k−1)Bc

n, where W is a piece of stable manifold. Notice that each preimage T−lBn, l =
1, . . . , k − 1, is contained in 2l disjoint horizontal rectangles. Therefore W could meet at most k − 1 of
such rectangles of different generation and hence at most k − 1 preimages of Bn. This implies that the
complement in W of such intersection is at most composed by k connected intervals

8



the map T k
Y given in (1). Due to the linearity of the map, the sets U (j)

1,k and U
(j)
2,k will be1

again matched and d(U (j)
1,k , U

(j)
2,k) = |s

U
(j)
1,k

− s
U

(j)
2,k
| ≤ αkd(U1, U2) ≤ αkϵ. Since U (j)

1,k and U (j)
2,k2

could contain each at most k preimages of the ball Bn, we could have at most k matched3

intervals inside U (j)
1,k and U

(j)
2,k . Call U (j,l)

1,k and U
(j,l)
2,k , l = 1, . . . , k those smaller matched4

pieces. So their contribution to the Lk
n in (4) is5

∑
j=1,...,2k

k∑
l=1

αk 1

ϵβ

∣∣∣∣∣
∫
U

(j,l)
1,k

h(y)φ1(T
ky)dm(y)−

∫
U

(j,l)
2,k

h(y)φ2(T
ky)dm(y)

∣∣∣∣∣ . (29)

Since d0(φ1 ◦ T 2, φ2 ◦ T 2) ≤ γ2ad0(φ1, φ2) ≤ γ2aϵ ≤ ϵ, and d(U (j,l)
1,k , U

(j,l)
2,k ) = |s

U
(j)
1,k

− s
U

(j)
2,k
| ≤

αkd(W1,W2) ≤ αkϵ, we have that, since C1(U
(j,l)
m,k ) ≤ 1,m = 1, 2

(29) ≤ kαkβ∥h∥u
For the unmatched pieces, we have to take into account those generated by the 2k preim-
ages of V1,2, but also the unmatched pieces in the U

(j)
m,k,m = 1, 2, j = 1, . . . , 2k. By

overcounting, the number of those unmatched pieces will be bounded by 4k2k. If we call
Vk one of them and supposing it belongs to the backward images of W1, we must esti-
mate the strong stable norm of the quantity 1

ϵβ

∣∣∣∫Vk
h(y)φ(T ky)dm(y)

∣∣∣ . We multiply it by
|Vk|κ|ϕ ◦ T k|Cκ(Vk,C). But |ϕ ◦ T 2|Cκ(Vk,C) ≤ |ϕ|C0(W1,C) +H(ϕ)γ2a ≤ 1, and |Vk|κ ≤ ϵγ−kκ

a .
Therefore all the unmatched pieces at the k-th generation in the estimate of the strong
unstable norm will be bounded by 4k2kγ−kκ

a ∥h∥s, since β ≤ 1, and

∥Lk
nh∥u ≤ kαkβ∥h∥u + 4kγ−kκ

a ∥h∥s.

In conclusion we get for k ≥ 1 :6

∥Lk
nh∥ = ∥Lk

nh∥s + b∥Lk
nh∥u ≤ k|h|w + 2kγκka ∥h∥s + b(kαkβ∥h∥u + 4kγ−kκ

a ∥h∥s). (30)

We now fix a value of k, say k0, such that

4σk0 < 1/2; ρ := (4k0σ
k0)

1
k0 < 1,

where
σ := max{γκa , αβ} < 1

and we finally choose b such that
2b ≤ γ2k0κa .

With these positions and by using blocks of length k0, it is immediate to rewrite (30) as,
for any k > 0 :

∥Lk
nh∥ ≤ ρk|h|w + 2Mk∥h∥,

where M := (k
1
k0
0 ), and this proves (15).7

8

We now pass to justify A4. We remind that Z is the unique solution of the eigenvalue9

equation L∗Z = Z, where L∗ is the dual of the transfer operator. By setting10

Z(h) := h(1), h ∈ B, (31)

we have for h ∈ B:

L∗Z(h) = Z(Lh) = (Lh)(1) = h(1 ◦ T ) = h(1) = Z(h).
9



Coming back to ∆n we see immediately that1

∆n = Z(L(1Bnµ)) = L(1Bnµ)(1) =

∫
1Bn dµ = µ(Bn). (32)

The term ||L(1Bnµ)|| can be handled very easily using the Lasota-Yorke inequality which
we proved in item A2 above. It follows in fact from (15) that there are two constants
C1, C2 depending only on the map such that

||L(1Bnµ)|| ≤ C1||1Bnµ||+ C2|1Bnµ|w.

Moreover it is easy to show that

||1Bnµ|| ≤ ||µ|| and |1Bnµ|w ≤ |µ|w.6

By setting
C3 := C1||µ||+ C2|µ|w,

we are led to prove that (see (23)), ηnC3 ≤ const ∆n, namely2

ηn ≤ const ∆n = const µ(Bn). (33)

Before continuing, we have to focus on µ(Bn) = µ(B(z, e−un)). It is well known that3

for µ-almost all z and by taking the radius sufficiently small, depending on the value ι,4

e−un(d+ι) ≤ µ(B(z, e−un) ≤ e−un(d−ι), where ι > 0 is arbitrarily small. This follows from5

the existence of the limit6

lim
r→0+

log µ(B(x, r))

log r
= d, for x chosen µ-a.e., (34)

and quantity d is the Hausdorff dimension of the measure µ which in our case reads [26],
eq. (3.24):

d = 1 + ds, where ds :=
α logα−1 + (1− α) log(1− α)−1

log γ−1
a

.

Notice that ds is strictly smaller than 1; for instance, with the choices α = 0.5, γa = 0.25,7

we get ds = 0.5. We now have:8

Lemma 3.1. Assume κ > ds.9

Then
ηn ≤ 2µ(Bn).

Proof. We have

Z(L(h 1Bn)) =

∫
h 1Bndm.

Put W̃ξ = Wξ ∩ Bn; by disintegrating along the stable partition Ws we get:10 ∫
h 1Bn dmL =

∫
ξ

dλ(ξ)

[∫
Wξ

(1Bnh)(x) dm(x)

]

≤
∫
ξ

dλ(ξ)
[
|W̃ξ|κ∥h∥s

]
≤ e−unκ||h||sλ(ξ;Bn ∩Wξ ̸= ∅),

6We give the proof for the weak stable norms, the others follows anagously. We approximate by density
µ with functions h ∈ C1(X,C), as we did above when we proved that 1Bc

n
h ∈ B. Since

∫
W

1Bn
hφdm ≤∫

Bn∩W
hφdm ≤

∫
W

hφdm we have that |1Bn
h|w ≤ |h|w.

10



where λ is the quotient measure on the space of stable leaves Wξ belonging to Ws; and
indexed by ξ, see for instance [27], Appendix A. By definition of disintegration we have
that

λ(ξ;Bn ∩Wξ ̸= ∅) = mL(
⋃

Wξ, Bn ∩Wξ ̸= ∅) = 2e−un ,

and therefore
ηn ≤ 2e−un(κ+1).

We finally have
ηn ≤ 2e−un(κ+1) ≤ 2e−un(d+ι) ≤ 2µ(Bn),

provided we choose1

κ > d+ ι− 1 (35)
which can be satisfied by assumption. □2

Remark 3.2. The local comparison between the Lebesgue and the SRB measure of a ball3

of center z obliged us to choose z µ-almost everywhere because in this way we have a4

precise value for the locally constant dimension d. We are therefore discarding several5

points, possibly periodic, where the limiting distribution for the Gumbel’s law (see next6

section) could exhibit extremal indices different from 1.7

Remark 3.3. For invertible, piecewise differentiable hyperbolic maps in dimension 2, the8

construction of the Banach space imposes that κ < 1; for billiard maps associated with9

Lorentz gases, [12], it even verifies κ ≤ 1/6. This could make difficult to check condition10

(35) for invariant sets with large d, like Anosov diffeomorphisms for instance. In some11

sense this difficulty was already raised in section 4.5 in the Keller’s paper [22], where12

an estimate like ours in terms of the Hölder exponent κ was given and the subsequent13

question of the comparison with the SRB measure was addressed.14

4. The limiting law15

4.1. The Gumbel law. We have now all the tools to compute the asymptotic behavior16

of Ln. We need one more ingredient which will constitute our last assumption:17

• A5 Let us suppose that the following limit exist for any k ≥ 0 :18

qk = lim
n→∞

qk,n := lim
n→∞

Z
(
[(L − Ln)Lk

n(L − Ln)]µ
)

∆n

(36)

Notice that

qk,n =
µ(Bn ∩ T−1Bc

n ∩ · · · ∩ T−kBc
n ∩ T−(k+1)Bn)

µ(Bn)

and therefore by the Poincaré recurrence theorem
∞∑
k=0

qk,n = 1.

Therefore if the limits (36) exist, the quantity19

θ = 1−
∞∑
k=0

qk, (37)

is well defined and verifies
0 ≤ θ ≤ 1.

11



It is called the extremal index and it modulates the exponent of the Gumbel’s law as we
will see in a moment. We have in fact by Theorem 2.1 of [23]:

λn = 1− θ∆n = exp(−θ∆n + o(∆n)),

or equivalently
λnn = exp(−θn∆n + no(∆n)).

Therefore we have
µ(Mn ≤ un) = Ln

nµ(1) = λnn[µn(1)Zn(µ) +Qn
n(µ)(1)]

and consequently
µ(Mn ≤ un) = exp(−θn∆n + no(∆n))[O(1) +Qn

n(µ)(1)],

since µn(1) = 1 and it has been proved in [23], Lemma 6.1, Zn(µ) → 1 for n → ∞. At1

this point we need an important assumption, which basically reduces to fix the sequence2

un and allow us to get a non-degenerate limit for the distribution of Mn. We in fact ask3

that4

n ∆n → τ, n→ ∞, (38)
where τ is a positive real number. With this assumption, using (5) and the fact that
|h|w ≤ ∥h∥s, we have

|Qn
n(µ)(1)| ≤ const sp(Q)n||µ|| → 0.

In conclusion we get the Gumbel’s law
lim
n→∞

µ(Mn ≤ un) = e−θτ .

4.2. The extremal index. We are now ready to compute the qk,n, which will determine5

the extremal index. Let us first suppose that the center of the ball Bn is not a periodic6

point; then the points T j(z), j = 1, · · · , k will be disjoint from z. Let us take the ball7

so small that is does not cross the set T jΓ, j = 1, · · · , k, where Γ is the discontinuity8

line (y = α). In this way the images of Bn will be ellipses with the long axis along the9

unstable manifold and the short axis stretched by a factor γk. By continuity and taking n10

large enough, we can manage that all the iterates of Bn up to T k will be disjoint from Bn11

and for such n the numerator of qk,n will be zero. At this point we can state the following12

result:13

Proposition 4.1. Let T be the baker’s transformation and consider the function Mn(x) :=
max{ϕ(x), . . . , ϕ(T n−1x)}, where ϕ(x) = − log d(x, z), and z is chosen µ-almost every-
where with respect to the SRB measure µ. Then, if z is not periodic, we have

lim
n→∞

µ(Mn ≤ un) = e−τ ,

where the boundary level un is chosen to satisfy nµ(B(z, e−un)) → τ.14

Suppose now z is a periodic point of minimal period p. By doing as above we could15

stay away from the discontinuity lines up to p iterates and look simply to T−p(Bn)∩Bn.16

Since the map acts linearly, the p preimage of Bn would be an ellipse with center z and17

symmetric w.r.t. the unstable manifold passing trough z. So we have to compute the SRB18

measure of the intersection of the ellipse with the ball shown in Fig. 2.19

It turns out that this computation is not easy. The natural idea would be to disintegrate20

the SRB measure along the unstable manifolds belonging to the unstable partition Wu.21

We index such fibers as Wν and we put ζ(ν) the associated quotient measure. Let us22

recall that the conditional measures along leaves Wν are normalized Lebesgue measures:23
12



we denote them with lν . If we call Ein the region of the ellipse inside the ball Bn, we have1

to compute2 ∫
lν(Ein ∩Wν) dζ(ν)∫
lν(Bn ∩Wν) dζ(ν)

. (39)

Although simple geometry allows us to compute easily the length of Ein∩Wν and Bn∩Wν ,3

and since they vary with Wν , it is not at the end clear how to perform the integral with4

respect to the counting measure, especially because we need asymptotic estimates, not5

bounds. We therefore proceed by introducing a different metric, a nice trick which was6

already used in [8]. We use the l∞ norm on R2 for which |(x, y)|∞ = max{|x|, |y|}. In this7

way the ball Bn will become a square with sides of length rn := e−un and T−p(Bn) will8

be a rectangle with the long side of length γ−p
a rn and the short side of length αprn. This9

rectangle will be placed symmetrically with respect to the square as indicated in Fig.10

3. A quick inspection shows that the proof demonstrating that 1Bc
n
∈ B remains valid11

whenever those balls are "squares". The ratio (39) can now be computed easily since the12

length in the integrals are constant and we get αp. In conclusion:13

Proposition 4.2. Let T be the baker’s transformation and consider the function Mn(x) :=
max{ϕ(x), . . . , ϕ(T n−1x)}, where ϕ(x) = − log d∞(x, z), and z is chosen µ-almost every-
where with respect to the SRB measure µ. Then, if z is a periodic point of minimal period
p, we have

lim
n→∞

µ(Mn ≤ un) = e−θτ ,

where nµ(B(z, e−un)) → τ and
θ = 1− αp.

Remark 4.3. Propositions 4.1 and 4.2 show that for a typical (non-periodic) point z the14

limiting distribution of the maximum is purely exponential. The baker’s map is probably15

the easiest example of a singular attractor. It is annoying that we could not compute16

analytically the extremal index with respect to the Euclidean metric, which is the metric17

usually accessible in simulations and physical observations. Moreover, when p→ ∞, Fig.18

2 tends to Fig. 3, with a very horizontally long and vertically thin green rectangle, so the19

extremal index for the Euclidean holes tends to that for the square holes.720

5. Poisson statistics21

5.1. The spectral approach. As mentioned in the introduction, the spectral technique
has been recently generalised to study the statistics of the number of visits in balls
shrinking around a point, [3]. We briefly introduce such an approach and the reader will
see that we can easily adapt it to the baker’s map. The starting point is to consider the
following counting function

N τ
Bn

(x) =

⌊ τ/µ(Bn) ⌋∑
i=0

1Bn ◦ T i(x),

where τ is a positive parameter and x ∈ X. The goal is to study the distribution of this
discrete random variable in the limit n→ ∞; with the spectral approach will rather look
at the characteristic function of such a variable.
We begin to define Sn,k :=

∑k
i=0 1Bn ◦ T i and put Sn,n = N τ

Bn
. We then define the

perturbed operator
Ln,s(h) = L(eis1Bnh), s ∈ R, h ∈ B.

7We thank the anonymous referee for this observation.
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Figure 2. Computation of the extremal index around periodic point with
the Euclidean metric. The vertical line is an unstable manifold. We should
compute the green area inside the circle.

Figure 3. Computation of the extremal index around periodic point with
the l∞ metric. We should compute the green area inside the square.

A simple computation shows that

Lk
n,s(µ)(1) =

∫
eisSn,kdµ,

which suggests to get information on the characteristic function of Sn,k by the behavior of
the top eigenvalue λn,s of the perturbed operator Ln,s. At this point the analysis proceeds
in the same manner as for the perturbed operator Ln and we sketch here the main steps.
The difference between the two operators is now quantified by

∆n,s := Z(L − Ln,s)(µ) = (1− eis)µ(Bn),

and1

λn,s = 1− θ(s)(1− eis)µ(Bn) + o(µ(Bn)). (40)
The quantity θ(s) plays the role of the extremal index and is defined according formula2

(36), which in the present case reduces to θ(s) = 1−
∑∞

k=0 qk(s), where3

qk(s) = lim
n→∞

1

1− eis

k∑
ℓ=0

(1− eis)2eiℓsβ(k)
n (ℓ) = (1− eis)

k∑
ℓ=0

eiℓsβk(ℓ), (41)

β(k)
n (ℓ) :=

µ(x; x ∈ Bn, T
k+1(x) ∈ Bn,

∑k
j=1 1Bn(T

jx) = ℓ)

µ(Bn)
. (42)

14



and we suppose that the limit βk(ℓ) := limn→∞ β
(k)
n (ℓ) exists. Then we have

θ(s) = 1− (1− eis)
∞∑
k=0

k∑
ℓ=0

eiℓsβk(ℓ),

and the exponential decay of correlation of the measure µ allows us to show that the series∑∞
k=0

∑k
ℓ=0 βk(ℓ) converges absolutely8 and therefore θ(s) is C∞ in the neighborhod of 0.

If now return to the eigenvalue (40), we exponentiate it at the power n and we use again
the threshold condition (38), nµ(Bn) → τ, we finally get

lim
n→∞

∫
eisSn,ndµ = e−θ(s)(1−eis) := φ(s).

Since φ(s) is continuous in s = 0, it is the characteristic function of some random1

variable Z, eventually defined on a different probability space (Ω,F ,P). The vari-2

able Z is clearly non-negative and integer valued and it is also infinite divisible since3

e−θ(s)(1−eis)t = (e−θ(s)(1−eis)t/N)N , for any N. This implies that Z has a compound Pois-4

son (CP) distribution, see [15] or [3] for more references, namely it may be written as5

Z :=
∑N

j=1Xj, where the Xj are iid random variables defined on same probability space,6

and N is Poisson distributed with intensity κ and Xj has distribution P(Xj = l) = ρl. We7

call the sequence (ρ)l≥1 the cluster size distribution of Z. Among the CP distributions,8

two are particularly important, the standard Poisson distribution and the Pòlya-Aeppli9

distribution. For the standard Poisson ρ1 = 1; for Pòlya-Aeppli the distribution of Xj10

is geometrical, namely ρl = η(1 − η)l, η ∈ (0, 1). For such distributions the associated11

characteristic functions are perfectly known. To determine them for our baker’s system12

one should prove the existence and compute the quantities (42), which are of geometric13

and dynamical nature. This will be done in the next section in the context of a more14

probabilistic approach to Poisson-like statistics. Actually the quantities computed in the15

next section are not exactly those in (42), but it is not difficult to modify their derivation16

to get (42) and therefore reprove Proposition 5.2 with the spectral approach. As we said17

in the Introduction, we will present the alternative probabilistic approach since it will18

allow us to cover the example 5.3 which shows a CP distribution different from the stan-19

dard Poisson and the Pòlya-Aeppli. The probabilistic approach gives also an alternative20

way to prove EVT for the baker’s map which is recovered as the limiting distribution of21

µ(N τ
Bn

= 0).22

5.2. The probabilistic approach. We now use a recent technique developed in [20]23

and apply it to our baker’s map. We will recover the usual dichotomy and get a pure24

Poisson distribution when the points are not periodic, and a Pólya-Aeppli distribution25

around periodic points with the parameter giving the geometric distribution of the size26

the clusters which coincide with the extremal index computed in the preceding section.27

This last result is achieved in particular if we use the l∞ metric. This result is not surpris-28

ing; what is interesting is the great flexibility of the technique of the proof which allows29

us to get easily the expected properties. In order to apply the theory in [20], we need30

to verify a certain number of assumptions, but otherwise defer to the aforementioned31

paper for precise definitions. Here we recall the most important requirements and prove32

in detail one of them.33

Warning: the next considerations are carried over with the Euclidean metric which is34

more natural for applications. In order to cover visits to periodic points we will use the35

8See section 3 in [3] for the proof of this convergence which applies to our case as well.
15



l∞ metric and the following computations are even easier.1

2

Decay of correlation. There exists a decay function C(k) so that∣∣∣∣∫
M

G(H ◦ T k) dµ− µ(G)µ(H)

∣∣∣∣ ≤ C(k)∥G∥Lip∥H∥∞ ∀k ∈ N,

for functions H which are constant on local stable leaves Ws of T and the functions3

G : M → R being Lipschitz continuous. This is ensured by Theorem 2.5 in [10], where4

the role of H is taken by the test functions in Cκ(W,C) and G ∈ B, which is the com-5

pletion of Lipschitz functions on X. The decay is exponential.6

7

Cylinder sets. The proof requires the existence, for each n ≥ 1, of a partition of each8

unstable leaf in subsets ξ(k)n , called n-cylinders (or cylinders of rank n), and indexed with9

k, where T n is defined and the image T nξ
(k)
n is an unstable leaf of full length for each10

k. These cylinders are obtained by taking the 2n preimages of Γ = {y = α} by the map11

TY restricted to each leaf. In the following we will take α = 1/2 to simplify the exposition.12

13

Exact dimensionality of the SRB measure. This quotes the existence of the limit (34).14

We shall need the following result.15

Lemma 5.1. (Annulus type condition) Let w > 1. If x is a point for which the dimension
limit (34) exists for a positive d, then there exists a δ > 0 so that

µ(B(x, r + rw) \B(x, r))

µ(B(x, r))
= O(rδ),

for all r > 0 small enough.16

Now we can apply the results of Section 7.4 in [20] to prove the following result which17

tracks the number of visits a trajectory of the point x ∈ X makes to the set U on a18

suitable normalized orbit segment:19

Proposition 5.2. Consider the counting function20

N τ
Bn

(z) =

⌊ τ/µ(Bn) ⌋∑
i=0

1Bn ◦ T i(x),

where τ is a positive parameter and z is a point for which the limit (34) exists and21

nµ(B(z, e−un)) → τ .22

• If z is not a periodic point and using the Euclidean metric, then we get a pure
Poisson distribution:

µ(N τ
Bn

= k) → e−ττ k

k!
, n→ ∞.

• If z is a periodic point of minimal period p and using the l∞ metric, we get a
compound Poisson distribution (Pólya-Aeppli):

µ(N τ
Bn

= k) → e−θτ

k∑
j=1

(1− θ)k−jθ2j
sj

j!

(
k − 1

j − 1

)
, n→ ∞,

where θ is given as above by θ = 1− limn→∞
µ(T−pBn∩Bn)

µ(Bn)
.23
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Proof of Lemma 5.1. We have to prove the lemma in the two cases when (I) the norm is1

ℓ2 and (II) the norm is ℓ∞ and the ball is geometrically a square.2

(I) We now use the Euclidean metric and denote with A the annulus A = B(x, r + rw) \
B(x, r) where w > 1. By disintegrating the SRB measure along the unstable manifolds
we have:

µ(A) =

∫
lν(A ∩Wν) dζ(ν).

We now split the subsets on each unstable manifold on the cylinders of rank n and3

condition with respect to the Lebesgue measure on them:4

lν(A ∩Wν) =
∑

ξn;ξn∩A̸=∅

lν(A ∩Wν ∩ ξn)
lν(ξn)

lν(ξn). (43)

We then iterate forward each cylinder with T n; they will become of full length equal
to 1 and subsequently we get lν(T nξn) = 1. Since the action of T is locally linear and
expanding by a factor 2n (with the given choice of α = 1

2
) on the unstable leaves and

therefore has zero distortion, we have
lν(A ∩Wν ∩ ξn)

lν(ξn)
=
lν′(T

n(A ∩Wν ∩ ξn))
lν′(T nξn)

= lν′(T
n(A) ∩Wν′)

for some Wν′ so that T n(A ∩Wν ∩ ξn) ⊂ Wν′ . Therefore,

lν(A ∩Wν) =
∑

ξn;ξn∩A̸=∅

lν′(T
n(A ∩Wν ∩ ξn))lν(ξn).

By elementary geometry we see that the largest intersection of A with the unstable
leaves will produce a piece of length O(rw+1

2 ); therefore lν′(T n(A∩Wν∩ξn)) = O(2nr
w+1
2 ),

and:
µ(A) = O(2nr

w+1
2 )

∫ ∑
ξn;ξn∩A̸=∅

lν(ξn) dζ(ν)).

We now observe that in order to have our result, it will be enough to get it with a de-
creasing sequence rn, n→ ∞, of exponential type, rn = b−t(n), b > 1, and t(n) increasing
to infinity. We put r = 2−n. With this choice and remembering that 2−n is also the length
of the n-cylinders, we have⋃

ξn;ξn∩A̸=∅

ξn ⊂ B(x, r + rw + 2−n) ⊂ B(x, 2r + rw) ⊂ B(x, 3r),

which, as the cylinders ξn are disjoint, yields the estimate for the integral above:

µ(A) = O(2nr
w+1
2 rd−ϵ).

Now by the exact dimensionality of the SRB measure one has for any ε > 0

(2r + rw)d+ε ≤ µ(B(x, 2r + rw)) ≤ (2r + rw)d−ε

for all r small enough i.e. n large enough. With this we can divide µ(A) by the measure
of the ball of radius r and obtain the estimate

µ(A)

µ(B(x, r))
= O(r

w−1
2

+d−ε−d−ε) = O(r
w−1
2

−2ε) = O(r
w−1
4 ),

since w > 1, and provided ε is small enough.5

(II) Now we shall use the ℓ∞-distance and again denote by A the annulus B(x, r + rw) \
B(x, r). Since we are in two dimensions, we can cover the annulus by balls B(yj, 2r

w) of
radii 2rw, with centers yj for j = 1, . . . , N . The number N of balls needed is bounded by

17



8 r
rw

. For any ε > 0 there exists a constant c1 so that µ(B(yj, 2r
w)) ≤ c1r

w(d−ε) for all r
small enough. Thus

µ(A) ≤ 8c1r
1+w(d−1−ε)

and since µ(B(x, r)) ≥ c3r
d+ε for some c3 > 0 we obtain

µ(A)

µ(B(x, r))
≤ c4r

(d−1)(w−1)−ε(w+1).

The exponent δ = (d − 1)(w − 1) − ε(w + 1) is positive as d, w > 1 and ε > 0 can be1

chosen sufficiently small. □2

Proof of Proposition 5.2. We can now prove the proposition by applying Theorem 13

from [20] to which we now refer for the following assumptions. Assumption (I) on the4

overlap of cylinders (pullbacks of local unstable leaves) follows from the product struc-5

ture of the baker map. Since the decay of correlations is exponential, Assumption (II) is6

satisfied. Furthermore, distortion is bounded uniformly and the contraction of cylinders7

is uniformly exponential, thus implying Assumption (III) is satisfied with Gn being the8

full set. Moreover, since the dimension of the invariant measure is equal to d = 1 + ds,9

where ds < 1 is given above, we can choose d0 > 0 and d1 <∞ so that d0 < d < d1. Since10

the decay of correlations and the decay rate of the diameters of the cylinders are both11

exponential, due to the uniform rates of expansion, the associated condition of Theorem 112

of [20] is satisfied. In addition the dimension of the restricted measure on the unstable13

leaves equals u0 = 1 as it is Lebesgue. The annulus condition, Assumption (VI), was14

verified in Lemma 5.1.15

If x is an aperiodic point then min{j ≥ 1 : Bρ(x) ∩ T jBρ(x) ̸= ∅} goes to infinity as
ρ = e−un → 0. Thus for the coefficients

λℓ(L) = lim
ρ→0

P(ZL = ℓ)

P(ZL ≥ 1)

we obtain that for every L: λ1 = 1 and λℓ = 0 for all ℓ = 2, 3, . . . , where ZL =
∑L

j=1 χBρ(x)16

is the hit counter on the finite orbit segment of length L. This implies that N τ
Bn

converges17

in distribution to a standard Poisson random variable with parameter τ .18

Let x be a periodic point with minimal period p and let B̃ρ be a square of size ρ centered
at x and whose sides are aligned with the stable and unstable directions respectively. Then
for ℓ = 2, 3, . . .

α̂ℓ = lim
L→∞

lim
ρ→0

P(Z̃L ≥ ℓ|B̃ρ) = lim
ρ→0

µ(B̃ρ ∩ T−(ℓ−1)pB̃ρ)

µ(B̃ρ)
=

(
lim
ρ→0

µ(B̃ρ ∩ T−pB̃ρ)

µ(B̃ρ)

)ℓ−1

which implies that α̂ℓ = α̂ℓ−1
2 , where Z̃L =

∑L
j=1 χB̃ρ(x)

. Then for αℓ = α̂ℓ − α̂ℓ+1 we19

thus obtain by [20] that λℓ = αℓ−αℓ+1

α1
= (1 − θ)θℓ−1, where 1 − θ = α1 = 1 − α̂2 is20

the extremal index. Hence N τ
Bn

converges in distribution to a Pólya-Aeppli distributed21

random variable. □22

Example 5.3. The second statement of Proposition 5.2 about periodic points requires23

the neighborhoods Bn to be chosen in a dynamically relevant way. Here they turn out24

to be squares (or rectangles). If the measure has some mixing properties with respect to25

a partition then the sets Bn can be taken to be cylinder sets as it was done in [19] for26

periodic points and in [18] Corollary 1 for non-periodic points. Here we show that for27

Euclidean balls one cannot in general expect the limiting distribution at periodic points28
18



to be Pólya-Aeppli and therefore cannot be described by the single value of the extremal1

index.2

We assume that all parameters are equal, that is γa = γb = α = β = 1
2
. This is the fat

baker’s map for which the Lebesgue measure on [0, 1]2 is the SRB measure µ. Let x be a
periodic point with minimal period p. Then µ(B(x, r)) = r2π and

µ

(
k⋂

i=0

T−ipB(x, r)

)
= 4r22−kp(1 +O(2−2kp)).

This yields

α̂k+1 = lim
r→0

µ
(⋂k

i=0 T
−ipB(x, r)

)
µ(B(x, r))

=
4

π
arctan 2−kp =

4

π
2−kp(1 +O(2−2kp))

for k = 1, 2, . . . . According to [20] Theorem 2 we then define the values αk = α̂k − α̂k+13

where the value α1 is the extremal index, i.e. θ = α1. If the limiting distribution is Pólya-4

Aeppli then the probabilities λk = αk−αk+1

α1
, k = 1, 2, . . . , are geometrically distributed and5

must satisfy λk = θ(1 − θ)k−1 which is equivalent to saying that α̂k+1 = (1 − θ)k for6

k = 0, 1, 2, . . . (see [20] Theorem 2). Evidently this condition is violated in the present7

case and we conclude that the limiting distribution given by the values α̂k is not Pólya-8

Aeppli and in fact obeys another compound Poisson distribution.9

5.3. Compound point processes. The compound Poisson distribution could be en-10

riched by defining the rare event point process (REPP). Let us first introduce a few11

objects. Put Il = [al, bl), l = 1, . . . , k, al, bl ∈ R+
0 a finite number of semi-open intervals12

of the non-negative real axis; call J = ∪k
l=1Il their disjoint union. If r is a positive real13

number, we write rJ = ∪k
l=1rIl = ∪k

l=1[ral, rbl). We denote with |Il| the length of the14

interval Il, which we also design with its Lebesgue measure Leb(Il). The REPP counts15

the number of visits to the set Bn during the rescaled time period vnJ :16

Nn(·)(J) =
∑

l∈vnJ∩N0

1Bn(T
l·), (44)

where vn is taken as
vn =

⌊
τ

µ(Bn)

⌋
, τ > 0.

Our REPP belongs to the class of the point processes on R+
0 , see [21] for all the prop-17

erties of point processes quoted below. They are given by any measurable map N :18

(M,BM , µ) → Np([0,∞)), where (X,FX , µ) is the probability space of our original dy-19

namical system with the invariant measure µ and the Borel σ-algebra FX , and Np([0,∞))20

denotes the set of counting measures c on R+
0 endowed with the σ-algebra Mp(R+

0 ), which21

is the smallest σ-algebra making all evaluation maps c→ c(B), from Np([0,∞)) → [0,∞]22

measurable for all B ∈ BM . Any counting measure c has the form c =
∑∞

i=1 δxi
, xi ∈23

[0,∞). The distribution of N , denoted µN , is the measure µ ◦ N−1 = µ[N ∈ ·], on24

Mp(R+
0 ). The set Np([0,∞)) becomes a topological space with the vague topology, i.e. the25

sequence cn converges to c whenever cn(ϕ) → c(ϕ) for any continuous function ϕ : R+
0 → R26

with compact support. We also say that the sequence of point processes Nn converges27

in distribution to the point process N, eventually defined on another probability space28

(X ′,F ′
X′ , µ′), if µNn converges weakly to µ′

N , that is for every continuous function φ de-29

fined on Np([0,∞)) we have limn→∞
∫
φdµ ◦ N−1

n =
∫
φdµ′ ◦ N−1. In this case we will30

write Nn
µ−→ N.31

32
19



If we now return to our REPP (44), we will see that a very common result is to get1

Nn
µ−→ Ñ , where2

µ(x, Ñ(x)(Il) = kl, 1 ≤ l ≤ n) =
n∏

l=1

e−τLeb(Il) τ
klLeb(Il)kl

kl!
, (45)

for any disjoint bounded sets I1, . . . , In and non-negative integers k1, . . . , kn, which is3

called the standard Poisson point process. In general our REPP processes converges in4

distribution to a compound point process (CPP). We say that the point process N :5

(X ′,F ′
X′ , µ′) → Np([0,∞)) is a CPP with intensity parameter t and cluster size distribu-6

tion (λl)l≥1 if it satisfies:7

• For any finite sequence of measurable sets B1, . . . , Bk in F ′
X′ and mutually disjoint,8

the random variables N(·)(Bi), i = 1, . . . , k, are independent.9

• For any measurable set B ∈ F ′
X′ , the random variable N(·)(B) is a CP random10

variable with intensity tLeb(B), t > 0 and cluster size distribution (ρl)l≥1, see the11

definition in section 5.12

From now on we will simply write N(·) instead of N(x)(·) and we consider it as a13

CPP. In order to study the convergence of our REPP Nn to the CPP N two equivalent14

criteria are available. Before stating them we should remind the definition of the Laplace15

transform for a general point process R : (X ′,F ′
M ′ , µ′) → Np([0,∞)) :16

ψR(y1, . . . , yk) = Eµ′

(
e−

∑k
l=1 ylR(Il)

)
, (46)

for every non negative values y1, . . . , yk, each choice of k disjoint intervals Ii = [ai, bi), i =17

1, . . . , k. In the case of a CPP N with intensity parameter t and cluster size distribution18

(ρl)l≥1, we get19

ψN(y1, . . . , yk) = e−t
∑k

l=1(1−φ(yl))Leb(Il), (47)
where φ(y) =

∑∞
i=0 e

−yiρi is the Laplace transform of the cluster size distribution (ρl)l≥1.
Therefore in order to establish the convergence in distribution of the REPP Nn toward
the CPP N it will be sufficient [21]:
- (C1): showing that for any k disjoint intervals Ii = [ai, bi), i = 1, . . . , k the joint
distribution of Nn converges to the joint distribution of N, namely

(Nn(I1), . . . Nn(Ik)) → (N(I1), . . . N(Ik)) .

-C(2): showing the convergence of the Laplace transforms:

ψNn(y1, . . . , yζ) = E
(
e−

∑k
l=1 ylNn(Il)

)
→ ψN(y1, . . . , yk) = e−t

∑k
l=1(1−φ(yl))Leb(Il),

as n→ ∞.20

The criterion C(1) lends itself to being studied with the probabilistic approach of [20] as21

two of us recently shown in ([1], Theorem 3), see also [16] for a different method. The22

criterion C(2) is naturally adapted to the spectral approach (just replacing characteristic23

functions with Laplace transforms), and the complete treatment, involving two of us, will24

appear soon [4]. Both criteria allow to extend immediately Proposition 5.2 to the point25

process framework giving26

Proposition 5.4. Consider the counting measure

Nn(·)(J) =
∑

l∈vnJ∩N0

1Bn(T
l·)

20



where τ is a positive parameter, vn =
⌊

τ
µ(Bn)

⌋
, and z is a point for which the limit (34)1

exists and nµ(B(z, e−un)) → τ .2

• If z is not a periodic point and using the Euclidean metric, then Nn converges in3

distribution to a standard Poisson point process of intensity τ, see (45) for the4

finite size distributions.5

• If z is a periodic point of minimal period p and using the l∞ metric, we get a6

compound point process of Pólya-Aeppli type, namely a CPP with intensity τθ7

and cluster size distribution θ(1 − θ)l, l ≥ 1, where θ is given as above by θ =8

1− limn→∞
µ(T−pBn∩Bn)

µ(Bn)
.9
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