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Abstract

We introduce a novel type of random perturbation for the classical Lorenz flow in order to
better model phenomena slowly varying in time such as anthropogenic forcing in clima-
tology and prove stochastic stability for the unperturbed flow. The perturbation acts on the
system in an impulsive way, hence is not of diffusive type as those already discussed in
Keller (Attractors and bifurcations of the stochastic Lorenz system Report 389, Institut fiir
Dynamische Systeme, Universitit Bremen, 1996), Kifer (Random Perturbations of Dynam-
ical Systems. Birkhduser, Basel, 1988), and Metzger (Commun. Math. Phys. 212, 277-296,
2000). Namely, given a cross-section M for the unperturbed flow, each time the trajectory of
the system crosses M the phase velocity field is changed with a new one sampled at random
from a suitable neighborhood of the unperturbed one. The resulting random evolution is
therefore described by a piecewise deterministic Markov process. The proof of the stochastic
stability for the umperturbed flow is then carried on working either in the framework of the
Random Dynamical Systems or in that of semi-Markov processes.
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Partl
Introduction, Notations and Results
1 The Classical Lorenz Flow

The physical behaviour of turbulent systems such the atmosphere are usually modeled by
flows exhibiting a sensitive dependence on the initial conditions. The behaviour of the tra-
jectories of the system in the phase space for large times is usually numerically very hard to
compute and consequently the same computational difficulty affects also the computation of
the phase averages of physically relevant observables. A way to overcome this problem is to
select a few of these relevant observables under the hypothesis that the statistical properties
of the smaller system defined by the evolution of such quantities can capture the important
features of the statistical behaviour of the original system [30].

As a matter of fact this turns out to be the case when considering classical Lorenz model,
a.k.a. Lorenz’ 63 model in the physics literature, i.e. the system of equation

X1 =—¢x1+¢x
Xp = —X1X3 +yxy —x2 (nH
X3 =x1x2 — Bx3

which was introduced by Lorenz in his celebrated paper [27] as a simplified yet non trivial
model for thermal convection of the atmosphere and since then it has been pointed out
as the typical real example of a non-hyperbolic three-dimensional flow whose trajectories
show a sensitive dependence on initial conditions. In fact, the classical Lorenz flow, for
¢ =10,y =28, B = 8/3, hasbeen proved in [38], and more recently in [4], to show the same
dynamical features of its ideal counterpart the so called geometric Lorenz flow, introduced
in [1] and in [20], which represents the prototype of a three-dimensional flow exhibiting a
partially hyperbolic attractor [5]. The Lorenz’63 model, indeed, has the interesting feature
that it can be rewritten as

yi=—=¢y1+¢y
Y2 ==Y1Y3 =¥yl — ) , 2
yv3=y1y2—Bys =By +¢)

showing the corresponding flow to be generated by the sum of a Hamiltonian S O (3)-invariant
field and a gradient field (we refer the reader to [18] and references therein). Therefore, as it
has been proved in [18], the invariant measure of the classical Lorenz flow can be constructed
starting from the invariant measure of the one-dimensional system describing the evolution
of the extrema of the first integrals of the associated Hamiltonian flow.

1.1 Stability of the Invariant Measure of the Lorenz’63 Flow

Since C'! perturbations of the classical Lorenz vector field admit a C I+¢ gtable foliation [4]
and since the geometric Lorenz attractor is robust in the C! topology [5], it is natural to
discuss the statistical and the stochastic stability of the classical Lorenz flow under this kind
of perturbations.

Indeed, in applications to climate dynamics, when considering the Lorenz’63 flow as a
model for the atmospheric circulation, the analysis of the stability of the statistical properties
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of the unperturbed flow under perturbations of the velocity phase field of this kind can turn
out to be a useful tool in the study of the so called anthropogenic climate change [14].

1.1.1 Statistical Stability

For what concerns the statistical stability, in [ 18] it has been shown that the effect of an additive
constant perturbation term to the classical Lorenz vector field results into a particular kind
of perturbation of the map of the interval describing the evolution of the maxima of the
Casimir function for the (+) Lie—Poisson brackets associated to the so (3) algebra. Moreover,
it has been proved that the invariant measures for the perturbed and for the unperturbed
1-d maps of this kind have Lipschitz continuous density and that the unperturbed invariant
measure is strongly statistically stable. Since the SRB measure of the classical Lorenz flow
can be constructed starting from the invariant measure of the one-dimensional map obtained
through reduction to the quotient leaf space of the Poincaré map on a two-dimensional
manifold transverse to the flow [5], the statistical stability for the invariant measure of this
map implies that of the SRB measure of the unperturbed flow. Other results in this direction
are given in [3,11] and [17] where strong statistical stability of the geometric Lorenz flow is
analysed.

1.1.2 Random Perturbations

Random perturbations of the classical Lorenz flow have been studied in the framework of
stochastic differential equations [13,23,36] (see also [8] and reference therein). The main
interest of these studies was bifurcation theory and the existence and the characterization of
the random attractor. The existence of the stationary measure for this stochastic version of
the system of equations given in (2) is proved in [23].

Stochastic stability under diffusive type perturbations has been studied in [25] for the
geometric Lorenz flow and in [28] for the contracting Lorenz flow.

2 Physical Motivation

The analysis of the stability of the statistical properties of the classical Lorenz flow can
provide a theoretical framework for the study of climate changes, in particular those induced
by the anthropogenic influence on climate dynamics.

A possible way to study this problem is to add a weak perturbing term to the phase vector
field generating the atmospheric flow which model the atmospheric circulation: the so called
anthropogenic forcing. Assuming that the atmospheric circulation is described by a model
exhibiting a robust singular hyperbolic attractor, as it is the case for the classical Lorenz
flow, it has been shown empirically that the effect of the perturbation can possibly affect just
the statistical properties of the system [14,31]. Therefore, because of its very weak nature
(small intensity and slow variability in time), a practical way to measure the impact of the
anthropogenic forcing on climate statistics is to look at the extreme value statistics of those
particular observables whose evolution may be more sensitive to it [37]. In the particular
case these observables are given by bounded (real valued) functions on the phase space, an
effective way to look at their extreme value statistics is to look first at the statistics of their
extrema and then eventually to the extreme value statistics of these.

We stress that the result presented in [18] fit indeed in this framework since, starting from
the assumption made in [31] and [14] that, taking the classical Lorenz flow as a model for the
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atmospheric circulation, the effect of the anthropogenic influence on climate dynamics can
be modeled by the addition of a small constant term to the unperturbed phase vector field, it
has been shown that the statistics of the extrema of the first integrals of the Hamiltonian flow
underlying the classical Lorenz one, which are global observables for this system, are very
sensitive to this kind of perturbation (see e.g. Example 8 in [18]).

Of course, a more realistic model for the anthropogenic forcing should take into account
random perturbations of the phase vector field rather than deterministic ones. Anyway it
seems unlikely that the resulting process can be a diffusion, since in this case the driving
process fluctuates faster than what it is assumed to do in principle a perturbing term of the
type just described.

2.1 Modeling Random Perturbations of Impulsive Type

We introduce a random perturbation of the Lorenz’63 flow which, being of impulsive nature,
differ from diffusion-type perturbations.

For any realization of the noise € [—e¢, €], we consider a flow (d>£], t> 0) generated by
the phase vector field ¢, belonging to a sufficiently small neighborhood of the classical Lorenz
one in the C'! topology. For & small enough, the realizations of the perturbed phase vector field
¢, can be chosen such that there exists an open neighborhood U of the unperturbed attractor
in R3, independent of the noise parameter 7, containing the attractor of any realization of
¢y and, moreover, such that a given Poincaré section M for the unperturbed flow is also
transversal to any realization of the perturbed one. Thus, given M, the random process
describing the perturbation is constructed selecting at random, in an independent way, the
value of ¢, at the crossing of M by the phase trajectory.

This procedure defines a semi-Markov random evolution [26], in fact a piecewise deter-
ministic Markov process (PDMP) [16].

Therefore, the major object of this paper will be to show the existence of a stationary
measure for the imbedded Markov chain driving the random process just described as well
as to prove that the stationary process weakly converges, as ¢ tends to O, to the physical
measure of the unperturbed one.

More specifically, let 7, : U — M and 7, : M O be respectively the hitting time of M

and the return time map on M for (<I>§7, t> O) . If n is sampled according to a given law
Ae supported on [—e, €], the sequence {x;};>o such that xp € M and, fori > 0,z;41 =

d>f,”(;i) (r;) is a homogeneous Markov chain on M with transition probability measure
P{x; € dzlro} = Ae {n € [—1,11: Ry (xo0) € dz} . A3)

Considering the collection of sequences of i.i.d.r.v’s {n;};>( distributed according to A, we
define the random sequence {0, },>; € R such that o, := ;:01 Ty (ti=1),n > 1. Then,
it is easily checked that the sequence {(xr,, t;)},>0 such that ty := o} and, forn > 0, t;, :=
On+1 — 0y 1s a Markov renewal process (MRP) [9,26]. Therefore, denoting by (N;, r > 0),
such thatNg := 0and N, := >, _ 1j0,:] (0,) , the associated counting process and defining:

e (1,t > 0), such that r, := rN,, the associated semi-Markov process;
o (I, >0), such that [; := ¢ — on,, the age (residual life) of the MRP;
e (n;,t > 0) such that n; := nn,,
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Stochastic Stability of the Classical Lorenz Flow... 167

setting og := 7,), we introduce the random process (u;, r > 0), such that

Uo(}o)

o0(30)
)() (;0) qDﬂN, ol Yo € M
;s yeU,t>0, “4)

@5, (50) L0,00(30)) (1) + liq)ao(xo)( )} (x0) ® ° Li—oo(yp) Yo € U\M

u (Yo) =

describes the system evolution started at yp. We prove

Theorem 1 There exists a measure e on the measurable space (U, B (U)), with B (U)
the trace oalgebra of the Borel oalgebra of R3, such that, for any bounded real-valued
measurable function f on U,

lim —f ot = e (f) 5)

and

lim e (f) = po (f) (6)
el0
where (g is the physical measure of the classical Lorenz flow.

A more precise definition of the quantities involved in the construction of (u;, ¢ > 0) is
given in the second part of the paper where we also present a different characterization of
this random process, which follows from the representation of the Markov chain {r,},> as
Random Dynamical System (RDS), and study its asymptotic stationary properties. In the
third part of the paper we present the construction of (u,, # > 0) just given in a more rigorous
way and rephrase the analysis carried on in the second part of the paper in the framework of
PDMP’s.

One may argue that the perturbation should act modifying the phase velocity field of the
system at any point of U and not just at the crossing of a given cross-section. In fact, let {t,, },>¢
be the sequence of i.i.d.r.v’s representing the jump times of this process, which we choose
independent of the noise parameter 7. {&,},>; , such that &, := ZZ;(I) t,, is the associated
renewal process and (n;, r > 0) , suchthatn; := ", _ 1j0,,1 (&,), is the associated counting

process. The sequence {3,},>¢, such that 30 € U and for n > 0, 3,41 := @ﬁ,(z’") (3n) is a
homogeneous Markov chain and now the system evolution is given by the random process
(u;, t > 0) such that, when started at yo € U, u; (yo) has the form (4) with {(zs, tx)},50
replaced by {(3x., ts)},>0 . Let now op be the hitting time of M for {3,},>¢. Under the
reasonable assumptions on the renewal process that, for any ¢ > 0, 30 € U, E [n;]30] < 00
and for any 30 ¢ M, limy100 P{op > &,[30} = O, this case can be reduced to the one
treated in this article. Indeed, if o o4 is the hitting time for (u;, # > 0) of the cross-section
M, since by definition ug = 3¢ for any ug € U,P{opm > G,lug} < P{op > S, 30} -
Hence, P {oarq = oojup} = lim,,—,00 P {or1 > G, |ug} = 0. Therefore we can analyze the
trajectories of the system by looking at the sequence of return times to M, that is we can
reduce ourselves to study a random evolution of the kind given in (4).

3 Structure of the Paper and Results

The paper is divided into four parts.
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168 M. Gianfelice, S. Vaienti

The first part, together with the introduction, contains the notations used throughout the
paper as well as the definition of the unperturbed dynamical system and of its perturbation
for given realizations of the noise.

In the second part we set up the problem of the stochastic stability of the classical Lorenz
flow under the stochastic perturbation scheme just described in the framework of RDS. In
order to simplify the exposition, which contains many technical details and requires the
introduction of several quantities, we will list here the main steps we will go through to get
to the proof deferring the reader to the next sections for a detailed and precise description.

We consider a Poincaré section M for the unperturbed flow (be) t > O) associated to the
smooth vector field ¢g. This cross-section is transverse to the flows generated by smooth
perturbation ¢, of the original vector field if # is chosen at random in [—¢, €] according to
some probability measure X, for sufficiently small ¢.

Step 1 For any n € [—e¢, €], the perturbed phase field ¢, is such that the associated flows
(@;,t > O) admit a C! stable foliation in a neighborhood of the corresponding

attractor. In order to study the RDS defined by the composition of the maps R), :=
@;'i i M O, with 7, : M O the return time map on M for <d>f7,t > 0) , we show
that we can restrict ourselves to study a RDS given by the composition of maps
Rn : M O, conjugated to the maps R, via a diffeomorphism «, : M O, leaving
invariant the unperturbed stable foliation for any realization of the noise. Namely, we
can reduce the cross-section to a unit square foliated by vertical stable leaves, as for
the geometric Lorenz flow. By collapsing these leaves on their base points via the
diffeomorphism ¢, we conjugate the first return map Rn on M to a piecewise map
7_",, of the interval /. This one-dimensional quotient map is expanding with the first
derivative blowing up to infinity at some point.

Step 2 We introduce the random perturbations of the unperturbed quotient map Ty. Suppose
o = (Mo, N1, ---, Nk, ---) 1s a sequence of values in [—e, €] each chosen indepen-
dently of the others according to the probability A.. We construct the concatenation
Ty, o- - -oT,, and prove that there exists a stationary measure v¢, i.e. such that for any
bounded measurable function g and k > 0, [ g(Ty, o+ --0Tyy) (x)v§ (dx) A8k (dn) =
J gdv{.Clearly, uf := v{ ¢, with P, the probability measure on the i.i.d. random
sequences w, is an invariant measure for the associated RDS (see (46)).

Step 3 We lift the random process just defined to a Markov process on the Poincaré surface
M given by the sequences Ié,,k 0---0 Ié,,o and show that the stationary measure v5
for this process can be constructed from v{. We set u2. := b5 ® P, the corresponding
invariant measure for the RDS (see (47)).

We remark that, by construction, the conjugation property linking R, with Rn lifts to
the associated RDS’s. This allows us to recover from /L% the invariant measure jip
for the RDS generated by composing the R);’s.

Step4 Let R: M x Q O be the map defining the RDS corresponding to the compositions

of the realizations of R;; (see (52)). We identify the set

M x Q¢ ={(x,0,5) e Mx QxR :5 €0, t(x,w))}, )

where Q := [—¢, e, t(x, w) := Ty (w)(x) is the random roof function and 7 (w) :=
no is the first coordinate of w, with the set U of equivalence classes of points (x, w, )
in M x QxR suchthatr = s+ Y /-t (R (x, »)) for some s € [0, t(x, ®)), n >
1. Then, if # : M x Q@ x RT™ — 9 is the canonical projection and, for any

t > 0, N; := max In eZt: Z;é toRF < t] , we define the random suspension
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semi-flow
Mx Qi3 (x,w,8) — S'(x,0,s) = fr(RNH[ x,w),s+1) e (MxQ¢. (8
In particular, for instance, if 83 (x, @) = Tj, (x) + Ty, (Ry, (x)) < s + ¢, we have
S'(x,w,s) = ((Ry, © Ryy(x)), 920), s+t —s(x,w)), 9)

where 0 : Q3w = (M0, N1, -+, Nk ---) —> 0w := (N1, N2, - o, Nikg1, --.) € QS
the left shift.

Step 5 We build up a conjugation between the random suspension semi-flow and a semi-
flow on U x 2, which we will call (X > O) , such that its projection on U is a
representation of (4). The rough idea is that each time the orbit crosses the Poincaré
section M, the vector fields will change randomly. Therefore, we start by fixing
the initial condition (y, w) with y € U yet not necessarily on M. We now begin
to define the random flow (X’, t > 0) .Letm : Q +— [—¢, ] be the projection of

® = (Mo, N1, ..., Nk, -..) onto the first coordinate and call t,, (y) = tr(w) () the

time the orbit @} (y) = d>;(w)(y) takes to meet M and set y; := Q%)(y)(y) =

cpln(m) )

(W)
X' (5, 0) = (@) (0, 0) . 01 =10 () ;
XI _ t_tﬂ(a))(y) .
(y! Cl)) - qDJT(Ga)) (y1)79w ’ tn() (y) <t S t'70 ()’) + Tm()’l) )
X' 0) = (O 5 (R gy (1)), 670) 1y ()

+ T (1) <t =< tyy () + Ty (V1) + T (R 1)) (10)

where Ry w)(y1) = Ry, (y1), and so on.
Step 6 We are now ready to define the conjugation V : M x Q@ x RT — R3 x Q in the
following way:

(y).Then, since Vo € ,n > 0, 7w (0"w) = n,,

Vix,w,s) = (bet(w)(x),a)), XeM; o=M0, N,y My --) €825 0= 5 <10 (x)

Vix, w,5) = (<D;IGIZ)()“’)(X)(R7,(CO)(X)), ew) LTy (0) < 5 < Ty () + Ty (Ryp (1))
(1D

where Ry () (x) = R;,(x), and so on. By collecting the expressions given above it
is not difficult to check that (X’, ¢ > 0) must satisfy the equation

VoS =X'0oV. (12)
For instance, if s + 7 < 7,(x), we have X’ o V(x, w,s) = (X’(bem(x)), a)) =
(q:;o@fm(x)),w) - (q>f7j;f(x),w), while V o 8'(x, w,5) = V(x,w,s + 1) =

(@f;;f ), w) .
Step 7 We lift the measure pup on the random suspension in order to get an invariant
measure for (S’ > 0) . Under the assumption that the random roof function t is

HUg-summable, the invariant measure pg for the random suspension semi-flow acts
on bounded real functions f as

/dugf = (/du§t>_1/dp,§ </0tfoS’dt) . (13)
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170 M. Gianfelice, S. Vaienti

The invariant measure for the random flow (X Lt > 0) will then be push forward Mg
under the conjugacy V, i.e.

Wy =pgoVl. (14)

Step 8 We show that the correspondence g —> ug —> My is injective and so that the
stochastic stability of Ty (which in fact we prove to hold in the L' (1, dx) topology)
implies that of the physical measure 11( of the unperturbed flow. More precisely, we
lift the evolutions defined by the unperturbed maps Ty and Ry, as well as that repre-
sented by the unperturbed suspension semi-flow (S(’), t > O) , to evolutions defined
respectively on I x ©, M x Q and on (M x Q) = {(x,w,s) € M x Q x RT:
s € [0, to(x))}. By construction, the invariant measures for these evolutions are
w1y ® 85, Ry ® 85, sy @ 85, where 0 denotes the sequence in 2 whose entries are
all equal to 0, & is the Dirac mass at 0 and ITy» MRy» IS, are respectively the invari-
ant measures for Ty, Rog and Sp. Then, we prove the weak convergence, as ¢ | 0, of
i to ur, ® 8; and consequently the weak convergence of ug to 117, ® 8. This will
imply the weak convergence of g to jis, ® &; and therefore the weak convergence
of 11y to o ® 85 proving Theorem 1.

In the third part we will take a more probabilistic point of view and formulate the question
about the stochastic stability for the unperturbed flow in the framework of PDMP. More
precisely, we will show that we can recover the physical measure of the unperturbed flow as
weak limit, as the intensity of the perturbation vanishes, of the measure on the phase space
of the system obtained by looking at the law of large numbers for cumulative processes
defined as the integral over [0, ¢] of functionals on the path space of the stationary process
representing the perturbed system’s dynamics. Therefore, we will be reduced to prove that
the imbedded Markov chain driving the random process that describes the evolution of the
system is stationary, that its stationary (invariant) measure is unique and that it will converge
weakly to the invariant measure of the unperturbed Poincaré map corresponding to M. To
prove existence and uniqueness of the stationary initial distribution of a Markov chain with
uncountable state space is not an easy task in general (we refer the reader to [29] for an account
on this subject). To overcome this difficulty we will make use of the skew-product structure
of the first return maps R;, as it will be outlined more precisely in the next section. However,
if the perturbation of the phase velocity field is given by the addition to the unperturbed one
of a small constant term, namely ¢, := ¢o+nH, H € S?, the proof of the stochastic stability
of invariant measure for the unperturbed Poincaré map will follow a more direct strategy; we
refer the reader to Sect. 10.1.

The fourth part of the paper contains an Appendix where we give examples of the Poincaré
section M and therefore of the maps R, and T, as well as we take the chance to comment on
some results achieved in our previous paper [18] about the statistical stability of the classical
Lorenz flow which will be recalled along the present work.

4 Notations

If X is a Borel space we denote by B (X) its Borel oalgebra and by M, (X) the Banach space
of bounded B (X)-measurable functions on X equipped with the uniform norm. Moreover,
we denote by 91 (X) the Banach space of finite Radon measures on (X, 5 (X)) such that,

forany u € M(X), |ull = SUPgeC (%):lIg =1 [ ()] = |l (X), where || :== pq + p—
with 4 the elements of the canonical decomposition of . Furthermore, 3 (X) denotes the
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set of probability measures on (X, B (X)) and, if u© € P (X), sptu X denotes its support.
Finally, if u € 91 (X) is positive, we denote by i := ﬁ its associated probability measure.
We denote by (-, -) the Euclidean scalar product in R?, by ||-|| the associated norm and by
1% the Lebesgue measure on RY. We set A! := 4.
Let ¢ > 0 and A, a probability measure on the measurable space ([—1, 1], B ([—1, 1]))
such that in the limit of ¢ tending to zero, A, weakly converges to the atomic mass at 0.

4.1 Metric Dynamical System Associated with the Noise

Consider the measurable space (2, F) where Q :=[—1, 1]Z+ , F is the o algebra generated
by the cylinder sets C, (A) := {w € 2: (91, ..., ) € A}, with A € B([—1,11"),n > 1.
In fact, we can consider 2 endowed with the metric Q2 x Q > (w1, w2) —> p (w1, W2) =

1 2 1 2
S 2 (| = 02|14 [0 =

of notation, the metric space (€2, p), F coincides with B (2) . If o is a probability measure
on ([-1,1], B([—1, 1])), we denote by P, the probability measure on (€2, F) such that

n—1

P, (Cy (A)) = fA [T o (dni) and set P, := P,, . In the following, to ease the notation, we
i=0

) € [0, 1] so that, denoting again by €2, with abuse

will omit to note the subscript denoting the dependence of the probability distribution on
(2, F) from that on ([—1, 1], B ([—1, 1])) unless differently specified.

Let 6 be the left shift operator on 2. We denote by (2, F, 6, IP) the corresponding metric
dynamical system. Moreover, we set

QLo3wr— 1 (w):=n] € spthe . (15)

4.2 Random Dynamical System

If E is a Polish space, let Ml ( E) the set of the measurable maps ¥ : E (5 . We denote by 9 the
pull-back of ¥ (or Koopman operator), namely 9#¢ := ¢ o 9 for any real valued measurable
function ¢ on E, and by 4 the push-forward of ¥ i.e. the corresponding transfer operator
acting on L' (E) being the adjoint of 9* considered as an operator acting on L™ (E) .
Given {o, }nesmkg C M (E), the skew product

Ex Q5,0 0, )= (rw,00) € ExQ (16)

defines a random dynamical system (RDS) on (&, B (E)) over the metric dynamical system
(2, F,0,P) (see [8, Sect. 1.1.1]). We set:

e Pp (E x Q) to be the set of probability measures p on (E x 2, B(E) ® F) with

marginal P on (2, F) and denote by u (-|w) := dd“]Pf(';;‘;);
o Jp(0) :={unePp(E xQ):Ouu=u};
(see [8, Definition 1.4.1]). We also define
EXQo@x,o)— px,w):=x€E. 17)

4.3 Path Space Representation of a Stochastic Process

Letus denoteby D (R*, E) the Skorohod space of E-valued functions on Rt and by B (E) its
Borel oalgebra. Then, V7 € R, the evaluation map D (R™, E) 5 Y — & (Y) :=Y, € E
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172 M. Gianfelice, S. Vaienti

is arandom elementon (D (R*, E) , B (E)) with values in E. We also denote by Dy (RT, E)
the Skorohod space of E-valued functions on RY started at y € E.

Let {Sf} o such that, ¥/ > 0,35 := \/ & ' (B(E)). be the natural filtration asso-
1= s<t

ciated to the stochastic process (&;,¢ > 0). "l:hen, since E is Polish it is separable and so
lime =V 3 =B (8).
t>0

Given y € E, if (y,,¢t > 0) is a E-valued random process on (€2, F,P) such that,
VB € B(E),P{lweQ:90(w) € B} = 1p(y), let )y be the ]D)(]R"‘, E)—Valued ran-
dom element on (2, ) such that, Vo € Q,7 > 0,& (Vy (w)) = v (w). We then set
Q;’, = IPo)/y_l. fE>yr— Qg eP (]D) (]R‘*‘, E)) is B (E)-measurable, it is a probability
kernel from (€, B(8)) to (D (R*, &), B (&)) such that P (8) 5 u —> Q) := p (Q7) €
P (D (R, E)). Hence, denoting by §; (1), for any ¢ > 0, the completion of 3 with all
the Qz-null sets of B(B), wesetF, == () T ().

neP(E)

If Q7 is a probability kernel, VA € F, the conditional probability P (A|yp) admits a

regular version which we denote by PY (A|-) . Hence we set V¢ > 0, F, = \/ 1),_1 (B(B)),

s<t
denote by .7-",') (u) the completion of _7-";’ with all the f g M (dy) PY (-]y)-null sets of F and set

Fl= N _Fw.
HEP(E)

5 The Perturbed Phase Vector Fields and the Associated Suspension
Semiflows

Given ¢ > 0 sufficiently small, for any realization of the noise n € spt,, let ¢, be a phase

field in R3 and let (<I>§7, t > 0) be the associated flow.

5.1 The Perturbed Phase Vector Field ¢

We assume that ¢, € C” (]R3, ]R3) for some r > 2 independent of #. In particular, we denote
by ¢ the Lorenz’63 vector field given in (2) and by M be a Poincaré section for the associated
flow (@, > 0).

We further assume that, for any realization of the noise n € sptA., ¢, belongs to a
small neighborhood £ of the unperturbed phase field ¢ in the C! topology such that there
exists an open neighborhood U in R? containing the attractor A of ¢ which also contains
Ap=) <I>f7 (U), where the set A, is invariant for <<I>§7 t > 0) , 1s transitive and contains

t>0
a hyperbolic singularity. We choose l small enough such that M is a Poincaré section for

any realization of the flow (CD;, t> 0) (see e.g. [21, Chapter 16, paragraph 2]) and there

exists a stable foliation Z,, of M that is at least C I+€  for some € > 0 independent of 7,
which can be associated to the points of a transversal curve I, inside M (see [6, Sects. 5.2
and 5.3]).

A good example for ¢, to keep in mind is

Oy =0 +nHgm . (18)
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where H € S? and g is a sufficiently smooth approximation of 1, supported on M.
Indeed, in this case, the existence and smoothness of the stable foliation can be proved
following the argument given in [4, Sect. 4].

5.2 The Poincaré Map R,

Given n € spthg, let ', be the leaf of the invariant foliation of M corresponding to points x

whose orbit (CD’,] x),t > 0) falls into the local stable manifold of the hyperbolic singularity

of ¢,. Then
M\, 3 x —> 1, (x) e RT (19)

is the return time map on M for (CD%, t > 0) and

M\T, 5 x — R, (x) := o' (x) e M (20)

is the Poincaré return map on M.
Identifying 7, with I, let

M>3x+—u:=q,(x)el, 2n

be the canonical projection along the leaves of the foliation Z,). The assumption we made on ¢,
imply that Z,, is invariant and contracting, which means that there existsamap T, : l,; — I,
with ],’] C Iy, such that for any x in the domain of R,

gy o Ry (x) =Ty 0qy(x) (22)
and if u € I, is in the domain of T), the diameter of R,’]' (qn_ 1 (u)) tends to zero as n tends to

infinity.

5.2.1 The Conjugated Map l_?,,

Since for any n € sptA, the leaves of the stable foliation Z,, of M are rectifiables, arguing
as in [6, Sects. 5.2 and 5.3] (see also Remark 3.15 in [5] and [4]) we can construct two C!
diffeomorphisms «; : M O and ;) : T, —> 1 := T, such that

lyodqy=4qoky, (23)

where ¢ := qo (see Fig. 1). .
As a consequence, we can define T, : I O, where I := Iy, such that

Tnoqox,7=t,,oT,,oq,, (24)
which, by (23) implies .
Tyouyy=ty0T,. (25)
Defining R, : M O such that B
Ryoky=kKkyoRy, (26)
we get B B
Tyoq=qoR,. 27)

We remark that the diffeomorfism ¢ does not depend on 1 anymore.
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EAN

qy ()

Fig.1 lpogo = Goko ., inoqy = §oky. Therefore, 1 :=1; O?al , Ky = /?,]ol?o_l implies 1y 0gy = go oKy

Since
fnoqokn=T,]0L,,oqn=t,,oT,,oq,,
:LnoqnoRn:qoxnoRn:qunokn. (28)

Therefore, Yu € I, since R, (qn’l (u)) C qn’1 (T,, (u)) , by (23), (25), (26) and (27) we
obtain

KW_IOR,’OK,’ (Kn_] oq_] ot,](u)) Clcrl_loq_lm,, (L,Tlofnotn(u)) , (29)

that is ) .
ko Ry (g7 oy ) CrytogT (Tyou ) | (30)

which, because by definition «, maps a leaf of the foliation Z,, to a leaf of the foliation Z,
implies B

Ryoq™ (tyw) c g (T o, W) (31)

and so, Vu € I, B .
Ryoq ') cq ' (T, w) . (32)

5.3 The Suspension Semi-flow

Let us set
n—1
M\T, 35— ol (1) =Y 7, (Rg(x))elﬁﬁ, n>1, (33)
k=0
and, Vx € M\I',
]R"'91|—>n,7(x,t):=max[n€Z+:a,'7’(x)§zlGZ+. (34)
If
My, ={(r,9) e M xR 15 €[0,7,(x)} CR?, (35)
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we define the suspension semiflow (S;], t> O) as

ny(x,t+s)

Mr,] 5 (x,8) —> S; (x,5) = (R'l (X)), t+s— O_:]h,(x,s«kt)

(x)) EMy ,1>0.
(36)
Let ~,, be the equivalence relation on M x R such that any two points (x, s), (y, t) in
M x RT belong to the same equivalence class if there exist (xo, s9) € Mz, s',s" > 0

such that CIDfI/,Tn (x0,80) = (x,5), dD;/:rn (x0,80) = (y,t) and n, (xo, s v s +S0) _
ny (xo,s” As’+50) € N. We denote by V, := M x R/ ~, the corresponding quo-
tient space and by 77, : M x RT — V), the canonical projection which induces a topology
and consequently a Borel oalgebra on V). Therefore,

M XRT 3 (x,5) — S) o, (x,5) =7, (x,s+1) €V, 1 >0. (37)

Let us define 7, : M\I'y —> R such that

Tyoky =Ty, (38)
and consequently
Mz, ={(x.9) e M xR :5€[0,7,(x)} CR. (39)
Setting 6,/, n € Z*, and iy, such that
Oy 0ky =0y 5 My oky = ny (40)
and
Mz, 3 (x,5) —> E; (x,s) = (Iégn(x’tﬂ) x),t+s— 6,;_1"()(’5-“) (x)) eMz , >0,
(41)

we can lift of the diffeomorphism «;, defined in (23) to the diffeomorphism

My, 3 (x,5) —> iy (x, ) 1= (;c,, ), Mx) =(ky (0).5) e Mz, . (42)
7y (X)
so that, by (26),
RyoSh =T, ok 43)

Let ~,, to be the equivalence relation on M x R™T such that any two points (x, s), (v, ¢) in
M x RT belong to the same equivalence class if there exist (xo, s9) € Mz, s',s" > 0

such that &)il/»fn (x0,80) = (x,s),tif{:fﬂ (x0,50) = (y,1) and 7y (xo,s” Vs’+s0) _
niy (x0, " A's’ +50) € N. Denoting by V, := M x R¥/ ~, the corresponding quotient
space and by 7, : M x RT — V,, the canonical projection such that

MX]R+9(x,s)|—>§tnofrn(x,s):7vr,,(x,s+t)evn,t>0 (44)
by (42) we can define a diffeomorphism &, : V,, —> V), such that

Ky o Ty =1y 0 ky . (45)
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Partll
Stochastic Stability for Impulsive Type Forcing

As already anticipated in the introduction, in this section we will study the weak convergence
of the invariant measure of the semi-Markov random evolution describing the random per-
turbations of (<I>6, t> O) in a neighborhood of the unperturbed attractor to the unperturbed
physical measure.

To this purpose we will first consider the RDS defined by the composition of the maps R,,
given in (26) which, by construction, preserve the unperturbed invariant foliation. Then, we
give an explicit representation for the invariant measure of the original process in terms of
the invariant measure for this auxiliary process which, in turn, can be defined starting from
the invariant measure for the RDS defined by the composition of the maps T,].

Finally, we will prove that the stochastic stability of the unperturbed physical measure fol-
lows from the stochastic stability of the invariant measure for the one-dimensional dynamical
system defined by the map 7.

6 The Associated Random Dynamical System

In this section we present the construction of the auxiliary random processes needed to build
up a representation of the random evolution given in (4) in the framework of RDSs. We refer
the reader to [8, Sect. 1.1.1] for an account on the definition of a RDS in a more general
setup.

6.1 Random Maps

1.
I xQ>5 W, w)r— T,w):= (Tn(w)(u),Ow)GIXQ, (46)

with TO the identity operator on / x €2, defines a measurable random dynamical system
on(/,B (~I)) over the metric dynamical system (2, 7, P, 0) ;
2. Setting M := M\T,

Mx Q3 (x,0) — R(x,0) € (Rrw) (v),0w) e M x Q, (47

with R” the identity operator on M x €2, define two measurable random dynamical
systems on (M, B (M)) over the metric dynamical system (2, F, P, 9) .
Let

MxQs3x,0)— Q(x,w):=(@x),w)el xQ. (48)

Then, V (x, w) € M x €,

(Q o ﬁ) (x,0) =0 (Rrr(a)) (x), 9(‘)) = (q (Rrr(w) (x)) s 9(1))
= (Tr() (q (%)), 60) = (To Q) (x, w) (49)

that is
QoR=ToQ. (50)

@ Springer



Stochastic Stability of the Classical Lorenz Flow... 177

Defining the map
Mx Q53 (x,0) — K@, 0) = (krw (), 0) e M x Q, (51)

for any (¥,0) € Mx Q = (Mx 2\ {(x,0) € M x Q:x € Tr(}, we define
R: M x Q — M x  such that

RoK(x,w)=K(x,w)oR, (52)

that is
Mx Q5 (x,0) —> (Rr(w) () 0 kx(a), 00) = (Kx(w) © Rr(w) (X),0w) € M x Q.
(53)

6.2 The Random Suspension Semi-flow
Let L
Mx Q253 (x,w) —> t(x, ) = Ty (x) € RT. (54)
Then, Vn > 1, we define

n—1
Mxsza(x,w)r—wn(x,w);:Zt(Rk(x,w))e@,nz1, (55)
k=0

and denote, Vi > 0,
M x Q3 (x,w) —> N; (x, w) :=max{n eZt s, (x,w) < t} eZt. (56)

We now proceed as in the definition of standard suspension flow given in (36). We define

Mx Q) i={(r,0.5) e MX QxR 5 € [0t (v, )] 57)
and consequently the semiflow (St > O) , which we will call random suspension semi-flow,
where

M x Q)3 (x,0,5) — 8 (x,0,5)
= (RN (1 0) 5 41 = sy (1, @)) € (MX Q) (58)

Let ~ be the equivalence relation on M x € x RT such that any two points
x,w,s), (y, o, t) in M x Q x RT belong to the same equivalence class if there exist
(x0,w0,50) € (MxQ) and .t > 0 such that S (xg,p,s0)
= (x,.5),8" (x0,w0,50) = (y, @, 1) and Nyrrrsy (0, @0) = Nyrarrgs (x0, o) € N.
We denote by U := M x Q x RT/ ~ the corresponding quotient space and by 7 :
M x © x Rt — 9 the canonical projection which induces a topology and consequently
a Borel oalgebra on 0. Therefore,

MXQxRYs (r,w,5) —> S o (x,w,8) =7 (x,w,s+1) eV, t>0. (59
Let us define f : M x € —> R* such that

toK=t (60)
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and consequently
M x Q) := {(x,w,s) EMxQxRT:se [O,f(x,w))} . (61)
Setting §,,, n € N and N such that
§Sp.oK=s,; NoK=N (62)
and
M x Q) > (x,0,5) —> s (x, w,s)

_ <§Ns+,<x,w> (X 0) s+ 1 =8y ) (O, w)) € (M x Q) (63)

we can lift the map defined in (51), as we did to get (42), to the map
Mx Q)3 @, 08— K@ o,s):=K(xow),s)e(MxQ); (64)

so that o P

KoS =S oK. (65)
Let A be the equivalence relation on M x © x R such that any two points (x, w, s) , ( y, o, t)
in M x Q x RT belong to the same equivalence class if there exist (xq, wg, 59) € (M x Q);
and t/,t” > 0 such that s (x0, wo, 50) = (x,w,s), s (x0, wo, 50) = (y, o, t) and
Nirrrgsy (X0, @0) — Nprappsy (X0, @0) € N. We denote by U := M x Q x R"/ ~ the
corresponding quotient space and by 77 : M x Q x RT — 9 the canonical projection such
that

MXQXR+9(x,w,s)|—>§torvr(x,a),s):7%(x,a),s+t)eﬁ, t>0, (66)
by (64) we can define a map K : 20 — 9 such that

=70K. (67)

=

Ko

7 The Invariant Measures

7.1 The Invariant Measure for the RDS’s R and R on (M, B (M)

Let us assume put € Jp (T) to be the invariant measure for T.

The results in [5, Sect. 7.3.4.1] applies almost verbatim to T and R (see in particular
Lemma 7.21 and Corollary 7.22). Hence the proof of the following result is deferred to the
Appendix.

Proposition 2 Let puy be the invariant measure for T. There exists a measure pg on
M x Q, B(M) ® F), invariant under R, such that, Vi € Lﬁ) (2,Cp(M)),

pg (¥) == lim / wr (du,dw) inf ¥ oR (x,w) (68)
n— 00 xeq’l(u)

and the correspondence iy —> g is injective. Moreover, if ur is ergodic, then ug is also
ergodic.
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Remark 3 If yur € Jp (T) then ug € Jp (R) and, by [8] Proposition 1.4.3, the correspon-
dence pt (-lw) = ug (‘) is injective.

Moreover, if t admits the disintegration ut (du, dw) = v (du) P (dw) , by [8] Theorem
2.1.7, vy is the stationary measure for the Markov chain with transition operator

Cy(I)3> 9+ Pro:=E[poqoT|eM,() , (69)

where
I xQ>WU,0)— qu,w) =ucl. (70)

Therefore, there exists a stationary measure ug for the Markov chain with transition operator
Cp (M) > ¢ —> Pry:=E[yopoR] e My (M), (71)
such that gz = v2 ® . Indeed, by (68),

5 (W) = lim /vl(du)E[ inf [wopoi”](x,.)]
n—s00 xeqg—l ()
= Jim @0 ot (Prv)co 12)
and, by (230)!,

B (Pﬁw):ninoo/ul (du) inf (P%-Hl/f) (x)

xeq~(u)
= lim /vl (du)]E[ inf [1//0p0§n+1] (x, .)} 5w . (73
n—-00 xEq’l(u)

Moreover, for any ¢ € Cp (I), 9 oq € Cp (M) ; thus, by (50),

ﬂg((poq):nli_)moo/vl(du)]E inf [gooqopoin](x,-)

Lreq =" () J

= lim /vl(du)]E inf I:gooquoﬁn](x,-):I
n—- 00 _XE({*](M)

:nﬁnwfvl (du) E inf [gooqu"oQ] (x,)

Lreqg=! () i

= ngnw/ vy (du) E [[(p oqo T"] (u, -)]

= tim_ [ 1 ) P ) = vl (74)

' By (71),
(P2v) ) =E[(Pgy) o poR] (x) = E[E[(¥ o poR) o poR]]
- /dIP’ (w)/dIP’ () (W o p) (Rﬂ(w,) oRﬂ(w>x,9w/)
- /d]P Ow) (¥ 0 p) (En(ew) o Ror(wy s 9%)

:E[lﬁopoizl
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Since B = q’l (B (1)) is a sub-calgebra of B (M) and since v, (¢|B;) is constant on the
leaves of the invariant foliation, we get vy (¢) = v2 (V2 (¢|B1)) = vi [V2 (¢|Br)]. Hence,
since by definition Vu € I, w € 2,

. . Sy —1
Jim_diam p (R (07" (w, @))) =0, (75)
vy is singular w.r.t. the Lebesgue measure on (M, 3 (M)), while the marginal of v, on
(I, B (1)) coincides with vy.
Corollary 4 If iz € Jp (R) then ur := Ky ' ug = pg o K € Ip (R), with, by (52),
MXx Q3 (r,0) — K (x,0) = (k74, (),0) e Mx Q. (76)
Proof By (52), for any A € B (M) ® F we get
1R (R71(A)) = ug o K(R71(4)) = ug o K (R o K1) (K (4)))
1 51 —=—1
_ MﬁoK((K 1R ) (K(A))) - Mﬁ(R (K(A))) = ug oK (A) .
a7
O

7.2 The Invariant Measure for the Random Semi-flow (S‘, t> 0)

Lemmata 7.28 and 7.29 as well as Corollary 7.30 in Sect. 7.3.6 of [5] applies verbatim to the
semi-flow (63). We summarize these statements in the following Lemma.

Lemma5 Assume that the return time t in (54) is bounded away from zero and integrable
w.r.t. ug. Then the measure on (ﬁ, B (@)) such that, for any bounded measurable function

f:ﬁ—)R,

1 t(x,w) .
ug (f) = M(t_)/pLR(dx,da))/O dtf om (x,w,t) (78)

R

is invariant under the semi-flow defined by (66) on 0.
Moreover, the correspondence ug — ug (and so it —> g —— Hg) is injective.
Furthermore, if ug is invariant under R, then

T—00

1 T
lim ?/ dif ost (x,w,1) = ug (f) . (79)
0
As a byproduct, if ug is ergodic ug is also ergodic.

Proof The proof of the invariance of 1.5 under (gf, t > 0) on Y follows word by word that of

Lemma 7.28 in Sect. 7.3.6 of [5]. The injectivity of the correspondence ug — ug follows
from that of the correspondence ¥ — f associating to any bounded measurable function
Y 1 M x 2 —> R the bounded measurable function
o V(¥ )
V> @, 00— [ or0):=ugt) =i ) ER (80)
t(x,w)
such that ug (f) = ug (¥) . The proof of the last result as well as ergodicity of g under the
hypothesis of ergodicity of ug are identical respectively to that of Lemma 7.28 and Corollary
7.30 in Sect. 7.3.6 of [5]. O
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Proposition 6 Under the hypothesis of the preceding lemma, the measure on (0, B (0)) such
that, for any bounded measurable function f : 0 — R,

1 t(x,w)
us () = —/MR (dx,da»/ dif o (x. 0. 1) 81)
MR (t) 0

is invariant under the semi-flow defined by (59) on 5.
Moreover, the correspondence it — R ——> US) is injective.
Furthermore, if ug is invariant under R, then

1 T
lim —/ dtf ot (x,w,t) = us (f) . (82)
T—oo T Jo

As a byproduct, if ug is ergodic s is also ergodic.

Proof Ift € LLR the proof of the invariance of g under (S’ > 0) on Y is identical to that
given in the previous lemma. Moreover, the proof of the ergodicity of ug under the hypothesis

of ergodicity of ur follows the same lines of that of the corresponding statements involving
ug and ug in view of the previous corollary and the fact that, by (60),

pg (t) = Kgur () = ur (toK) = ug (t) | (83)
which, by (67), Vf : U —> R, imply

s (f) = Rews () = s (£ oK) R @ [1ogf oK o7

)

1 o
= mﬂ]{ ® A I:l[O,EoK]f Ol O K]

1 (toK) (x,0)
= 7—/MR (dx,da))/ dtf ot (K(x,w),s) (84)
ng (1) 0
i.e., since ux = Ksur, ther.h.s. of (78). Then, the injectivity of the correspondence jut —
UR —> us readily follows. O

By the assumption we made on ¢,, it has been proven in [7] Lemma 2.1 (see also [22]
Proposition 2.6.) that there exists a positive constant C such that, for any x € M,

7, (x) < Cylog (85)

g () = dio|
where 7 is the image under ¢ of the intersection of M with the stable manifold of the
hyperbolic fixed point. For example, by what stated in Sect. 12, ip equal to 0 if M = M’ or
|ﬁo| € (0,1) if M = M". The integrability of t w.r.t. ug then readily follows.

Lemma7 If ut is a.c. wrt. A @ P, with density bounded A ® Pg-a.s., then t is integrable
Wt Ug.

Proof The proof is analogous to that of Lemma 3.7 in [11]. The sequence {EM } such

- _ 1 MeN
that t¥ := t A M is monotone increasing an converging ug-a.s. to t. So for the monotone
convergence theorem is enough to prove that g (tM ) is uniformly bounded in M. By (2),(54)

and (60) we get

UR <EM> :Hﬂn/MT (du,dw) sup tMoR" (x,w)

xeq~Hu)
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= lim /MT (du, dw) sup t™MoR" (x,a)’)
n—00

(x,0)eQ 1 (u,w)

IA

lim /MT (du, dw) sup t™M (x, )
n—00 (x,0")e{(y,0"eMXQ : Q(y,0")=T"(u,w)}

/MT (du, dw) sup t" (x, o)

(x.0)eQ ™ (u,0)
S/,LLT(dM,da)) SUp  Trw) () AM
xeq~(u)
- H dupr
T lld®Pe)

‘ C1/du10g|u—120|<oo. (86)
00 I

8 Stochastic Stability

Given n € spti,, let 7 € Q be such that Vm > 0, & (6™7n) = n.
If I, denotes the measure on (/, 3 (1)) invariant under the dynamics defined by the map

T, given in (25), we can lift the metric dynamical system (7, B (1), T, T,) to the metric
dynamical system (I xQ,B()®F, J75 T,,) , where
I x5 o) r— T, o) :=(T,u,00) €l xQ (87)

and pur, = pg ® 85, with 85 the Dirac mass at 7).

In the same fashion, denoting by jg, the measure on (M, B (M)) invariant under the
dynamics defined by the map R, given in (20), we define the metric dynamical system
(M x Q,B(M)® F, ur,. R;) . where

(M\I)) x 23 (x,®) —> R, (x,0) € (R (), 0w) € M x Q (88)

and 4R, = g, ® .
Moreover, setting

M) x Q>3 (x,0) —> t, (x,w) :=t(x,n) =1, (x) e R, (89)
( n) " ] *

we define semi-flow (S;,t > O) on (M x Q)t” = Mo, x Qas in (58) and consequently,
setting
MxQxRY 5 (x,0,5) — 7y (x, 0, ) == (T, (x,5),0) € V; x Q, (90)
the semi-flow
MxQxRY 3 (x, w, 5) —> S;ofr,,(x,w,s) =", (x,0,s+1) €V, xQ, t >0, (91)
as in (59). Furthermore, we denote by us, = ps, ® &5, where s, (dt,dx) =
1[01” ] () iRy (dx) . . .
R T ce— the measure on (Vn x Q,B (V,,) QR F ) invariant under (Sn’ t > 0) .
n{my
Since, by the definition of X., as € tends to 0, Pg weakly converges to the Dirac mass

supported on the realization 0 € © whose components are all equal to 0, in the following
we make explicit the dependence of jt, uRr, us, on &, that is we set uy = ur, Uy =
UR, (LG = [S-
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Definition 8 We will say that ur,, (g, are stochastically stable if, respectively, ju. weakly
converges to ut,, Ly weakly converges to uR,, as ¢ tends to 0.

Remark 9 We remark that the definition just given of stochastic stability of ur,, g, is weaker
than the one usually taken into consideration (see e.g. [39]). Indeed, if u% € Jp, (T) admits
the disintegration v{ ® IP., which implies, by Remark 3, [L% =15 ® P, and pug € Jp, (R)
admits the disintegration v5 ® P, where V5 is the stationary measure for the Markov chain
with transition operator

Co(M)>y +— Pryr:=E[yopoR] e My (M), (92)

then the (weak) stochastic stability of jug,, g, is usually defined as the weak convergence
of v{, v§ respectively to 17, and wg, as € tends to 0, which of course implies that yt, and
MR, are the weak limit of respectively i3 and g . Moreover, if and v{ and w7, are a.c. w.r.t.
the Lebesgue measure, the convergence in L i (I) of the density of v{ to that of uz,, which
is equivalent to the convergence of v} to u, in the total variation distance, is referred to as
the strong stochastic stability of .

Definition 10 We will say that s, is stochastically stableif,¥ f € Cj (U) , ug (f) converges
to s, (f), as & tends to 0.

We will now show that, since the correspondence g —> M% — ,u% is injective,
the stochastic stability of u, imply the weak convergence of p,% to us,. Furthermore, we
will prove that if ur, is stochastically stable, the injectivity of the correspondence pg ——
MR F—> 1§, together with the hypothesis of R, being continuous for any 1 € spti, imply
the stochastic stability of the physical measure for the unperturbed flow that is what stated in
Theorem 1. We will also show that, in order to prove Theorem 1, we can drop the hypothesis
on the continuity of the R,,’s if we assume the strong stochastic stability of 17 .

In the rest of the section we will always assume (7, to be stochastically stable. As an
example, in Sect. 8.4 we will prove that this is the case for the invariant measure of the
Lorenz-like cusp map and for the classical Lorenz map introduced in Sect. 12.

8.1 Stochastic Stability of 11g,

The following result refers for example to the case where one considers the first return maps
on the Poincaré section M given in the Appendix in Sect. 11.1.

Theorem 11 [ffor any n € [0, €], Ry, : M O is continuous and jut, is stochastically stable,
then u,% weakly converges to iR,

Em Em

Proof Let {ey},,> be any sequencein [0, 1) converging to 0 and set = uy", M% =g
For any € LI;A (22, Cp (M), we set

I xQ>5 W w)r— ¥y (U, w):= sup ¥ ((x, o) = sup W (x,a)’) . (93)
xeq~(u) x,0)e0 L (u,w)

IxQ3 W o) r— ¥, := inf ¥ (x,0) = inf v (x,0) . (94)
xeq~l(u) (x,0)eQ 1 (u,w)
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Suppose first that ¢ > 0. Given m > 1, by Proposition 2, since {/,Lan (w o R”l) } is
+ n>1
decreasing,

o230 =i (vo%) Jomma [(0o) ] o9

On the other hand, since [ uy (W ° ﬁ”) } is increasing,

n>1
pg () = lim pf [(woﬁ")f] = Tim, uf [(w oi”)l . (%)

The same considerations also hold for ugr, () and { Ty [(1// o ﬁ")i] } , that is

n>1
0= ury ) = lim pumy [ (¥ 0 RY),, | = lim, por, [ (¥ o RY)., |
= lim_ur, [ (¥ oRE)_]| =Timyper, [ (v o RY)_] 97)
([5, Sect. 7.3.4.1]). Hence we get

12 ) — iy ()] = 12 )V iy () = 1 () A iy ()

= tim (o R)_| v i e (0 o ) ]
e Ny

— Tim [(¢ oﬁ")_] T, [ (v o Rg)_]

—lim,, 2! [(w oﬁn)J A lim, e, [(w o Rg)+] ) (98)

But, since the marginal of pu, on (2, B (R2)) is &,
) — g ()] = Tim, [(w oi”)i] vTim, e, [ (¥ 0R")_]

— lim, up [(1,0 oin)+i| Alim, o, |:<\/f oﬁn>+:| . (99)

Moreover, since ¥ € [d) € pr,k (R2,Cp (M) : 9 > 0] My = sup,ep V(LX) €
L! (2,P3) and 0 < Y < 4 < My, then, by Fatou’s Lemma,
Ti 2 [(w oR') ] v T, [(1// oR) } (100)
—lim,, |: 4 OR :| A lim,, pur, [ ¥ OR J (101)
< m . 0
< [hmn ( ) ] v ut, |:hrnn Vo R ] (102)

il (oK) Jon o ()

@ Springer



Stochastic Stability of the Classical Lorenz Flow... 185

= [Hn (1;/ oﬁ")i] Vi, [ﬁn (W oﬁ")i} - u, [Hn (1// OEH)J

s, | Tim, (v oﬁ")_] — [m (vor)
v im, (v oi”)J - g [mn (v oR”)J_A g [mn (v oi”)J

- (u”T’ i, (v oﬁ”)f} — 1, [r,, (v oi"):) Vo (103)
+u, [, ( oi”)f] — g [@,, (vo R"):

+

wr, [Lmn (v o*”)J — [erm (v oi”)J

i (104)

Since 11 weakly converges to i, setting ¢ := lim, (1/; o ﬁn> , ¥ = lim,, (x/f o ﬁ”)
+
we have ¥/, ¥ € {¢ €Lh (.Ch(1):¢= 0} and Ve > 0, there exists /. () such that

Ym > n. @) ,
| [¥] — wr, [¥]] < € as well as there exists 7 (g) such that Vm > n! (ﬂ) i [ﬂ]
o]
On the other hand, Vi > 0,
wy (W oR") = pmy (¥ 0 ), = ury (Vo 0 RY). - (103)

where Y := ¢ («, (_)) , so that

wry [m, (v oi”)_} ~ [mn (v oR”)J’
‘MTO [Hn (Yoo Rg),] ) [ILH,, (Yoo R8)+]’

pry [[fim, (vo o RE)_ —tim, (vo o RE), |] (106)

IA

Since ¥ € Cp (M) andVu € I, q_] (u) C M is compact, by Assumption 1, Ve > 0, 35, >
0,nc > O such that Vn > ne,u € I,diam R} (¢~' (1)) < 8 and Vx,y € R} (¢~ (w)),
[¥0 (x) — Yo (¥)| < €. Then,

[y [T (o 0 RY) ]| = s, [tim, (vo o RE), || < €. (107)

Hence, v/ € (¢ € LL (R.Cp (M) : ¢ = 0}, ¥m > me () =l (¥) v (),

) = pamy ()] = 3e (108)
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but decomposing any real-valued function ¥ on Q2 x M as ¢y = ¥ v 0 — [ AO],
we get that given any ¥ € Lﬁ% (2,Cp(M)),Ye > 0 Im, (¥) such that Vm >

me (). | (0) = i, ()] < 6e. o

Lemma 12 If /L% weakly converges to [iR,, then |1y weakly converges to jiR,, too.

Proof For any A € B(M) ® F, we denote by A its closure and recall that Uy (A)
//L% (lK(A)). Moreover, for any real-valued Borel function ¥ on M x Q, ugr, () =
1R, (¥ o K) . Hence, defining, for any B € B(M),C € F,e >0

(B xC),:= {(x,a)) eMxQ:inf |[x —y| <€, inf p (w,w/) < 8} (109)
yeB w'eC

we set
L (1. ury) :=1inf {€ > 0: uj (B x C) < ur, (B xC).) +€, VB € B(M),C € F}
=inf e > 0 u& (K (B % C)) < g, (K ((B % C)))
+e,YBeB(M),CeF}. (110)
But, forany B € B(M),C € F,

K(BxC)={(x.0) e MxQ: (kyl, (0, 0) e BxC|

:(ﬂ K,,(w)(B)) x C, (11

weC
hence, since for any n € sptig, Ky is a diffeomorphism, «; (B(M)) = B(M), ie.
L (uk, MRo) =1L (M%, MRO) . Therefore, the distance between g and iR, in the Lévy-

Prokhorov metric, namely L P (pr ,uRO) = L (pr MR{,) v L (IU’RU’ Mf{), equal that
between uf and uR,. Since the weak convergence of measures is equivalent to the con-
vergence in the L P distance we get the thesis. O

The last two results prove the following.

Corollary 13 Iffor any n € sptie, Ry : M O is continuous and i, is stochastically stable,
then [uR, is also stochastically stable.

Theorem 14 If v{ weakly converges to ur,, then ut, is stochastically stable and v5 weakly
converges to LR, .

Proof By (50), Vo € LJ}% (2,Cp (1)) and n > 1, it follows that

p,%li(poQoﬁ”]:,u%[(poT"oQ]. (112)
Moreover, since V (i, w) € I x €2,
(poQ)_(,w)= inf @oQ(x,w)= inf gogx)=g¢W), (113)
xeq~'(u) xeq—' ()
as well as
(poQ)_(w,w)= sup @oQ(x,w)= sup @oqx)=¢u), (114)
xeq—l(u) xeq—l ()
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Vm > 1, by the invariance of 7 under T, we get

m T m D T m n
Wl o Q1= lim [(onoR )J = lim u1f [(¢oT"0 0). ]
— 4 m nl __ m
= lim g [poT'] = uy le] - (115)
Furthermore, by (22), Voo € Cp (I), u € I since

(poog)_(u)= inf goog(x)=¢o)= sup @ooq ()= (pooq)s ), (116)
xeq—(u) xeq—(u)

then
Ry [pooql = lim pr, [(¢o oqo R(’)’)i] = lim pz, [(wo oTj o q)i]

= lim pr, [0 o Tg'] = pry ol - (117)

Thus, Yo € Lﬁmk (Q,Cp (1)), setting o = ¢ (-,0) ,@pog =@ o O (-,0) and
mry ® 8 lo] = ry [pol = pry [0 0 g1 = Ry ® 5 lwo 0 g1 = gy ® S lp 0 O . (118)

Therefore, if 17 weakly converges to ur,, then
Jim nlpo Q1= Jim wr @] = pr, [9] = ury ® 8 (@]

=Ry ® @ o Ql=puryleo0l. (119)

Clearly, if v{" weakly converges to ur,, since IP,, weakly converges to §;, then up =
v{" ® P, weakly converges to ut, = ur, ® 8. Hence, Yo € Cp (I), by (70), since
goq ELllPA (2,Cp(I)), and sinceVx e M, w € Q,poq (x) =¢poqo Q (x,w), setting
¢ = @ oq, by (119) we have

lim ' [@gogl= lim V) ®Py[@ogl= lim V) QP [¢oqo Q]

m—00 m—00 m—00

= mlemuan [(Z) oqo Q]

= URy [poqo Q] =pr,[@oq] . (120)
Given A € B(M), let
qg(A)=Jaw)=fuel:u=qx) , xeA}, (121)
xeA
b(A) ={xeM:qgx)eq(A}DA. (122)
Moreover, Ve > 0 we set
€y o e =yl
M3 x+— ¢y (x):=(1—inf v0el0,1], (123)
yeA €
as well as
50— ¢ (x) = <1— inf '”_”|> voel0,1], JeBU) .  (124)
ve €
Since
inf |lx —y|l = inf X) — = inf X)—v 125
Lot lx =yl Janf lg (x) —q ) ,anf, lg (x) — vl (125)

Ve > 0 we get Yy ) = ‘/’;(A) °q
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Hence, given A € B (M) and denoting by A its closure, since Y e Cp (M), q);(A) €
Cp (1), from (120), (119) and (117), Ve > 0 we have

st 1) 8 5]~ 5 ]
_llmmuR[ 6(—)0qu]_ lim l,LRI: (joqu]

= WRo [¢ a )oq] (126)
that is o B

Tim,, 7' (A) < 1ug, [1{1(}) 0 q] = gy (A) (127)
and the thesis follows from Portmanteau theorem and Remark 9. O

This result together with Lemma 12 implies the stochastic stability of ug, .
Corollary 15 If v5 weakly converges to jLr,, then wR, is stochastically stable.

Proof 1f b5 weakly converges to g, then by Remark 3 //% = 15 ® P, weakly converges to
R, and, by Definition 8, the thesis follows from Lemma 12. O

8.2 Stochastic Stability of s,

As a corollary of the stochastic stability of ug, we have the following.

Proposition 16 Let t be bounded away from zero and integrable w.r.t. uRr. If g, is stochas-
tically stable, then s, is also stochastically stable.

Proof Givenn € spthe, if f is a bounded measurable function on U, there exists a bounded
measurable function f on V), such that, denoting by f its extension on V, x Q by setting

V,]an(x,s,a))l—>f(x,s,a))::f(x,s)eR, (128)

by (90), 5 5
FEC))=F GGy, )=FfoRiC,-) . (129)

Then, since the marginal on (€2, B (£2)) of ug, is the Dirac mass at 0, by (89),

to _ to to o —
MRy |:/O deO]%(',O, S)] = UR, [/O dsfoj%(_) (',',S)] = MR, [/0 dsf(ﬁ'() (',S),O)]
70 .
= any | [ as o0 o) (130)

and 5
[+Rq [fg" dsf oo (-, s)]
MR, [to]

L5, [f] =

Smceteng,toeL

= ps Lf] - (131)

1Ry for any € > 0, there exists M, € N such that, YM > M.,

|1 () — g (€A M)| + | 1R, (t) — pr (to A M)
= pR [t =t A M) La1.00) (O] + Ry [(t0 — to A M) La1.00) ()] < €. (132)
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Hence, for any bounded measurable function f on ‘U,
t t
IR [/ dsfof (-, S)] = IR [(/ dsfof (-, s)) (Ljo.m1 () + 1(,00) (t))]
0 0

tAM
=u§[/ dsfoﬁ(~,~,s)]
0

t
+ uf{ |:1(M,oo) (t) //‘v[ dsfom (- -, S)] (133)

which implies

t tAM
M%[/O dsfoﬁ(-,-,s)i|—u§|:/é dsfoﬁ(-,-,s)]

Therefore, since

<e sup |f(x, o,9).

(x,w,s)eV
(134)

Mi{ (tA M) MSR [f(;AM dsf o 7, S)] ,LLSR [I(M’oo) t) f;/] dsf o (-, S)]

ETF] — " ,
g [f] Mf{ (t) /,L% tAM) ”i{ (t)
(135)
we obtain
& [f] MFR I:fot/\MdeOﬁ(".,S)] < ‘ Mi{ (t/\M) ’ui{ I:fOtAMdsfoﬁ('st):I
" 1y (€A M) - 1y () 1y (EAM)
SUP(y, 0 5)e | f (X, @, 5)]
ug O Al
< 26 Sup(x,w,s)e&] |f (.X, w, S)' (136)
ng O Al

Moreover, by the same argument, we also get

to toAM
MRy [/ dsf o7 (-, -,S)} — UR, [/ dsf oy (-, -,S)” <e sup |f(x,0,5)
0 0 (x,w,s)e0
(137)

and

toAM N
MRy I:fo()/\ dsfon (-, S)] ) SUP(x,.5)e | f (x, w, )|
KRy (to A M) IR, (to) A1

mso Lf1— (138)

LettM .=t A M, tg” = to A M and let {&,},,>1 be any sequence in [0, 1) converging
to 0. Since /Lg weakly converges to uR,, for any § > 0, there exists Ns > 1 such that,

Vm > N,
) ()<pR () (@5 o

Moreover, since t™ is bounded, considering the linear map,

tM

Co(0)s fr—En(f) ::A dsfom (-, 8) € Lllpm (2,Cp (M), (140)
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from the linear space Cgq (U) of bounded measurable functions f on U such that
Yo € @, f(,w,) € Cp (Mfﬂ(w)) to Lﬁmm (2,Cp (M)), for m large enough, we get
|Mﬁ [Eyv ()] — ury [Em (f)]’ < §. Therefore, for m sufficiently large,

HRE (O] pr, [E ()]

I LF1 = s, LF1| = \

g [t] IR, [to]
pR [Ex (] g [Em ()] SUP(y o, 5)e | f (X, @, 5)]
wa [tM] 1R, [6)] 1R, (t0) A u () A
(141)
and
pR By (O] pr [Ep ()] _ ug [Ey ()1 = nry [Ex ()]
ui [t7] o KR [t)]
1 (Bar (LFDT | i [64] — 1w, [t1]
g [tM] 1R [t3]
- 1+ SUP(y, . 5)e0 |f (x, o, S)|8 . (142)
URy [to] A M
u]

. . =t
For what concerns the weak convergence of the invariant measure of the flow (S Jt > 0)

to us, we have the following result whose proof is identical to the preceding one and so we
omit it.

Proposition 17 Let t as in the previous proposition. If ug weakly converges to LR, then /L%

weakly converges to s, .

8.3 Stochastic Stability of the Physical Measure for the Unperturbed Flow

Here we will show that the stochastic stability of g, will imply that of the physical measure.
Setting
MXRY 5 (x, 1) — ¥, (x,1) = @) (x) eU CR?, (143)

where U can be chosen to be independent of 1, we define the diffeomorphism x; : V;, — U

relating the original flow (@%, > 0) with its associated suspension semiflow (37), i.e. such
that
XnoTy (- +1) = @;oxn (144)

(see [5, par. 7.3.8]).
Moreover, by (55), for n > 2, we define

UxQ3 (.0 8 (o) =58 (y,0)+s| (cbfgfj,';‘”) GOF w) eRT, (145
where §; is given in (186) and
UxQ5(y,0)— N, (y,0) :=max{n € Z" :8, (y,0) <t} e Z". (146)
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For any w € Q, we define the non autonomous phase field Rt 3 ¢ — o (t,7) €
co (R3, RS) , piecewise C” (R3, RS) ,r > 2, such that

RYx U3t y)— ¢ot,y) = ¢ﬂ(9th<},’w)w) () e R} (147)

¢ﬂ(gm,<y,w>w) = $r@) ) 103,50 D + D Dr @) 13, 5,081 o () (148)

n>1

and denote by ( oLl >ty > O) the associated semiflow. Hence, because Vn € [0, &],

®! (U) C U it follows that Vo € Q.1 > 0, ®,0 (U) C U.
Since by (57) any v € U can be represented as a vector (x (v), @ (V) , s (v)) € (M x Q)q,
let us consider the map

w(V)

Q]avn—>V(v)_( ‘<V)°(x(v)),w(v))estz. (149)

. .. 0 .
Notice that, by the definition of <<I>’ 0> O) Z)((vv)) (x(v)) = d’fT((va))(v)) (x (v)) . Setting

UxQxRYS o 0) — X' (u,0) = (&go (u),ON’(““”)w) cUxQ, (150

fort > 0,v €, by (149), (146) and (150) we have

x(v) 0

X <V<v)>—< 10 (&0 () 6™ (B en ), (v)). as1)
But, by (186), (55) and (145),
5 (B0 ) o) =8 (@30, M), 0m) =tax®, 0 E) =5
(152)
51 (P30 M) 0M) =8 RE M. 0W),0W)  nz1, (153)
hence,
S (D10 ) 0 M) =8 (W5 (9.0 W)
=t M, 0M) s M +8-1 (P ¢ W), 0m)

=tx(™),o®)—s@+s;, R(xV),w(),w()),
(154)

which implies
N (S50 o) = 8 (@30, 6 (), o) =Nt @, W) (155
and
B0 (S50 () = B0, (@50 0 )
= VO (v . (156)

w(v)

Therefore, by (58) and (59),

XV @) = (S50 (r (1)), oMM (v) )

w(V)
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=V @ ™. 0®,.s5(¥)
=V@A@W,o®),sWV)+0), (157)

that is
Vor(,,-+1)=X'0oV,t>0. (158)

By [5, Sect. 7.3.8] uo := (Wo)# (is,) is the physical measure for (@, > 0) whose
basin B (o) covers a neighborhood Vj of the attractor of (@6, t> O) of full A3 measure
which is a subset of xo (Vo) € U. In fact, by the definition of T, Vi € spti., V, x {n} C U,
and by (149) V (V, x {1}) = xy (Vy) x {11} . Hence, setting U := V (V) , x, (Vy) € Up =:
p (U) € U and in particular Vo C Up.

Letpf, := Vgu§ = n&oV~1. By the invariance of 1§ under the flow (# ( st 1), >0)
and (158) we get the invariance of ug, under the evolution given by ( X't > 0) . Indeed,
VACU,

v (X' () =y (X! (V‘1<A>)) uy (Voi .o+ (V71 (4)))
ué(ﬁ(,, +0 (V) =us (V) =uy A . (159

Moreover, we have

Proposition 18 If us, is stochastically stable, then, as ¢ tends to 0, us, weakly converges to
o ® 8g with o the unperturbed physical measure.

Proof Let B C Vy C Uy. By (144) XO_I (B) CVy.GivenC € F,weset A := Xo_l (B)xC.
By (59) 7 (A) C U and by (90)

iy (Vo it (4) = g [7 ()] — us, [# W] =1c 0) sy [700p (x5! B) x {0})]

= 1c (0) s, [0 (x5 B))] - (160)

Since 7o acts as the identity on My, and x ! (B) € Mg,
s [70 (x5 B) ] = sy [ 15 BY] = o () By = o By . (161)
O

8.3.1 Proof of Theorem 1

By construction i, is the physical measure of (X t> O) thatis, for any bounded measurable
function f on U x 2, lim;_ % f(; dsf o X* = uy (f) . Moreover, the projection on U
of the evolution (X Lt > 0) provides a representation of the system evolution (i, t > 0)
as it has been already shown in (10). Therefore, the thesis follows considering functions
UxQ>s(y,o)r— f(,w):= f(y) € R with fbounded measurable on U'.

8.4 Stochastic Stability of 17,

In this section, to ease the notation, we will simply refer to the unperturbed map Ty as T
and consequently note ur, as ur. Moreover, for the same reason, since no confusion will
arise, we will note 7;, for T,. Furthermore, since as it is explained in the Appendix in the
case M = M” the invariant measure for T}, can be reconstructed from those of f,,, when
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considering this case, here, with abuse of notation, we will refer to the unperturbed map T
and to 7:17 again as, respectively, T and T), unless differently specified.

As we stated in Sect. 4.2, the stochastic perturbation of a one-dimensional map T is
realized through sequences of random transformations. This means that we will compose
maps as Ty, o --- o T, with the {n;};en € sptA. taken independently from each other and
with the same distribution A.. This implies that the invariant measure pt of the skew system
(46) factorizes in the direct product of P, := AsN times the so-called stationary measure v{
(see Remark 3) which will be the stationary measure of the Markov chain with transition
probability

Qx, A) :=Ae{n e [-1,1]: T,(x) € A}. (162)

where x and A are respectively a point and a Borel subset of the interval. It is well known
that whenever the stationary measure is absolutely continuous with respect to the Lebesgue
measure, its density will be a fixed point of the random transfer operator which we are going
to define together with the strategy to prove stochastic stability of ur.

We denote by L the transfer operator of the unperturbed map 7, by £, the random
transfer operator defined by the formula £, f = f[_]’] ] die (n) Ly f, where f belongs to
some Banach space B ¢ L' := L' (1, 1) and by Ly, is the transfer operator associated to the
perturbed map T),. Let us suppose that:

A1 The unperturbed transfer operator £ verifies the so-called Lasota—Yorke inequality,
namely there exists constants 0 < > < 1, D > 0, such that for any /' € B we have

I£fllp < =l fllg+DIfI - (163)

A2 The map T preserve only one absolutely continuous invariant probability measure @
with density 4, which therefore will be also ergodic and mixing.

A3 The random transfer operator L. verifies a similar Lasota—Yorke inequality which,
for sake of simplicity, we will assume to hold with the same parameters » and D.

A4 There exits a measurable function [—1, 1] 3 & —> v'(¢) € RT tending to zero when
& — Osuchthatfor f € B:

LS = LeflIl < V'(e). (164)

where the norm ||| - ||| above is so defined: |||L]||| := SUP| £ 5 <! IILfl; . for alinear
operator L : L'o.

Besides, we add two very natural assumptions on the Markov chain given by our random
transformations, namely

AS The transition probability Q(x, A) admits a density ¢.(x, y), namely: Q(x, A) =
L4 as(x, y)dy;

A6 sptQ(x,-) = B:(Tx), for any x in the interval, where B.(z) denotes the ball of
center z and radius €.

Assumptions A1-A3 on the transfer operators together with assumptions A5 and A6 on
the Markov chain defined by the random transformations, by Corollary 1 in [10] guarantee
that there will be only one absolutely continuous stationary measure . with density /.. At
this point, assumption A4 allow us to invoke the perturbation theorem of [24] to assert that the
norm ||| - ||| of the difference of the spectral projections of the operators £ and £ associated
with the eigenvalue 1 goes to zero when ¢ — 0. Since the corresponding eigenspace have
dimension 1, we conclude that 7, — h in the L' norm and we have proved the stochastic
stability in the strong sense.
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We will use as B the Banach space of quasi-Holder functions. We start by defining, for
all functions 7 € L! and 0 < & < 1 the seminorm

|hlo := sup ia osc(h, Bg, (x))dx , (165)
O<er<ep €]
where, for any measurable set A, osc(h, A) := Essup, .4/ (x) —Essinfyc4h(x). We say that
h belong to the set V,, € L if |h|, < 00.V, does not depend on & and equipped with the
norm
Alle == 1hle + Il (166)

is a Banach space and from now on V, will denote the Banach space B := (Vg, ||-ll4)-
Furthermore, it can be proved that B is continuously injected into L* and in particular

[1h]loo < Csllh]|lq Wwhere Cy = %}1’8%), [35]. The value of « could be chosen equal to 1

thanks to the horizontally closeness hypothesis given below.

We now describe how the one-dimensional map T is perturbed. From now on we will
suppose that spti, C (—¢, €) and choose the maps T, with absolutely continuous invariant
distribution i, in such a way they are close to T in the following sense:

e denoting by g = ﬁ and g, = |T—1,‘ the potentials of the two maps defined everywhere
7

but in the discontinuity, or critical, points xo and xo , respectively, we have that g and
gy satisfy the Holder conditions, with the same constant and exponent (we can always
reduce to this case by choosing ¢ sufficiently small):

1g(x) — g = Calx — I3 1gy(x) — gy(W| = Calx — yI°, (167)

where (x, y) belong to the two domains on injectivity of the maps excluding the critical
points. We will call these domains Iy, I and Iy ,, I, respectively assuming that the
domain labelled with i = 1 is the leftmost.

e The branches are horizontally close, namely for any z € I we have:

T2 =T, @ < v [T/ T @) =Ty (T @) <ve), j=1,2, (168)

where T ! Tj ,; denote the inverse branches of the two maps and in the comparison of
the derlvatlves we exclude z = 1. Here and in a few other forthcoming bounds, where
we compare close quantities, we will simply write v(e) as the error term, meaning that
such a function goes to zero when ¢ — 0 and it is bounded as v(¢) < &, with the explicit
form of v(e) which could change from an inequality to another 2.

With these assumptions, and those listed in Sect. 12, if uniformly in n € spti, the L™
norm g, is bounded by a constant in (0, 1), it follows from Butterley’s work [12] that the
map T and each T}, verify a Lasota—Yorke inequality with the same constants (these constants
are in fact explicitly given and basically depend on the L°° norm of g, and on the constants
A and Cs appearing Theorems 4.1 and 4.2 in the just cited Butterley’s paper).

Remark 19 1t is important to stress at this point that the uniform expandingness of our maps
T), is essential to prove the quasi-compactness of the associated transfer operators. Therefore
what just stated does not apply directly to the one-dimensional Lorenz-cusp type map T
appearing in our previous paper [18]. Nevertheless, making use of Theorem 2 in [34], we

2 Of course we could ask for bounds of the type v(e) < Ce, where C is a constant independent of v; the
presence of the constant will simply modify some factor in the next bounds and it will be irrelevant for our
purposes.
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can consider in place of the T,’s the family of uniformly expanding maps {7, }nap 2, Such

that T,, oW =Wo f,], with W a given function defined in Sect. 13 of the Appendix.
Indeed, these maps are uniformly expanding, more precisely, by construction, we have
infycsprs, inf ‘T;‘ > 1, which implies that the conditions A1 and A3 given above are met. A2

is also met by the uniqueness of I, which we proved in [18], since KT, = KF, © WL, while
the validity of conditions A5 and A6 follows by direct computation under the assumption of
¢ being sufficiently small.

We now add two more assumptions for future purposes:

A7 Vertical closeness of the derivatives Forany n € spti, letk, := inf {k eN:xg, €
Biy (xo)} be the the smallest integer k for k7 be the radius of a ball centered in xo
containing the critical point of T;,. We then assume that there exists a positive constant
C such that

sup sup {7, (x0) — T'(0)]} < Cule) . (169)

nesptie xeB,fnn(Xo)

A8 Translational similarity of the branches We suppose that, for any 1 € spti,, the
branches T; :=T 15, and T; , := T}, | Liy corresponding to the same value of the
index i = 1, 2 will not intersect each other, butin x = 0, 1.

The introduction of assumptions A7 and A8, as one can see by looking at Fig. fig:2
below, which is taken from our previous work [18], are motivated by the change in the
shape of T;, w.r.t. that of T an additive perturbation of order 1 to the phase velocity field
produces. In particular, A7, which was also already used in [11], requires that outside a small
neighborhood of the abscissa of the cusp of the unperturbed map 7', the derivative of T and of
all its perturbations T, are ¢ close. Assumption A8 requires that the left (resp. right) branches
of T and of its perturbations 7}, can only meet in O (resp. 1).

Theorem 20 For any realization of the noise 1) € spthg, let T, satisfy the assumptions Al-AS.
Then, ur is strongly stochastically stable.

Proof If we were able to prove that the transfer operator for T and for T, are close in the norm
[I| - ]]] uniformly in 1, we would get desired result no matter of the probability distribution
of the noise A.. We therefore begin to compare the two operators, first of all we have for any
heb

(Lh = Ly ) = Y AT 0T 0 = Y (T 0)gu(T)) %) (170)
i=1,2 i=1,2

With the usual adding and subtracting procedure, we can regroup the r.h.s. of the previous
expression in the following blocks:

(Lh = Ly x) =3y olh(T ) = h(T; 01T )
+ i1 M OL (T ) — gy (T 01, (171)

We denote with (I) and (II) the first and the second term on the r.h.s.. The second one can be
further decomposed as

(D) =Y W 0T )= 01+ D AT 0le(T), 0 =gy (T, 01 (172)
i=12 i=1,2

and we call (II) and (IV) the two terms on the r.h.s.. We now begin to estimate them.
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(I) We have by the horizontal closeness

DT ) = AT 0lg(T T ) < Y oselh, Be(T, x))g (T, x)
i=1,2 i=1,2

= Llosc(h, Bg(+)] . (173)

By integrating and using duality on the transfer operator we get

/ I(Dldx =< /OSC(h, Be(x))dx < &%|hly - (174)
(IIT) Since g is Holder we immediately have:

/ |1 D)|dx < 2eCpllhlloc < 26'CpClhla - a75)

(IV) We rewrite the difference of the potential as
rer—1 rer—1
Ty (T ) = T'(T )

18T, %) = g9 (T, )] <
A I (T T (1, 0

(176)

Let y, := infxeBkM(xO) T), (x) . Assumption A8 implies lim, .oy, = 1. Now, we
first compute the integral [ |Ch — Lyh|dx removing the interval [y, 1], where
Y4 = infyegpra, yy- Clearly the estimate of (/) and (//1) remain unchanged and,
by the assumption A7, (/ V) immediately gives

/l(IV)ldx <2C,Célhlgy . (177)

Therefore, we are left with the estimate of the error term f A |Lh — L,h|dx, where
A= [y +> 1]

/ |Lh — Lyhl|dx 5/E(Ihl)lAdx—i-/L’,,(lhl)lAdx <
A

f(|h|)1A oTdx + /(|h|)1A o Tydx < 2Cs|h|o[Leb(T ' A) + Leb(T, ' A)] <
16C;|h| g€ . (178)
By collecting all the bounds just got, we conclude that ||[£ — L.||1 < O] fl]a-

m}

The proof we just gave refers to the case where T and its perturbations are respectively
the Lorenz cusp-type map studied in [18].

The same technique can be used to show the stochastic stability of the classical Lorenz-
type map again under the uniformly expandingness assumption. In this case we do not need
the vertical closeness of the derivatives; instead we have to add the additional hypothesis
that the largest elongations between [T (0) — T,,(0)| and |T (1) — T;(1)| are of order & for
any 1 and moreover |T17l (T,(0))| and 1 — |T271(T,,(1))| are also of order ¢, where the last
two quantities are the size of the intervals whose images contains points that have only one
preimage when we apply simultaneously the maps T and T;. Hence they must be removed
when we compare the associate transfer operators. The proof then follows the same lines of
the previous one and therefore is omitted.
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Partlll
The semi-Markov description of the process

In this part of the paper we will discuss the stochastic stability of the unperturbed physical
measure in the framework of PDMP.

9 The Associated Semi-Markov Process in R3

Let {x,},cz+ be the (homogeneous) Markov chain on (€2, F, IP) with values in M such that,
by (54),forany A € B(M),n e N,

n—1,0"
PloecQ: 1, (e AF )= P[w e Qo) (1, ) € A|;,,,1] P—as.,
(179)
whose transition probability measure is therefore

Py € dzlto} = Fe {n € [~1,1]: Ry (xo) € dz} . (180)
Consequently, we define the random sequence {s,},c7z+ such that
Q3 wr— 50 (w) ==t (), ), (181)
Q3w 541 (@) =5, () +t@, (@,0) eRT, n>0, (182)
and accordingly the counting process (N;, t > 0) such that
N :=sup{neZ’ s, <t} . (183)

We remark that for ¢ sufficiently small A, {77 €[—1,1]:infyepq 7y (X) > 0} = 1 which
imply that forany # > 0,P{w € Q : N; (w) < o0} = 1.

The sequence {(z;, ty)},cz+ such that ty := s, t, := s,41 — s, n > 0 is a Markov
renewal process, since by construction, VA € B (M) ,t > 0,n > 0,

Plrp+1 € A, typ <tltp. tu} =Pltyy1 € A by <tlty} P—a.s.,
Plrie Aty <tlro} =2 {ne[-1.11: Ry (o) € A, 1, (xo) <t} (184)

and
P {tn+l <t {Fn}neZJr} =P{tys1 < tltn, tn+1} P—as. . (185)

Therefore (7, t > 0) such that ¢; := ¢, is the associated semi-Markov process [9,26].
Let us set

UxQ>3(y,w)— 8§ (v, w) = inf{t >0: <I>§r(w) (y) € M} eR". (186)
Then, we introduce the random process (u; (yo) , ¢ > 0) started at yg € U, such that

Q3w u (yo) (@) := (1 =1 (y0)) (D;[(w) (o) 1[0,§1(y0,a))) )

+ l{q)ﬁl(yovw)('*l/vt (0)) N (x0)

7(w) o

t
x o (001000 (®0) L{(1-1 04 (30081 (0.0).51 (@) (1)

t—5,(w)
+ ; q)n(0n+(l—1M C0)0) @) L, (@).s0s1 () () €U . (187)
n=z
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Setting (I;, ¢t > 0) such that [; := r — sN,, we have that (u,, ¢ >0), with u; () =

(Cbgo N © p,) (+), is a semi-Markov random evolution [26].

10 Stochastic Stability of the Unperturbed Physical Measure

The process (v;, t > 0) such that v, := (x;, N;, [;) is a homogeneous Markov process as well
as the process (to;, ¢t > 0) such that o, := (x,, [;) . Moreover f;n - f;’ and it follows from
[16, Theorem A2.2] that these o algebras are both right continuous.

By setting z = 0 in formula (3.9) in [2, Corollary 1], (see also [2, Theorem 3]) we have
that for any x € M, v > 0 and any measurable set A C M,

S v2(dx) [1a (x) [ds (1= FE (s:0))]

, P-as.
S v2(@dx) [foods (1= FE(s:x))] a8

(188)

lim P{x; € A, l; > z|ro = x, [p = v} =
—00

where for any x € M, t > 0,

Fit;x)=PloeQ:t(x,o) <t} =x{nel[-11]:1,(x) <t} (189
and (see Remark 9) v, € B (M) is stationary for the Markov chain {z,},cz+ -
Proposition 21 For any bounded measurable function f on U and any yy € U,

L gt Sty () o2 @0 [ dsf (@5 00)
lim — [ dsf ous (yo) = =
t—>o0 t g Spq v2 (dx) [fo ds (1 — FE (s; x))]

, P-a.s.

(190)

Proof Given any bounded measurable function f on U, by (187)

81(30,%)

t
/0 dsf ous (yo) = (1 =1 (yo))/o dsf (3 (y0))
51

+ 1{<I>f,1 00 )A=1AG0)) () oy (x0) /

81(30,)(1=1 4 (30))
5—81(y0,7)
x dsf (d)n o (1=1A1(20)) (FO))

Sn+1 . t
S n
+ Z/ dsf o0+ (1-1p1(50)) (?")) +f5 dsf

Nt

(@0 N aon @) - (191)

70N+ (=101 (30))

By definition the process (i, # > 0) is semi-regenerative with imbedded Markov renewal
process {(tn, tn)},en, that is (u;, ¢ > 0) is regenerative with imbedded renewal process
{sn}n>1.Indeed, Vn > 1 the post-process ((u,+5”, t > 0) s {tn+k}k21) is independent of the
random vector (§1 (Y05 *) s 515 -+ 5,,) ([9, Sect. VILS5]). It is enough to restrict ourselves to the
nondelayed case, that is yo € M, since E [§; (0. )], sup,c g Ae (Ty (¥)) < 00. By (54)
and (55)

n

1 L
Jim 2= tim Zt(?”’ )= lim 3 (R 0. )

k=1
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o0
=PQv;[1x] :/v2 (dx) [/ ds(1—Ff (s;x)):| , P-as. . (192)
0
Moreover, by renewal theory (see e.g. [9, Sect. V])
t o0
1 —_— —_— 2 * . -
Jim. N =" [fo ds (1= FE (s; ))] , P-as., (193)
therefore,
1. ! d CI)S_SN' < 1 [l‘
t—l>rgo o sf ( ogN+H(1=1 0 (0)) (Ft)) = t—1>nc}o I lloo 7
t
_ _on N
_[1_1)1130||f||oo<1 N, t>_0,]P’a.s.,
(194)
and the thesis follows from [9] Theorem VI.3.1. O
Defining
(x)
St iyhe (@n) [y v2(dx) [ ds
e (f) = =] fod (), (195)

Jvadx)[f7ds (1= FE (s:x))]

by the stochastic stability of 1tg,, since for any bounded real-valued measurable function ¢
on M x RT,

1 T (X)
. > (d ds s
SER) %) [fooods(l—Ff(s;.))] /MVZ( X)fo s (x, 5)

70 (%) 1
=/ KRy (dX)f ds @ (x,8) = s, (@), (196)
M 0 KRy [T0]

we get

T0(x)
tim jue () = s, (F o ®)) = /M ) [ ds fodh(),  (197)

Ry [T0]
that is the proof of the following result.

Theorem 22 If v5 weakly converges to iR, then pe weakly converges to the unperturbed
physical measure.

Remark 23 This last result provides another proof of the stochastic stability of the phys-
ical measure already given in Sect. 8.3. Notice that, by (187) and by the definition

(dADZ;to,t >ty > O) given at the beginning of that section, for any, ug € U,w € 2, the
associated trajectory {(u, 1) € U x R* : u = u; (ug) ()} of (w; (ug),t > 0), that is the
process (u;, t > 0) started at uq, coincides with dADZ;O (ug) .

Therefore we are left with the proof of the existence of v5 and of its weak convergence to
IR, 1n the limit of ¢ tending to 0, i.e. of the stochastic stability of the invariant measure for
the unperturbed Poincaré map Ry.

We show that in this framework the existence of the invariant measure b5 for the transition
operator Pz, and its weak converge to (g, can be proven following the same argument which
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led to the existence and the strong stochastic stability of vy, the invariant measure for the
transition operator Pr, given in Sect. 8.4.

Since M is foliated by the invariant stable foliation of the unperturbed flow and that the
leaves of the foliation can be rectified because the regularity of the foliation is higher that
C!, any connected component of M can be represented as

O > (u,v) —> r(u,v) := (y1 (u,v), 2 (u,v), y3 (u, v)) € R3 , (198)

where O is a regular open subset of R? and r € C! (0, R*) N C (O, R?) is such that, setting
[ :={ueR:FveRsst (u,v) €O},VYu € I,r(u,-) N M is an invariant stable leaf.
Making the identification of M with © and of I with I, we also identify ¢ : M — I with
G : © —> I* as well as, for any 5 € spti,, the map Rn : M O defined in (26) with the
skew-product

O3 W, v)— (T, ), T, w,v)e0, 0 cO. (199)

Hence, denoting by O 3 (1, v) —> m (u, v) € R the Radon-Nikodym derivative w.r.t.
22 Oithe uniform probability distribution A on M, if h € LY (M, Ap), leth:=hore
L' (O,mx?).

Proposition 24 If, for any n € spthe, L, satisfies the Lasota—Yorke inequality (163), Ty
preserves only one invariant measure a.c.w.r.t. h and the transition operator Pg satisfies the
assumption A5 given in Sect. 8.4, then g, is strongly stochastically stable.

Proof Let us set M := M (M) . For any u € M, g € My, (M) and any suboalgebra B’ of
B(M),

1) = for (M) s (9) = e (M) i () = gy (M) s (12 (21B], ) )
—p- M i (- (218,.))
— (6 (¢18)) 200
where B;& is the trace oalgebra of B’ on spfuy, namely {A Csptus:AB e B s.it. A=

B N sptiuy} and, since w4 (,&:F <g|BL1)) = 0 because spt i+ (g|B;Li) C sptids,

Eu (e1B)) = v (818, ) + - (218),_) - (201)
Given u € 9 and B’ suboalgebra of B (M), for any g € M, (M),
€0 (218)] = s (18118, ) + i (18118, ) = € (I8]1B) <2lglloe - (202)

Hence, &, (-IB/ ) is a bounded positivity preserving linear operator from Mj (M) to
{g € Mp(M) :gis B’—measurable} .

IfB =B; =g ' (B()), for any u € M, g € My, (M), there exists ¢, , € My (1)
such that £, (g|B;) = ¢u,¢ 0 g i — a.e.. In particular, for any ¢ € M, (M) such that
g=foqgwith f e My(I),pu o= f forany u € M.

Let M be the set of . € 9N such that, for any f € My, (I), u (f o q) = A (h, f), with
hy € L' (I, 1). Clearly, if ™ : 9/ ~ is the set of equivalence classes of the elements of
I w.r.t. the equivalence relation ~ on 9 such that, for any B;-measurable g € M} (M),

P~y = (e =v() , (203)

3917 — I,thentog=gqor.
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M is the subset of 91~ whose elements are a.c. w.r.t. A. Since 1p4 = 1; o ¢, for any u
in M, el = 1l An) = A1, - hence Vi, v € ML Il = vl = [y = o]l 1y
Therefore, if {1, },> is a Cauchy sequence, then {h fn }n>1 is a Cauchy sequencein L' (7, 1)
which implies that M is a Banach space. -

Let B be the Banach space {4 € M : h;, € B} . Then, if Vn € spth,

”(Rn)#'“”]h%l = Loyl < 5 |hullg + D ”hu“Ll(m)
xllpllg, + D llpll (204)

with 3¢ and D as in (163),

lePglls = [ Lehulg < >llills, + D il - (205)

Moreover, for any u € By,

I (EO)#M — uPg| = (Lo~ Le) hy ||L1(1,,\) < 0@ |y “]B =0 () lullg, - (206)

Therefore, all the assumptions A1-A6 in Sect. 8.4 are satisfied and the thesis follows from
Corollary 1 in [10] and Lemma 12. O

10.1 Constant Additive Random Type Forcing

We consider the special case of random perturbations of (CI>6 t > 0) previously analysed
realized by the addition to the unperturbed phase vector field of a constant random term,
namely

¢y :=¢o+nH , nesptie, (207)

with H as in (18).

We will show that in this particular case the stochastic stability of the unperturbed physical
measure will follow directly from that of the Poincaré map defined on a given Poincaré
surface.

In [32] it has been shown that the Casimir function for the (+) Lie—Poisson brackets
associated to the so (3) algebra formula is a Lyapunov function for the ODE system (2).
Namely, assuming additive perturbations of the phase vector field as those given in (18) we
can by rewrite formula (35) of [32] in our notation so that, for any realization of the noise
n € sptig, by [18, Sect. 2.1] we get

|1, )
(min (1, ¢, B))?

where R3 > yir— C () = (y,y) = ||y||2 e R* and Hy, = nH + Hy € R3, with
Hy := (0,0, —B (¢ + y)) . Hence, choosing t = 7, (y) we obtain

(C o q>f7) (y) < C (y)e tminheh) 4 (1 + e*’min(la%ﬁ)) ’ (208)

CoRy(y) <a.C(y)+K:(1+ae), (209)
where
ag 1= e*min(lafaﬁ) infyespirg infye T (1) c (O’ ]) s (2]0)
2
su H
K, = Pnesptie |70l 0| > 0. @211)

(min (1, ¢, B))?
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Moreover, for any ¢ > 0, (209) implies
(1+¢C)oRy(y) =1+ca.C(y)+cKs (1+ac)
=a, (1+¢C(y) +K,, (212)
where K, := (1 — a,) + ¢K, (1 + a.), which entails for Py the weak drift condition
PR (1+¢C) (y) < as (1+¢C () + K . (213)
Lemma 25 Pg admits an invariant probability measure.

Proof Let By be the dual space of C (M) and B, be the dual space of C. (M): the Banach

space of real-valued functions on M such that sup, ¢ 14 IL‘/;(C‘&) < 00.B. € By and (212),

(213) are respectively equivalent to the Doeblin-Fortet conditions, namely, for any € B,
[(Ra)y el < ae llills + Ke o - (214)
InPrllc < aellpwle + Kellnlo (215)
where ||-[lg, |-l denote the norm of By and B..

Let u € B¢ such that [|illg = 1. By (215) Pg : B O and Vn > 1,

_ 1 —a" K
n n £ n €
lwpil, < af g + Ko™ < <aa + 1_%) liall - (216)

Moreover, since M is compact By is tight*. Therefore, setting st :=  and for k > 1 ju; =
[,LPk, the sequence {v, },cz+ such that vy := p, v, = % Zz;é Wi, n > 1, admits a weakly
convergent subsequence whose limit v is Pg invariant since, V¢ € C (M) € Cc (M),

v (PRY) = v () + M 217)
but
W (o)l
[np1 (Y) — e (P)] < (||Mn+1 I+ ||,lL||g)XSEU£l m
K.

< (2+ 1 )nung Wl . 218)

—
O

The stochastic stability of g, then follows from Corollary 15, via Theorem 14 and
Theorem 20.
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4 Anyway, if M were not compact, the tightness of the sequence {un},cny such that u, = uPg, u € B,
would follow by (216) since Ve > 0,3L¢ > 0s. t.VL > L,

1+ K
mn{(l+¢C) > L} < £

< €.

See also Lemma 4 in [19].
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Part IV
Appendix

Here we give examples of the cross-section M and of the maps T, and R,, discussed in the
paper, as well as some comments on the results achieved in our previous paper [18]. We also
present the proof of Proposition 2.

11 The Poincaré Section M

Although what stated in Part I and Part II of the paper are not directly affected by a particular
choice of M, to set up the problem in a way easy to visualize we found useful to refer to the
following examples.

Let us consider (2) with the parameter y, ¢, 8 defining the classical Lorenz flow and let
co := (0,0, — (y + ¢)) be the hyperbolic equilibrium point of (2). If O : R3? () is such that
o'D CD’O (co) O is diagonal, we can distinguish between two cases:

1. in the first case we choose M = M’, where

’

M ={y eR3: [(0'),

1
(0%9),] = 5. (0Y)y =y =1-(r+ ;)} :(219)

2. in the second, we choose M to be the Poincaré section for the Lorenz’63 flow given in
(2) constructed in [18], namely M := M”, where

t 1 _ _ .
Oyzlfz,yae[ y+0.1-(+0]:

)

M = {y eR’: |0

(@0 (. VIYIP) =0, (¢o (), Vigo (. VIyIP) <0}, (220

with ¢ given by (2), which is given by the union of two C* compact manifolds M1, My
intersecting at ¢o only and such that, if

R? 5 (y1, y2, y3) — P (1, 2, ¥3) == (=y1, —y2, ¥3) (221)
PM; = M».

11.1 The Poincaré Map for M”

Since no confusion will arise, here we will drop the subscript O to refer to the unperturbed
one-dimensional maps.

In Sect. 2.2.2 in [18] we showed that the Poincaré surface M” defined in (220) is foliated
by curves given by the intersection of the spheres {y € R : [|y[|* =t} ,t € [v*, y3 (c0)].
for some t* > 0, with the surface

[y eR:{po ()., VIYIZ) =0,{¢0 3. V{go (». VIylI*) <0}, (222

where ¢ is defined in (2). By (221), P defines an equivalence relation between the points
of M” and we can identify M with the set Mp of the corresponding equivalence classes.
Moreover, we can identify the interval [t*, y32 (co)] with the collection of the equivalence
classes of the points of M/, and so of Mp, having the same squared Euclidean distance
from the origin, i.e. those belonging to the same leaf of the just mentioned foliation which
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we denote by €. In [33] it has been shown by numerical simultations that € is invariant
exhibiting an automorphism T : [t*, y% (co)] O . By construction, the Lorenz-type cusp
map of the interval given in [18, Fig. 1], which we denote by T, is the representation of T
as a map of the interval [0, 1]. Furthermore, if ¢; is the critical point of ¢¢ different from
co having minimal Euclidean distance from the component M;,i = 1,2, in Section B of
[33] it has also been shown that the k-th branch of the induced map of T on [ug, 1], with
uo == T~ (1), refers to trajectories of the system started at M, that wind k£ times around
cj,i # j, before returning on M;, while the trajectories of the points of M; winding just
around ¢; before returning on M; correspond to the branch T 110,u0] Of T (see [33, Fi g. 11]).
Therefore, from these last observations, the map T (i.e. 7_",, 1 [—1,1] Oin (225) for n = 0)
can be reconstructed from 7" and consequently also its invariant measure. As a matter of
fact, describing M as in (198), setting O > (u, v) —> P@u,v) = (pm),p)), with
R > wr— p(w) = —w € R, and identifying the unperturbed Poincaré map Ry : M” O
with the skew-product O \/ PO > (u,v) — (To (), Yo (u,v)) € O\/ PO, it follows
that P o Ry = Rg o P, hence, since P is an involution, T = po To op ][0,1] and, setting
Y :=po YyoP, we get the map Ry : Mp O, which can be identified with the continuous
skew-product map O > (u, v) —> (T W), Y (u, v)) € O. The same considerations apply

to perturbations of the phase velocity field that preserves the same symmetry of the system
under P (see [18, Example 8]). In this case rather than (225) we would have had

(=1, 103w — Ty () = 1y ] @) Ty (=) = 1y, 0] @) Ty (—0)
+ 10,u0,] @) Ty @) = 1y, 1] @) Ty ) € [-1,1]  (223)

On the other hand, if the perturbed phase velocity field ¢, is not invariant under P, the
maps of the interval Ty and 75, representing respectively the automorphisms, associated with
the pertubed flow, of the collections of the equivalence classes of the points of M| and M»
belonging to the leaves of €, can be thought as perturbations of T fitting into the perturbing
scheme given in Sect. 8.4, if n is sufficiently small (see [18, Example 9]).

12 The One-Dimensional Map T,

In [7] and [22] it has been proven that, in the case we ch(_)ose M = M’, identifying [
with [—% %] and, with abuse of notation, still denoting by T, : [—% %] \ {0} — [—% %]
the corresponding transitive, piecewise continuous map of the interval, there exists o €
0,1),G, eC ([—%, %]) such that T is locally CcHe on [—%, %] \{0} and
11 -, it 11
~5'5 \{0}9ur—>Tn(u) = |u| G, u)e 55" (224)

Moreover, T,, (Oﬂ = :l:%. Namely, in this case, T,, is the classical Lorenz-type map (see e.g.
Fig. 3.24 in [5] for a sketch).

In the case M := M”, T’y = {co} . Hence, we identify / with [—1, 1] and, again with
abuse of notation, we denote by T, : [—1, 1] O the map

1113 u+— T, (u) := 1[_1‘ ] W) T2 (—u) — 1[_M% o] W) T2 (—u)

_”5.77
+ 1[0#6‘”] () Tyt () — 1[%‘"’1] () Tya (u) € [-1,1] ,
(225)
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Fig.2 Experimental plots of the unperturbed map Ty (in black) and of its perturbations (in grey)

where, fori = 1,2, T~,,, i - 10, 1] O is a transitive, continuous Lorenzl—like cusp map of the
interval of the type studied in [18], with two branches and a point ”6,'7 € [0, 1] such that

i () ) =T ((16,)) =1

In fact, in [33], the paper that inspired our previous work [18], the authors showed that
the invariant measure for T}, can be deduced directly from those of the T; ;’s, whose local
behaviour is therefore the following (compare formulas (52)—(55) in [18] and Fig. 2):

ay it + by i o) s @y e > 1, by > 0 u— 0"
7w 1= Apiugy — )81 + o((ug,y —uw)Briy; Ay; > 0,By; € (0,1) u— (ué)’”)
ni () = B B A
1= A — o)+ 0(u —ug.)™1i): Al > 0.B] ;€ (0. 1) u— (ub.n)

al (L=wy+ b (=)™ 4ol —w) ) al € 0.1).b); >0.¢), >1u—1

n,i

(226)

We remark that to prove the stochastic stability of the invariant measure for the evolution
defined by the unperturbed map Tp we needed supplementary assumptions on Tp; see Sect.
8.4.

In particular, in the case M := M, by construction the stochastic stability of Tp will
follow from that of T.

13 Existence of Invariant Measures for the Lorenz-Type Cusp Map

In our previous paper [18] the one-dimensional Lorenz-cusp type map T (T in the present
paper) had a branch with first derivative less than one on a open set but still bounded from
below by a positive number. We were unable to show that the derivative became globally
larger that one for a suitable power of the map and therefore we proceeded differently to
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prove the statistical stability of the unperturbed invariant measure; namely we induced and
we showed that on a (lot of) induced set(s), the derivative of the first return map was uniformly
larger than one.

Anyway, the existence of an invariant measure for 7' follows combining Theorem 2 in
[34] and the results in Sect. 4.2 of [12] since one can check by direct computation that the
map

Isur—Tw:=WoToW ' el, (227)

where W is the distribution function associated to the probability measure on ([0, 1], B ([0, 1]))
with density

[0. 115 x — W' (x) i= Ny se 7P (1 —x)F (228)

(see formulas (83) and (84) in [18]) for suitably chosen parameters y, B > 0 is such that
inf ’T/‘ > 1.

In particular, by (226), for any n € sptd,, setting By := By V B;] and choosing

2 : 1 - B+1 1
0 < B < infyepra, B Ly > sup,copn, léﬁlog a for any n € spti., we get

infegprs., inf ‘T; > 1. Holder continuity of % follows from (229).
n

14 Statistical Stability for Lorenz-Like Cusp Maps

We take the chance to rectify an incorrect statement we made in [18] about the regularity
properties of the one-dimensional map 7.

Therefore, in this section, we will use the same notation we used in [18].

In that paper we state that the map T was C '+, for some ¢ € (0, 1), on the union of the
two sets (0, xg), (xg, 1), where the map was 1 to 1. This is incorrect. What is true is that 71
is C* for some ¢ € (0, 1), on each open interval (0, xg), (xg, 1). Indeed, by the result in
[4], the stable foliation for the classical Lorenz flow is C 11 for some o € (0.278, 1), which
means, by (54) and (55) in [18], that, forany x € (0, xo), T (x) = |xo — x|' "2 [1 + G| (x)]
with G| € C"‘B/(O, x0) and, for any x € (x9, 1), T’ (x) = |x — xol" "B [1 + G (x)] with
G, € C*B(x¢, 1). In particular this implies that for any couple of points x, y belonging either
to (0, xg) or to (xg, 1)

IT"0) =T'WI < Cn [T 0| |T' )] 1x =yl (229)

wheret € (0, 1 — B*], with B* := B Vv B’, and the constant C}, is independent of the location
of x and y.?

We now detail the modifications that these corrections induce on some of the proofs of
the results given in [18], all the statements of our results remaining unchanged.

Distortion The proof of the boundedness of the distortion was sketched in the footnote

(1) of [18] by using arguments given in [15]. In particular, in the initial formula (5) in [15]

we need now to replace the term ’ %TT ((5)) ‘ |T? (x)—T1? (y) |, where £ is a point between

T9(x)and T4 (y) , with Crl DT (T NDT (T (yNIIT (x)—=T4 (y) |* which

\DT(E)\

5 In [6] Sect. 5.3 is stated that the Holder continuity of on any domain /; of bijectivity of T follows from
the Holder continuity of T/ 1 1; - This cannot be true in general, as one can see looking at the expression of
T’ givenin [22] Proposmon 2.6 for the geometric Lorenz flow. On the other hand, in this and in similar cases
the Holder continuity of W 1; can be directly proved (see also [5, Sect. 7.3.2]).
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is smaller than Cj, (|IDT (T9 (x))| vV |IDT(T? (y))|) |IT? (x) — T? (y) |" by monotonicity
of [IDT| . The key estimate (11) in [15] will reduce in our case to the bound of the quantity
SUPg (hr, 1, ;] |IDT (&) ||bi —bi+1|. By using for DT the expressions given in the formulas
(54) and (55) of [18], and for the b; the scaling given in formula (75) of the same paper,
we immediately get that the above quantity is of order ﬁ, which is enough to pursue
the argument about the estimate of the distortion presented in [15].

Perturbation In order to prove the statistical stability of the invariant measure pur for
the evolution given by the map T, the perturbed map T, must satisfy at least the same
regularity properties required for 7. Therefore, in [18, Sect. 3.2]:

— Assumption A should be replaced by the assumption that there exists ¢ € (0, 1) such
that T 1(0,x.0): T I(x..1) are C'T rather than assuming the stronger requirement
that T, is C'* on (0, x¢.0) U (xe.0, 1);

— Assumption C should be replaced by the requirement that the multiplicative Holder
constant C, of D (7,") will converge to C;, when € — 0.

We have then to modify the bounds (92), (99) and (114) in [18] which are all of the
form |DTc(a) — DT¢(ac)|, with a e-close to a.. We have |DTc(a) — DTc(ac)| <
CZ |IDTc(a)||DTe(ae)|la — ae|. By the continuity and the monotonicity of DT, we can
replace ac in | DT, (ac)| with a or with another given point between @ and xo; finally we
use the limit (88) in Assumption B to conclude.

15 Proof of Proposition 2

Proof The invariance of ju under R follows by (68), since
pi (¥ oR) == lim f pr(du,do) inf Y oR™ (xw)=pg@) . (230)
n—oo xeq—l(u)
Hence, since
. . =71, . o7
ngmw/uT (du, dw)xe;—lfl(u) YoR (x,w) < nlgnoo/uf[ (du, dw) ((1[171(“) o p) 1//) oR" (x,w)

< lim /;LT(du,da)) sup YoR'(x,w), (231)
n—o00 xeq_l(u)

it is enough to prove that

lim f,uT(du,dw) inf WOﬁn (x, w) = lim /,uT(du,da)) sup 1/foin (x, w) .
n—00 xeq—l(u) n—o00

xeq~(u)
) (232)
By (48), (32) and the definition of Ry (), Yo € €,
R(07'w.w) c QT o) . (233)
Therefore,
sup ¥ o R x, w) = sup Yo R (x. a/)
xeq~'(u) (x,0)eQ " (u,w)

< sup ¥ oR" (x, )

(x,0)eQ (T (u,w))
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- sup Y oR" (x,0)) (234)
(,\',co/)e{(y,w”)eMxQ : Q(y,a)”):Tk(u,w)}
and
inf Yo §n+k (x, w) = inf Yo §”+k (x, w/)
xeq~!(u) (x,0)eQ~ 1 (u,w)

> v oR" (x,w/)

> inf
(x,w’)eQ*l(Tl‘(u,a)))

= inf yoR" (x,0) . (235)
(x,0)e{(y,0NEMXQ : Q(y,0")=Tk(u,w)}

Hence, by the invariance of pt under T,

/;LT(du,da)) sup woﬁ"+k (x, )

xeq~(u)
< /,uT (du, dw) sup Y oR" (x,0)
(x,0)e{(y,0)eMxQ : Q(y.0")=Tku,w)}
= / (Tﬁ,uT) (du, dw) sup ¥ oR" (x, )
(x,0")e{(y,@")eMxQ : Q(y,0")=(u,w)}

= /MT (du, dw) sup v oR" (x. o)

(x,0)eQ ! (u,0)
= / wr (du,dw) sup ¥ oR" (x, ) (236)
xeq~!(u)
so that the sequence {f pr (du, dw) Sup,ey—1(,) ¥ 0 R" (x. a))} | is decreasing. On the
n>
other hand,

/MT (du,dw) inf 1//oﬁn+]‘f (x, w)

xeq~lu)

> /MT (du, dw) inf ¥ oR" (x, a)/)
(X,w’)e{(y,w”)eMxQ : Q(y,w”):Tk(u,w)}

= [ (TQMT) (du, dw) inf ¥ oR" (x, )
(x,0)ef(y,@)eMXQ : Q(y,0")=(u,»)}

= [ wr (du, do) inf ¥ oR" (x, o) (237)
(x,0)eQ 1 (u,w)
s that { J et (du, do) inf g1 ¥ o R (, a))} isincreasing. Since Ve € 2. ¥ (@) €
n=
Cp(M)andVu € I,q7' (u) € Mis compact, by (233), V¢’ > 0,35, > 0, ny > 0 such
that Vo > ngy,w € Q,u € I,diam p (in (Q_1 (u,w))) < 8 and V(x,a)’) , (y, w/) c

R (07! (n, ),
|¥ (x,0) — ¥ (v, 0')| < &, therefore

xeq—1w) xeq~(u

’/MT (du,dw) sup woin (X,CO)—/MT (du,dw) inf woﬁn (x, w)
)
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sup Y oR" (x,0) — inf yoR" (x,0)| <¢,

(r,0)e0~! (u,0) (x,0)eQu,w)

< / ot (du, do)

(238)

that is (232) holds.
Thus, the map

LIlp Q,CrM) 2y — o) = zlirr;o/MT (du, dw) ((qul(u) op) \b)oﬁn (x,w) eR

(239)
is a non negative linear functional such that /i (1) = 1 and, by (232),
@) = lim / ur (du,do) inf Y oR" (x,w) . (240)
n—00 xeq~(u)

Moreover, €2 is compact under the product topology, then the space of quasi-local continuous
functions Co (2, Cp (M))0 is dense in LIIED (2, Cp (M)), therefore, by the Riesz-Markov-
Kakutani theorem there exists a unique Radon measure g on (M x @, B(M) ® F) such
that ug = it ek @.cpm) -

The injectivity of the correspondence ur +— ug follows from the fact that,
Vo e Lp(Q.Cp (1), 90 Q € Li(2,Cp(M)) and

//LT(du,da)) inf onoﬁ”(x,a)):/pLT(du,da)) inf @oT"oQ(x,w)

xeq—(u) xeq— ()
= / wr (du, dw) in{( @0 T" (¢ (x), ) = pur (9o T") = ut (9) . (241)
xeq— ' (u

Therefore, if there exist j7 invariant under T such that

ug (Y) = nlglcl)o/ufr (du,dw) inf WOEn x,w) , (242)

xeq~(u)

then wry (¢) = pur (¢) , hence uyp = wr.
The proof of the ergodicity of ;i under the hypothesis of the ergodicity of .t is identical
to that of Corollary 7.25 in Sect. 7.3.4 of [5]. ]
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