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Abstract
We introduce a novel type of random perturbation for the classical Lorenz flow in order to
better model phenomena slowly varying in time such as anthropogenic forcing in clima-
tology and prove stochastic stability for the unperturbed flow. The perturbation acts on the
system in an impulsive way, hence is not of diffusive type as those already discussed in
Keller (Attractors and bifurcations of the stochastic Lorenz system Report 389, Institut für
Dynamische Systeme, Universität Bremen, 1996), Kifer (Random Perturbations of Dynam-
ical Systems. Birkhäuser, Basel, 1988), and Metzger (Commun. Math. Phys. 212, 277–296,
2000). Namely, given a cross-sectionM for the unperturbed flow, each time the trajectory of
the system crossesM the phase velocity field is changed with a new one sampled at random
from a suitable neighborhood of the unperturbed one. The resulting random evolution is
therefore described by a piecewise deterministic Markov process. The proof of the stochastic
stability for the umperturbed flow is then carried on working either in the framework of the
Random Dynamical Systems or in that of semi-Markov processes.
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Part I

Introduction, Notations and Results

1 The Classical Lorenz Flow

The physical behaviour of turbulent systems such the atmosphere are usually modeled by
flows exhibiting a sensitive dependence on the initial conditions. The behaviour of the tra-
jectories of the system in the phase space for large times is usually numerically very hard to
compute and consequently the same computational difficulty affects also the computation of
the phase averages of physically relevant observables. A way to overcome this problem is to
select a few of these relevant observables under the hypothesis that the statistical properties
of the smaller system defined by the evolution of such quantities can capture the important
features of the statistical behaviour of the original system [30].

As a matter of fact this turns out to be the case when considering classical Lorenz model,
a.k.a. Lorenz’63 model in the physics literature, i.e. the system of equation

⎧
⎨

⎩

ẋ1 = −ζ x1 + ζ x2
ẋ2 = −x1x3 + γ x1 − x2
ẋ3 = x1x2 − βx3

, (1)

which was introduced by Lorenz in his celebrated paper [27] as a simplified yet non trivial
model for thermal convection of the atmosphere and since then it has been pointed out
as the typical real example of a non-hyperbolic three-dimensional flow whose trajectories
show a sensitive dependence on initial conditions. In fact, the classical Lorenz flow, for
ζ = 10, γ = 28, β = 8/3, has been proved in [38], andmore recently in [4], to show the same
dynamical features of its ideal counterpart the so called geometric Lorenz flow, introduced
in [1] and in [20], which represents the prototype of a three-dimensional flow exhibiting a
partially hyperbolic attractor [5]. The Lorenz’63 model, indeed, has the interesting feature
that it can be rewritten as

⎧
⎨

⎩

ẏ1 = −ζ y1 + ζ y2
ẏ2 = −y1y3 − γ y1 − y2
ẏ3 = y1y2 − β y3 − β (γ + ζ )

, (2)

showing the corresponding flow to be generated by the sumof aHamiltonian SO (3)-invariant
field and a gradient field (we refer the reader to [18] and references therein). Therefore, as it
has been proved in [18], the invariant measure of the classical Lorenz flow can be constructed
starting from the invariant measure of the one-dimensional system describing the evolution
of the extrema of the first integrals of the associated Hamiltonian flow.

1.1 Stability of the Invariant Measure of the Lorenz’63 Flow

Since C1 perturbations of the classical Lorenz vector field admit a C1+ε stable foliation [4]
and since the geometric Lorenz attractor is robust in the C1 topology [5], it is natural to
discuss the statistical and the stochastic stability of the classical Lorenz flow under this kind
of perturbations.

Indeed, in applications to climate dynamics, when considering the Lorenz’63 flow as a
model for the atmospheric circulation, the analysis of the stability of the statistical properties
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Stochastic Stability of the Classical Lorenz Flow… 165

of the unperturbed flow under perturbations of the velocity phase field of this kind can turn
out to be a useful tool in the study of the so called anthropogenic climate change [14].

1.1.1 Statistical Stability

Forwhat concerns the statistical stability, in [18] it has been shown that the effect of an additive
constant perturbation term to the classical Lorenz vector field results into a particular kind
of perturbation of the map of the interval describing the evolution of the maxima of the
Casimir function for the (+) Lie–Poisson brackets associated to the so (3) algebra. Moreover,
it has been proved that the invariant measures for the perturbed and for the unperturbed
1-d maps of this kind have Lipschitz continuous density and that the unperturbed invariant
measure is strongly statistically stable. Since the SRB measure of the classical Lorenz flow
can be constructed starting from the invariant measure of the one-dimensional map obtained
through reduction to the quotient leaf space of the Poincaré map on a two-dimensional
manifold transverse to the flow [5], the statistical stability for the invariant measure of this
map implies that of the SRB measure of the unperturbed flow. Other results in this direction
are given in [3,11] and [17] where strong statistical stability of the geometric Lorenz flow is
analysed.

1.1.2 Random Perturbations

Random perturbations of the classical Lorenz flow have been studied in the framework of
stochastic differential equations [13,23,36] (see also [8] and reference therein). The main
interest of these studies was bifurcation theory and the existence and the characterization of
the random attractor. The existence of the stationary measure for this stochastic version of
the system of equations given in (2) is proved in [23].

Stochastic stability under diffusive type perturbations has been studied in [25] for the
geometric Lorenz flow and in [28] for the contracting Lorenz flow.

2 Physical Motivation

The analysis of the stability of the statistical properties of the classical Lorenz flow can
provide a theoretical framework for the study of climate changes, in particular those induced
by the anthropogenic influence on climate dynamics.

A possible way to study this problem is to add a weak perturbing term to the phase vector
field generating the atmospheric flow which model the atmospheric circulation: the so called
anthropogenic forcing. Assuming that the atmospheric circulation is described by a model
exhibiting a robust singular hyperbolic attractor, as it is the case for the classical Lorenz
flow, it has been shown empirically that the effect of the perturbation can possibly affect just
the statistical properties of the system [14,31]. Therefore, because of its very weak nature
(small intensity and slow variability in time), a practical way to measure the impact of the
anthropogenic forcing on climate statistics is to look at the extreme value statistics of those
particular observables whose evolution may be more sensitive to it [37]. In the particular
case these observables are given by bounded (real valued) functions on the phase space, an
effective way to look at their extreme value statistics is to look first at the statistics of their
extrema and then eventually to the extreme value statistics of these.

We stress that the result presented in [18] fit indeed in this framework since, starting from
the assumption made in [31] and [14] that, taking the classical Lorenz flow as a model for the
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166 M. Gianfelice, S. Vaienti

atmospheric circulation, the effect of the anthropogenic influence on climate dynamics can
be modeled by the addition of a small constant term to the unperturbed phase vector field, it
has been shown that the statistics of the extrema of the first integrals of the Hamiltonian flow
underlying the classical Lorenz one, which are global observables for this system, are very
sensitive to this kind of perturbation (see e.g. Example 8 in [18]).

Of course, a more realistic model for the anthropogenic forcing should take into account
random perturbations of the phase vector field rather than deterministic ones. Anyway it
seems unlikely that the resulting process can be a diffusion, since in this case the driving
process fluctuates faster than what it is assumed to do in principle a perturbing term of the
type just described.

2.1 Modeling Random Perturbations of Impulsive Type

We introduce a random perturbation of the Lorenz’63 flow which, being of impulsive nature,
differ from diffusion-type perturbations.

For any realization of the noise η ∈ [−ε, ε] ,we consider a flow
(
�t
η, t ≥ 0

)
generated by

the phase vector fieldφη belonging to a sufficiently small neighborhoodof the classical Lorenz
one in theC1 topology. For ε small enough, the realizations of the perturbed phase vector field
φη can be chosen such that there exists an open neighborhood U of the unperturbed attractor
in R

3, independent of the noise parameter η, containing the attractor of any realization of
φη and, moreover, such that a given Poincaré section M for the unperturbed flow is also
transversal to any realization of the perturbed one. Thus, given M, the random process
describing the perturbation is constructed selecting at random, in an independent way, the
value of φη at the crossing of M by the phase trajectory.

This procedure defines a semi-Markov random evolution [26], in fact a piecewise deter-
ministic Markov process (PDMP) [16].

Therefore, the major object of this paper will be to show the existence of a stationary
measure for the imbedded Markov chain driving the random process just described as well
as to prove that the stationary process weakly converges, as ε tends to 0, to the physical
measure of the unperturbed one.

More specifically, let τ̂η : U →M and τη :M � be respectively the hitting time of M
and the return time map on M for

(
�t
η, t ≥ 0

)
. If η is sampled according to a given law

λε supported on [−ε, ε] , the sequence {xi }i≥0 such that x0 ∈ M and, for i ≥ 0, xi+1 :=
�
τη(xi )
η (xi ) is a homogeneous Markov chain on M with transition probability measure

P {x1 ∈ dz|x0} = λε
{
η ∈ [−1, 1] : Rη (x0) ∈ dz

}
. (3)

Considering the collection of sequences of i.i.d.r.v’s {ηi }i≥0 distributed according to λε, we
define the random sequence {σn}n≥1 ∈ R such that σn :=∑n−1

i=0 τηi−1 (xi−1) , n ≥ 1. Then,
it is easily checked that the sequence {(xn, tn)}n≥0 such that t0 := σ1 and, for n ≥ 0, tn :=
σn+1 − σn is a Markov renewal process (MRP) [9,26]. Therefore, denoting by (Nt , t ≥ 0) ,
such thatN0 := 0 andNt :=∑

n≥0 1[0,t] (σn) , the associated counting process and defining:

• (xt , t ≥ 0) , such that xt := xNt , the associated semi-Markov process;
• (lt , t ≥ 0) , such that lt := t − σNt , the age (residual life) of the MRP;
• (ηt , t ≥ 0) such that ηt := ηNt ,

123

Author's personal copy



Stochastic Stability of the Classical Lorenz Flow… 167

setting σ0 := τ̂η, we introduce the random process (ut , t ≥ 0) , such that

ut (y0) :=
⎧
⎨

⎩

�t
η (y0) 1[0,σ0(y0)) (t)+ 1{

�
σ0(y0)
η (y0)

} (x0)�
lt−σ0(y0)
ηNt−σ0(y0)

◦ xt−σ0(y0) y0 ∈ U\M
1{y0} (x0)�

lt
ηNt
◦ xt y0 ∈M

; y0 ∈ U , t ≥ 0 , (4)

describes the system evolution started at y0.We prove

Theorem 1 There exists a measure με on the measurable space (U ,B (U )) , with B (U )

the trace σalgebra of the Borel σalgebra of R
3, such that, for any bounded real-valued

measurable function f on U ,

lim
t→∞

1

T

∫ T

0
f ◦ ut = με ( f ) (5)

and
lim
ε↓0 με ( f ) = μ0 ( f ) (6)

where μ0 is the physical measure of the classical Lorenz flow.

A more precise definition of the quantities involved in the construction of (ut , t ≥ 0) is
given in the second part of the paper where we also present a different characterization of
this random process, which follows from the representation of the Markov chain {xn}n≥0 as
Random Dynamical System (RDS), and study its asymptotic stationary properties. In the
third part of the paper we present the construction of (ut , t ≥ 0) just given in a more rigorous
way and rephrase the analysis carried on in the second part of the paper in the framework of
PDMP’s.

One may argue that the perturbation should act modifying the phase velocity field of the
system at any point ofU and not just at the crossing of a given cross-section. In fact, let {tn}n≥0
be the sequence of i.i.d.r.v’s representing the jump times of this process, which we choose
independent of the noise parameter η. {Sn}n≥1 , such thatSn :=∑n−1

k=0 tn, is the associated
renewal process and (nt , t ≥ 0) , such thatnt :=∑

n≥0 1[0,t] (Sn) , is the associated counting

process. The sequence {zn}n≥0 , such that z0 ∈ U and for n ≥ 0, zn+1 := �
t(zn)
η (zn) is a

homogeneous Markov chain and now the system evolution is given by the random process
(ut , t ≥ 0) such that, when started at y0 ∈ U ,ut (y0) has the form (4) with {(xn, tn)}n≥0
replaced by {(zn, tn)}n≥0 . Let now σ0 be the hitting time of M for {zn}n≥0 . Under the
reasonable assumptions on the renewal process that, for any t > 0, z0 ∈ U ,E [nt |z0] < ∞
and for any z0 /∈ M, limn↑∞ P {σ0 > Sn |z0} = 0, this case can be reduced to the one
treated in this article. Indeed, if σM is the hitting time for (ut , t ≥ 0) of the cross-section
M, since by definition u0 = z0 for any u0 ∈ U ,P {σM > Sn |u0} ≤ P {σ0 > Sn |z0} .
Hence, P {σM = ∞|u0} = limn→∞ P {σM > Sn |u0} = 0. Therefore we can analyze the
trajectories of the system by looking at the sequence of return times to M, that is we can
reduce ourselves to study a random evolution of the kind given in (4).

3 Structure of the Paper and Results

The paper is divided into four parts.
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168 M. Gianfelice, S. Vaienti

The first part, together with the introduction, contains the notations used throughout the
paper as well as the definition of the unperturbed dynamical system and of its perturbation
for given realizations of the noise.

In the second part we set up the problem of the stochastic stability of the classical Lorenz
flow under the stochastic perturbation scheme just described in the framework of RDS. In
order to simplify the exposition, which contains many technical details and requires the
introduction of several quantities, we will list here the main steps we will go through to get
to the proof deferring the reader to the next sections for a detailed and precise description.

We consider a Poincaré sectionM for the unperturbed flow
(
�t

0, t ≥ 0
)
associated to the

smooth vector field φ0. This cross-section is transverse to the flows generated by smooth
perturbation φη of the original vector field if η is chosen at random in [−ε, ε] according to
some probability measure λε for sufficiently small ε.

Step 1 For any η ∈ [−ε, ε] , the perturbed phase field φη is such that the associated flows(
�t
η, t ≥ 0

)
admit a C1 stable foliation in a neighborhood of the corresponding

attractor. In order to study the RDS defined by the composition of the maps Rη :=
�
τη
η : M �, with τη : M � the return time map on M for

(
�t
η, t ≥ 0

)
, we show

that we can restrict ourselves to study a RDS given by the composition of maps
R̄η : M �, conjugated to the maps Rη via a diffeomorphism κη : M �, leaving
invariant the unperturbed stable foliation for any realization of the noise. Namely, we
can reduce the cross-section to a unit square foliated by vertical stable leaves, as for
the geometric Lorenz flow. By collapsing these leaves on their base points via the
diffeomorphism q, we conjugate the first return map R̄η on M to a piecewise map
T̄η of the interval I . This one-dimensional quotient map is expanding with the first
derivative blowing up to infinity at some point.

Step 2 We introduce the random perturbations of the unperturbed quotient map T0. Suppose
ω = (η0, η1, . . . , ηk, . . .) is a sequence of values in [−ε, ε] each chosen indepen-
dently of the others according to the probability λε.We construct the concatenation
T̄ηk ◦· · ·◦ T̄η0 and prove that there exists a stationary measure νε1 , i.e. such that for any
boundedmeasurable function g and k ≥ 0,

∫
g(T̄ηk ◦· · ·◦ T̄η0)(x)ν

ε
1 (dx) λ⊗k

ε (dη) =∫
gdνε1 .Clearly,μ

ε
T := νε1⊗Pε,with Pε the probability measure on the i.i.d. random

sequences ω, is an invariant measure for the associated RDS (see (46)).
Step 3 We lift the random process just defined to a Markov process on the Poincaré surface

M given by the sequences R̄ηk ◦ · · · ◦ R̄η0 and show that the stationary measure νε2
for this process can be constructed from νε1 .We setμε

R
:= ν̄ε2⊗Pε the corresponding

invariant measure for the RDS (see (47)).
We remark that, by construction, the conjugation property linking Rη with R̄η lifts to
the associated RDS’s. This allows us to recover from με

R
the invariant measure μεR

for the RDS generated by composing the Rη’s.
Step 4 Let R :M×� � be the map defining the RDS corresponding to the compositions

of the realizations of Rη (see (52)). We identify the set

(M×�)t := {(x, ω, s) ∈M×�× R
+ : s ∈ [0, t(x, ω))} , (7)

where � := [−ε, ε]N , t(x, ω) := τπ(ω)(x) is the random roof function and π(ω) :=
η0 is the first coordinate ofω,with the setV of equivalence classes of points (x, ω, t)
inM×�×R

+ such that t = s+∑n−1
k=0 t

(
Rk (x, ω)

)
for some s ∈ [0, t(x, ω)), n ≥

1. Then, if π̂ : M × � × R
+ −→ V is the canonical projection and, for any

t > 0, Nt := max
{

n ∈ Z
+ :∑n−1

k=0 t ◦ Rk ≤ t
}
, we define the random suspension
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semi-flow

(M×�)t � (x, ω, s) �−→ St (x, ω, s) := π̂(RNs+t (x, ω) , s + t) ∈ (M×�)t . (8)

In particular, for instance, if s2(x, ω) = τη0(x)+ τη1(Rη1(x)) ≤ s + t, we have

St (x, ω, s) = ((Rη1 ◦ Rη0(x)), θ
2ω, s + t − s2(x, ω)) , (9)

where θ : � � ω = (η0, η1, . . . , ηk, . . .) �−→ θω := (η1, η2, . . . , ηk+1, . . .) ∈ � is
the left shift.

Step 5 We build up a conjugation between the random suspension semi-flow and a semi-
flow on U × �, which we will call

(
Xt , t ≥ 0

)
, such that its projection on U is a

representation of (4). The rough idea is that each time the orbit crosses the Poincaré
section M, the vector fields will change randomly. Therefore, we start by fixing
the initial condition (y, ω) with y ∈ U yet not necessarily on M. We now begin
to define the random flow

(
Xt , t ≥ 0

)
. Let π : � �→ [−ε, ε] be the projection of

ω = (η0, η1, . . . , ηk, . . .) onto the first coordinate and call tη0 (y) = tπ(ω) (y) the

time the orbit �t
η0
(y) = �t

π(ω)(y) takes to meet M and set y1 := �
tη0 (y)
η0 (y) =

�
tπ(ω)(y)
π(ω) (y).Then, since ∀ω ∈ �, n ≥ 0, π (θnω) = ηn,

Xt (y, ω) :=
(
�t
π(ω)(y), ω

)
, 0 ≤ t ≤ tη0 (y) ;

Xt (y, ω) =
(
�

t−tπ(ω)(y)
π(θω) (y1), θω

)
, tη0 (y) < t ≤ tη0 (y)+ τη1(y1) ;

Xt (y, ω) =
(
�

t−tπ(ω)(y)−τπ(θω)(y1)
π(θ2ω)

(Rπ(θω)(y1)), θ
2ω
)
, tη0 (y)

+ τη1(y1) < t ≤ tη0 (y)+ τη1(y1)+ τη2(Rη1(y1)) , (10)

where Rπ(θω)(y1) = Rη1(y1), and so on.
Step 6 We are now ready to define the conjugation V : M × � × R

+ → R
3 × � in the

following way:

V(x, ω, s) =
(
�s
π(ω)(x), ω

)
, x ∈M; ω = (η0, η1, . . . , ηk, . . .) ∈ �; 0 ≤ s < τη0(x)

V(x, ω, s) =
(
�

s−τπ(ω)(x)
π(θω) (Rπ(ω)(x)), θω

)
; τη0(x) ≤ s < τη0(x)+ τη1(Rη0(x)) ,

(11)

where Rπ(ω)(x) = Rη0(x), and so on. By collecting the expressions given above it
is not difficult to check that

(
Xt , t ≥ 0

)
must satisfy the equation

V ◦ St = Xt ◦ V . (12)

For instance, if s + t < τη0(x), we have Xt ◦ V(x, ω, s) =
(

Xt (�s
η0
(x)), ω

)
=

(
�t
η0
(�s

η0
(x)), ω

)
=

(
�s+t
η0

(x), ω
)
, while V ◦ St (x, ω, s) = V(x, ω, s + t) =

(
�s+t
η0

(x), ω
)
.

Step 7 We lift the measure μεR on the random suspension in order to get an invariant
measure for

(
St , t ≥ 0

)
. Under the assumption that the random roof function t is

μεR-summable, the invariant measure μεS for the random suspension semi-flow acts
on bounded real functions f as

∫

dμεS f =
(∫

dμεRt
)−1 ∫

dμεR

(∫ t

0
f ◦ St dt

)

. (13)
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170 M. Gianfelice, S. Vaienti

The invariant measure for the random flow
(
Xt , t ≥ 0

)
will then be push forward μεS

under the conjugacy V, i.e.
μεV = μεS ◦ V−1 . (14)

Step 8 We show that the correspondence μεT −→ μεR −→ μεV is injective and so that the
stochastic stability of T0 (which in fact we prove to hold in the L1 (I , dx) topology)
implies that of the physical measure μ0 of the unperturbed flow. More precisely, we
lift the evolutions defined by the unperturbed maps T0 and R0, as well as that repre-
sented by the unperturbed suspension semi-flow

(
St
0, t ≥ 0

)
, to evolutions defined

respectively on I ×�,M×� and on (M×�)τ0 := {(x, ω, s) ∈M×�× R
+ :

s ∈ [0, τ0(x))}. By construction, the invariant measures for these evolutions are
μT0 ⊗ δ0̄, μR0 ⊗ δ0̄, μS0 ⊗ δ0̄, where 0̄ denotes the sequence in � whose entries are
all equal to 0, δ0̄ is the Dirac mass at 0̄ and μT0 , μR0 , μS0 are respectively the invari-
ant measures for T0, R0 and S0. Then, we prove the weak convergence, as ε ↓ 0, of
μεT to μT0 ⊗ δ0̄ and consequently the weak convergence of μ

ε
R to μT0 ⊗ δ0̄. This will

imply the weak convergence of μεS to μS0 ⊗ δ0̄ and therefore the weak convergence
of μεV to μ0 ⊗ δ0̄ proving Theorem 1.

In the third part we will take a more probabilistic point of view and formulate the question
about the stochastic stability for the unperturbed flow in the framework of PDMP. More
precisely, we will show that we can recover the physical measure of the unperturbed flow as
weak limit, as the intensity of the perturbation vanishes, of the measure on the phase space
of the system obtained by looking at the law of large numbers for cumulative processes
defined as the integral over [0, t] of functionals on the path space of the stationary process
representing the perturbed system’s dynamics. Therefore, we will be reduced to prove that
the imbedded Markov chain driving the random process that describes the evolution of the
system is stationary, that its stationary (invariant) measure is unique and that it will converge
weakly to the invariant measure of the unperturbed Poincaré map corresponding to M. To
prove existence and uniqueness of the stationary initial distribution of a Markov chain with
uncountable state space is not an easy task in general (we refer the reader to [29] for an account
on this subject). To overcome this difficulty we will make use of the skew-product structure
of the first return maps Rη as it will be outlined more precisely in the next section. However,
if the perturbation of the phase velocity field is given by the addition to the unperturbed one
of a small constant term, namely φη := φ0+ηH , H ∈ S

2, the proof of the stochastic stability
of invariant measure for the unperturbed Poincaré map will follow a more direct strategy; we
refer the reader to Sect. 10.1.

The fourth part of the paper contains an Appendix where we give examples of the Poincaré
sectionM and therefore of the maps Rη and Tη, as well as we take the chance to comment on
some results achieved in our previous paper [18] about the statistical stability of the classical
Lorenz flow which will be recalled along the present work.

4 Notations

IfX is a Borel space we denote by B (X) its Borel σalgebra and by Mb (X) the Banach space
of bounded B (X)-measurable functions on X equipped with the uniform norm. Moreover,
we denote by M (X) the Banach space of finite Radon measures on (X,B (X)) such that,
for any μ ∈ M (X) , ‖μ‖ := supg∈C(X):‖g‖∞=1 |μ (g)| = |μ| (X) , where |μ| := μ+ + μ−
with μ± the elements of the canonical decomposition of μ. Furthermore,P (X) denotes the
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set of probability measures on (X,B (X)) and, if μ ∈ P (X) , sptμ ⊆ X denotes its support.
Finally, ifμ ∈M (X) is positive, we denote by μ̂ := μ

μ(X) its associated probability measure.

We denote by 〈·, ·〉 the Euclidean scalar product in R
d , by ‖·‖ the associated norm and by

λd the Lebesgue measure on R
d .We set λ1 := λ.

Let ε > 0 and λε a probability measure on the measurable space ([−1, 1] ,B ([−1, 1]))
such that in the limit of ε tending to zero, λε weakly converges to the atomic mass at 0.

4.1 Metric Dynamical System Associated with the Noise

Consider the measurable space (�,F) where � := [−1, 1]Z+ ,F is the σalgebra generated
by the cylinder sets Cn (A) := {ω ∈ � : (η1, ..., ηn) ∈ A} , with A ∈ B ([−1, 1]n) , n ≥ 1.
In fact, we can consider � endowed with the metric � × � � (ω1, ω2) �−→ ρ (ω1, ω2) :=
∑

n≥1 1
2n

(∣
∣
∣η
(1)
n − η

(2)
n

∣
∣
∣
/
1+

∣
∣
∣η
(1)
n − η

(2)
n

∣
∣
∣

)
∈ [0, 1] so that, denoting again by�,with abuse

of notation, the metric space (�, ρ) ,F coincides with B (�) . If � is a probability measure
on ([−1, 1] ,B ([−1, 1])) , we denote by P� the probability measure on (�,F) such that

P� (Cn (A)) := ∫

A

n−1∏
i=0

� (dηi ) and set Pε := Pλε . In the following, to ease the notation, we

will omit to note the subscript denoting the dependence of the probability distribution on
(�,F) from that on ([−1, 1] ,B ([−1, 1])) unless differently specified.

Let θ be the left shift operator on�.We denote by (�,F, θ,P) the corresponding metric
dynamical system. Moreover, we set

� � ω �−→ π (ω) := η1 ∈ sptλε . (15)

4.2 RandomDynamical System

If� is a Polish space, letM (�) the set of themeasurablemapsϑ : � � .Wedenote byϑ# the
pull-back of ϑ (or Koopman operator), namely ϑ#ϕ := ϕ ◦ϑ for any real valued measurable
function ϕ on �, and by ϑ# the push-forward of ϑ i.e. the corresponding transfer operator
acting on L1 (�) being the adjoint of ϑ# considered as an operator acting on L∞ (�) .

Given
{
ϑη
}

η∈sptλε
⊂ M (�) , the skew product

�×� � (x, ω) �−→ �(x, ω) := (
ϑπ(ω), θω

) ∈ �×� (16)

defines a random dynamical system (RDS) on (�,B (�)) over the metric dynamical system
(�,F, θ,P) (see [8, Sect. 1.1.1]). We set:

• PP (�×�) to be the set of probability measures μ on (�×�,B (�)⊗ F) with
marginal P on (�,F) and denote by μ (·|ω) := dμ(·,ω)

dP(ω)
;

• IP (�) := {μ ∈ PP (�×�) : �#μ = μ} ;
(see [8, Definition 1.4.1]). We also define

�×� � (x, ω) �−→ p (x, ω) := x ∈ � . (17)

4.3 Path Space Representation of a Stochastic Process

Let us denote byD
(
R
+, �

)
the Skorohod space of�-valued functions onR

+ and byB (�) its
Borel σalgebra. Then, ∀t ∈ R

+, the evaluation map D
(
R
+, �

) � Y �−→ ξt (Y) := Yt ∈ �
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is a random element on
(
D
(
R
+, �

)
,B (�)

)
with values in�.Wealso denote byDy

(
R
+, �

)

the Skorohod space of �-valued functions on R
+ started at y ∈ �.

Let
{
F
ξ
t

}

t≥0 , such that, ∀t ≥ 0,Fξt :=
∨

s≤t
ξ−1t (B (�)) , be the natural filtration asso-

ciated to the stochastic process (ξt , t ≥ 0) . Then, since � is Polish it is separable and so
limt→∞ F

ξ
t =

∨

t≥0
F
ξ
t = B (�) .

Given y ∈ �, if (yt , t ≥ 0) is a �-valued random process on (�,F,P) such that,
∀B ∈ B (�) ,P {ω ∈ � : y0 (ω) ∈ B} = 1B (y) , let Yy be the D

(
R
+, �

)
-valued ran-

dom element on (�,F) such that, ∀ω ∈ �, t ≥ 0, ξt
(Yy (ω)

) = yt (ω) . We then set
Q

y
y := P◦Y−1y . If � � y �−→ Q

y
y ∈ P

(
D
(
R
+, �

))
is B (�)-measurable, it is a probability

kernel from (�,B (�)) to (D (
R
+, �

)
,B (�)

)
such that P (�) � μ �−→ Q

y
μ := μ

(
Q

y·
) ∈

P
(
D
(
R
+, �

))
. Hence, denoting by F

y
t (μ) , for any t ≥ 0, the completion of Fξt with all

the Q
y
μ-null sets ofB (�) , we set Fy

t :=
⋂

μ∈P(�)

F
y
t (μ) .

If Q
y· is a probability kernel, ∀A ∈ F, the conditional probability P (A|y0) admits a

regular version which we denote by P
y (A|·) .Hence we set ∀t ≥ 0,Fy

t :=
∨

s≤t
y−1t (B (�)) ,

denote by Fy
t (μ) the completion of Fy

t with all the
∫

�
μ (dy)P

y (·|y)-null sets of F and set
Fy

t :=
⋂

μ∈P(�)

Fy
t (μ) .

5 The Perturbed Phase Vector Fields and the Associated Suspension
Semiflows

Given ε > 0 sufficiently small, for any realization of the noise η ∈ sptλε, let φη be a phase

field in R
3 and let

(
�t
η, t ≥ 0

)
be the associated flow.

5.1 The Perturbed Phase Vector Field��

We assume that φη ∈ Cr
(
R
3,R3

)
for some r ≥ 2 independent of η. In particular, we denote

byφ0 the Lorenz’63 vector field given in (2) and byM be a Poincaré section for the associated
flow

(
�t

0, t ≥ 0
)
.

We further assume that, for any realization of the noise η ∈ sptλε, φη belongs to a
small neighborhood U of the unperturbed phase field φ0 in the C1 topology such that there
exists an open neighborhood U in R

3 containing the attractor � of φ0 which also contains

�η := ⋂

t≥0
�t
η (U ) , where the set�η is invariant for

(
�t
η, t ≥ 0

)
, is transitive and contains

a hyperbolic singularity. We choose U small enough such that M is a Poincaré section for

any realization of the flow
(
�t
η, t ≥ 0

)
(see e.g. [21, Chapter 16, paragraph 2]) and there

exists a stable foliation Iη of M that is at least C1+ε, for some ε > 0 independent of η,
which can be associated to the points of a transversal curve Iη inside M (see [6, Sects. 5.2
and 5.3]).

A good example for φη to keep in mind is

φη := φ0 + ηHgM , (18)

123

Author's personal copy



Stochastic Stability of the Classical Lorenz Flow… 173

where H ∈ S
2 and gM is a sufficiently smooth approximation of 1M supported on M.

Indeed, in this case, the existence and smoothness of the stable foliation can be proved
following the argument given in [4, Sect. 4].

5.2 The Poincaré Map R�

Given η ∈ sptλε, let �η be the leaf of the invariant foliation ofM corresponding to points x

whose orbit
(
�t
η (x) , t > 0

)
falls into the local stable manifold of the hyperbolic singularity

of φη. Then
M\�η � x �−→ τη (x) ∈ R

+ (19)

is the return time map on M for
(
�t
η, t ≥ 0

)
and

M\�η � x �−→ Rη (x) := �
τη(x)
η (x) ∈M (20)

is the Poincaré return map on M.

Identifying Iη with Iη, let

M � x �−→ u := qη (x) ∈ Iη (21)

be the canonical projection along the leaves of the foliationIη.The assumptionwemade onφη
imply that Iη is invariant and contracting,whichmeans that there exists amap Tη : I ′η −→ Iη,
with I ′η ⊆ Iη, such that for any x in the domain of Rη

qη ◦ Rη (x) = Tη ◦ qη (x) (22)

and if u ∈ Iη is in the domain of Tη the diameter of Rn
η

(
q−1η (u)

)
tends to zero as n tends to

infinity.

5.2.1 The Conjugated Map R̄�

Since for any η ∈ sptλε the leaves of the stable foliation Iη of M are rectifiables, arguing
as in [6, Sects. 5.2 and 5.3] (see also Remark 3.15 in [5] and [4]) we can construct two C1

diffeomorphisms κη :M � and ιη : Iη −→ I := I0, such that
ιη ◦ qη = q ◦ κη , (23)

where q := q0 (see Fig. 1).
As a consequence, we can define T̄η : I �, where I := I0, such that

T̄η ◦ q ◦ κη = ιη ◦ Tη ◦ qη (24)

which, by (23) implies
T̄η ◦ ιη = ιη ◦ Tη . (25)

Defining R̄η :M � such that
R̄η ◦ κη = κη ◦ Rη , (26)

we get
T̄η ◦ q = q ◦ R̄η . (27)

We remark that the diffeomorfism q does not depend on η anymore.
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Fig. 1 ι̂0 ◦q0 = q̂ ◦ κ̂0 , ι̂η ◦qη = q̂ ◦ κ̂η. Therefore, ιη := ι̂η ◦ ι̂−10 , κη := κ̂η ◦ κ̂−10 implies ιη ◦qη = q0 ◦κη

Since

T̄η ◦ q ◦ κη = T̄η ◦ ιη ◦ qη = ιη ◦ Tη ◦ qη

= ιη ◦ qη ◦ Rη = q ◦ κη ◦ Rη = q ◦ R̄η ◦ κη . (28)

Therefore, ∀u ∈ Iη, since Rη
(

q−1η (u)
)
⊂ q−1η

(
Tη (u)

)
, by (23), (25), (26) and (27) we

obtain

κ−1η ◦ R̄η ◦ κη
(
κ−1η ◦ q−1 ◦ ιη (u)

)
⊂ κ−1η ◦ q−1 ◦ ιη

(
ι−1η ◦ T̄η ◦ ιη (u)

)
, (29)

that is
κ−1η ◦ R̄η

(
q−1 ◦ ιη (u)

) ⊂ κ−1η ◦ q−1
(
T̄η ◦ ιη (u)

)
, (30)

which, because by definition κη maps a leaf of the foliation Iη to a leaf of the foliation I,
implies

R̄η ◦ q−1
(
ιη (u)

) ⊂ q−1
(
T̄η ◦ ιη (u)

)
(31)

and so, ∀u ∈ I ,
R̄η ◦ q−1 (u) ⊂ q−1

(
T̄η (u)

)
. (32)

5.3 The Suspension Semi-flow

Let us set

M\�η � x �−→ σ n
η (x) :=

n−1∑

k=0
τη

(
Rk
η (x)

)
∈ R

+ , n ≥ 1 , (33)

and, ∀x ∈M\�η,

R
+ � t �−→ nη (x, t) := max

{
n ∈ Z

+ : σ n
η (x) ≤ t

}
∈ Z

+ . (34)

If
Mτη :=

{
(x, s) ∈M× R

+ : s ∈ [0, τη (x))
} ⊂ R

3 , (35)
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we define the suspension semiflow
(

St
η, t ≥ 0

)
as

Mτη � (x, s) �−→ St
η (x, s) :=

(
R

nη(x,t+s)
η (x) , t + s − σ

nη(x,s+t)
η (x)

)
∈Mτη , t ≥ 0 .

(36)
Let ∼η be the equivalence relation on M× R

+ such that any two points (x, s) , (y, t) in
M × R

+ belong to the same equivalence class if there exist (x0, s0) ∈ Mτη , s′, s′′ > 0

such that �s′
η,τη

(x0, s0) = (x, s) ,�s′′
η,τη

(x0, s0) = (y, t) and nη
(
x0, s′′ ∨ s′ + s0

) −
nη
(
x0, s′′ ∧ s′ + s0

) ∈ N. We denote by Vη := M × R
+/ ∼η the corresponding quo-

tient space and by π̃η :M×R
+ −→ Vη the canonical projection which induces a topology

and consequently a Borel σalgebra on Vη. Therefore,

M× R
+ � (x, s) �−→ St

η ◦ π̃η (x, s) = π̃η (x, s + t) ∈ Vη , t > 0 . (37)

Let us define τ̄η :M\�0 −→ R
+ such that

τ̄η ◦ κη = τη , (38)

and consequently

Mτ̄η :=
{
(x, s) ∈M× R

+ : s ∈ [0, τ̄η (x))
} ⊂ R

3 . (39)

Setting σ̄ n
η , n ∈ Z

+, and n̄η such that

σ̄ n
η ◦ κη = σ n

η ; n̄η ◦ κη = nη (40)

and

Mτ̄η � (x, s) �−→ S
t
η (x, s) :=

(
R̄

n̄η(x,t+s)
η (x) , t + s − σ̄

n̄η(x,s+t)
η (x)

)
∈Mτ̄η , t ≥ 0 ,

(41)
we can lift of the diffeomorphism κη defined in (23) to the diffeomorphism

Mτη � (x, s) �−→ κ̄η (x, s) :=
(

κη (x) ,
τ̄η ◦ κη (x)
τη (x)

s

)

= (
κη (x) , s

) ∈Mτ̄η , (42)

so that, by (26),
κ̄η ◦ St

η = S
t
η ◦ κ̄η . (43)

Let ≈η to be the equivalence relation on M× R
+ such that any two points (x, s) , (y, t) in

M × R
+ belong to the same equivalence class if there exist (x0, s0) ∈ Mτ̄η , s′, s′′ > 0

such that �̄s′
η,τ̄η

(x0, s0) = (x, s) , �̄s′′
η,τ̄η

(x0, s0) = (y, t) and n̄η
(
x0, s′′ ∨ s′ + s0

) −
n̄η
(
x0, s′′ ∧ s′ + s0

) ∈ N. Denoting by Vη := M × R
+/ ≈η the corresponding quotient

space and by π̆η :M× R
+ −→ Vη the canonical projection such that

M× R
+ � (x, s) �−→ S

t
η ◦ π̆η (x, s) = π̆η (x, s + t) ∈ Vη , t > 0 (44)

by (42) we can define a diffeomorphism κ̃η : Vη −→ Vη such that

κ̃η ◦ π̃η = π̆η ◦ κ̃η . (45)
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Part II

Stochastic Stability for Impulsive Type Forcing

As already anticipated in the introduction, in this section we will study the weak convergence
of the invariant measure of the semi-Markov random evolution describing the random per-
turbations of

(
�t

0, t ≥ 0
)
in a neighborhood of the unperturbed attractor to the unperturbed

physical measure.
To this purpose we will first consider the RDS defined by the composition of the maps R̄η

given in (26) which, by construction, preserve the unperturbed invariant foliation. Then, we
give an explicit representation for the invariant measure of the original process in terms of
the invariant measure for this auxiliary process which, in turn, can be defined starting from
the invariant measure for the RDS defined by the composition of the maps T̄η.

Finally, we will prove that the stochastic stability of the unperturbed physical measure fol-
lows from the stochastic stability of the invariant measure for the one-dimensional dynamical
system defined by the map T0.

6 The Associated RandomDynamical System

In this section we present the construction of the auxiliary random processes needed to build
up a representation of the random evolution given in (4) in the framework of RDSs. We refer
the reader to [8, Sect. 1.1.1] for an account on the definition of a RDS in a more general
setup.

6.1 RandomMaps

1.
I ×� � (u, ω) �−→ T (u, ω) := (

T̄π(ω) (u) , θω
) ∈ I ×� , (46)

with T0 the identity operator on I ×�, defines a measurable random dynamical system
on (I ,B (I )) over the metric dynamical system (�,F,P, θ) ;

2. Setting M̃ :=M\�0,

M̃×� � (x, ω) �−→ R (x, ω) ∈ (R̄π(ω) (x) , θω
) ∈M×� , (47)

with R
0
the identity operator on M × �, define two measurable random dynamical

systems on (M,B (M)) over the metric dynamical system (�,F,P, θ) .
Let

M×� � (x, ω) �−→ Q (x, ω) := (q (x) , ω) ∈ I ×� . (48)

Then, ∀ (x, ω) ∈ M̃×�,

(
Q ◦ R) (x, ω) = Q

(
R̄π(ω) (x) , θω

) = (
q
(
R̄π(ω) (x)

)
, θω

)

= (
T̄π(ω) (q (x)) , θω

) = (T ◦ Q) (x, ω) (49)

that is
Q ◦ R = T ◦ Q . (50)
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Defining the map

M×� � (x, ω) �−→ K (x, ω) := (
κπ(ω) (x) , ω

) ∈M×� , (51)

for any (x, ω) ∈ M̃×� := (M×�) \ {(x, ω) ∈M×� : x ∈ �π(ω)
}
, we define

R : M̃×� −→M×� such that

R ◦K (x, ω) = K (x, ω) ◦ R , (52)

that is

M̃×� � (x, ω) �−→ (
R̄π(ω) (x) ◦ κπ(ω), θω

) = (
κπ(ω) ◦ Rπ(ω) (x) , θω

) ∈M×� .

(53)

6.2 The Random Suspension Semi-flow

Let
M×� � (x, ω) �−→ t (x, ω) := τπ(ω) (x) ∈ R+ . (54)

Then, ∀n ≥ 1, we define

M×� � (x, ω) �−→ sn (x, ω) :=
n−1∑

k=0
t
(
Rk (x, ω)

)
∈ R+ , n ≥ 1 , (55)

and denote, ∀t > 0,

M×� � (x, ω) �−→ Nt (x, ω) := max
{
n ∈ Z

+ : sn (x, ω) ≤ t
} ∈ Z

+ . (56)

We now proceed as in the definition of standard suspension flow given in (36). We define

(M×�)t :=
{
(x, ω, s) ∈ M̃×�× R

+ : s ∈ [0, t (x, ω))
}

(57)

and consequently the semiflow
(
St , t ≥ 0

)
,which wewill call random suspension semi-flow,

where

(M×�)t � (x, ω, s) �−→ St (x, ω, s)

:=
(
RNs+t (x,ω) (x, ω) , s + t − sNs+t (x,ω) (x, ω)

)
∈ (M×�)t . (58)

Let ∼ be the equivalence relation on M × � × R
+ such that any two points

(x, ω, s) ,
(
y, ω′, t

)
in M × � × R

+ belong to the same equivalence class if there exist

(x0, ω0, s0) ∈ (M×�)t and t ′, t ′′ > 0 such that St ′ (x0, ω0, s0)
= (x, ω, s) ,St ′′ (x0, ω0, s0) =

(
y, ω′, t

)
and Nt ′′∨t ′+s0 (x0, ω0) − Nt ′′∧t ′+s0 (x0, ω0) ∈ N.

We denote by V := M × � × R
+/ ∼ the corresponding quotient space and by π̂ :

M×�× R
+ −→ V the canonical projection which induces a topology and consequently

a Borel σalgebra onV. Therefore,

M×�× R
+ � (x, ω, s) �−→ St ◦ π̂ (x, ω, s) = π̂ (x, ω, s + t) ∈ V , t > 0 . (59)

Let us define t̄ : M̃×� −→ R
+ such that

t̄ ◦K = t (60)
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and consequently

(M×�)t̄ :=
{
(x, ω, s) ∈M×�× R

+ : s ∈ [0, t̄ (x, ω))} . (61)

Setting s̄n, n ∈ N and N such that

s̄n ◦K = sn ; N ◦K = N (62)

and

(M×�)t � (x, ω, s) �−→ S
t
(x, ω, s)

:=
(

R
N s+t (x,ω)

(x, ω) , s + t − s̄N s+t (x,ω)
(x, ω)

)

∈ (M×�)t̄ , (63)

we can lift the map defined in (51), as we did to get (42), to the map

(M×�)t � (x, ω, s) �−→ K (x, ω, s) := (K (x, ω) , s) ∈ (M×�)t̄ (64)

so that
K ◦ St = S

t ◦K . (65)

Let≈ be the equivalence relation onM×�×R
+ such that any two points (x, ω, s) ,

(
y, ω′, t

)

inM×�×R
+ belong to the same equivalence class if there exist (x0, ω0, s0) ∈ (M×�)t̄

and t ′, t ′′ > 0 such that S
t ′
(x0, ω0, s0) = (x, ω, s) ,S

t ′′
(x0, ω0, s0) =

(
y, ω′, t

)
and

N t ′′∨t ′+s0 (x0, ω0) − N t ′′∧t ′+s0 (x0, ω0) ∈ N. We denote by V := M × � × R
+/ ≈ the

corresponding quotient space and by π̌ :M×�×R
+ −→ V the canonical projection such

that

M×�× R
+ � (x, ω, s) �−→ S

t ◦ π̌ (x, ω, s) = π̌ (x, ω, s + t) ∈ V , t > 0 , (66)

by (64) we can define a map K̃ : V −→ V such that

K̃ ◦ π̂ = π̌ ◦ K̃ . (67)

7 The Invariant Measures

7.1 The Invariant Measure for the RDS’s R and R on (M,B (M))

Let us assume μT ∈ IP (T) to be the invariant measure for T.
The results in [5, Sect. 7.3.4.1] applies almost verbatim to T and R (see in particular

Lemma 7.21 and Corollary 7.22). Hence the proof of the following result is deferred to the
Appendix.

Proposition 2 Let μT be the invariant measure for T. There exists a measure μR on
(M×�,B (M)⊗ F) , invariant under R, such that, ∀ψ ∈ L1

P
(�,Cb (M)) ,

μR (ψ) := lim
n→∞

∫

μT (du, dω) inf
x∈q−1(u)

ψ ◦ Rn
(x, ω) (68)

and the correspondence μT �−→ μR is injective. Moreover, if μT is ergodic, then μR is also
ergodic.
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Remark 3 If μT ∈ IP (T) then μR ∈ IP

(
R
)
and, by [8] Proposition 1.4.3, the correspon-

dence μT (·|ω) �−→ μR (·|ω) is injective.
Moreover, ifμT admits the disintegrationμT (du, dω) = ν1 (du)P (dω) , by [8] Theorem

2.1.7, ν1 is the stationary measure for the Markov chain with transition operator

Cb (I ) � ϕ �−→ PTϕ := E
[
ϕ ◦ q ◦ T] ∈ Mb (I ) , (69)

where
I ×� � (u, ω) �−→ q (u, ω) := u ∈ I . (70)

Therefore, there exists a stationary measureμR for theMarkov chain with transition operator

Cb (M) � ψ �−→ PRψ := E
[
ψ ◦ p ◦ R] ∈ Mb (M) , (71)

such that μR = ν̄2 ⊗ P. Indeed, by (68),

ν̄2 (ψ) = lim
n−→∞

∫

ν1 (du)E

[

inf
x∈q−1(u)

[
ψ ◦ p ◦ Rn

]
(x, ·)

]

= lim
n−→∞

∫

ν1 (du) inf
x∈q−1(u)

(
Pn

R
ψ
)
(x) (72)

and, by (230)1,

ν̄2
(
PRψ

) = lim
n−→∞

∫

ν1 (du) inf
x∈q−1(u)

(
Pn+1

R
ψ
)
(x)

= lim
n−→∞

∫

ν1 (du)E

[

inf
x∈q−1(u)

[
ψ ◦ p ◦ Rn+1]

(x, ·)
]

= ν̄2 (ψ) . (73)

Moreover, for any ϕ ∈ Cb (I ) , ϕ ◦ q ∈ Cb (M) ; thus, by (50),

ν̄2 (ϕ ◦ q) = lim
n−→∞

∫

ν1 (du)E

[

inf
x∈q−1(u)

[
ϕ ◦ q ◦ p ◦ Rn

]
(x, ·)

]

= lim
n−→∞

∫

ν1 (du)E

[

inf
x∈q−1(u)

[
ϕ ◦ q ◦ Q ◦ Rn

]
(x, ·)

]

= lim
n−→∞

∫

ν1 (du)E

[

inf
x∈q−1(u)

[
ϕ ◦ q ◦ Tn ◦ Q

]
(x, ·)

]

= lim
n−→∞

∫

ν1 (du)E
[[
ϕ ◦ q ◦ Tn] (u, ·)]

= lim
n−→∞

∫

ν1 (du) Pn
T ϕ (u) = ν1 [ϕ] . (74)

1 By (71),

(
P2

R
ψ
)
(x) = E

[(
PRψ

) ◦ p ◦ R] (x) = E
[
E
[(
ψ ◦ p ◦ R) ◦ p ◦ R]]

=
∫

dP (ω)

∫

dP
(
ω′
)
(ψ ◦ p)

(
R̄π(ω′) ◦ R̄π(ω)x, θω

′)

=
∫

dP (θω) (ψ ◦ p)
(

R̄π(θω) ◦ R̄π(ω)x, θ
2ω
)

= E

[
ψ ◦ p ◦ R2

]
.
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Since BI := q−1 (B (I )) is a sub-σalgebra of B (M) and since ν̄2 (ϕ|BI ) is constant on the
leaves of the invariant foliation, we get ν̄2 (ϕ) = ν̄2 (ν̄2 (ϕ|BI )) = ν1 [ν̄2 (ϕ|BI )] . Hence,
since by definition ∀u ∈ I , ω ∈ �,

lim
n→∞ diam p

(
R

n (
Q−1 (u, ω)

)) = 0 , (75)

ν̄2 is singular w.r.t. the Lebesgue measure on (M,B (M)) , while the marginal of ν̄2 on
(I ,B (I )) coincides with ν1.
Corollary 4 If μR ∈ IP

(
R
)

then μR := K−1# μR = μR ◦K ∈ IP (R) , with, by (52),

M×� � (x, ω) �−→ K−1 (x, ω) :=
(
κ−1π(ω) (x) , ω

)
∈M×� . (76)

Proof By (52), for any A ∈ B (M)⊗ F we get

μR
(
R−1 (A)

) = μR ◦K
(
R−1 (A)

) = μR ◦K
((
R−1 ◦K−1) (K (A))

)

= μR ◦K
((

K−1 ◦ R−1
)
(K (A))

)
= μR

(
R
−1

(K (A))
)
= μR ◦K (A) .

(77)

��

7.2 The Invariant Measure for the Random Semi-flow
(
St, t ≥ 0

)

Lemmata 7.28 and 7.29 as well as Corollary 7.30 in Sect. 7.3.6 of [5] applies verbatim to the
semi-flow (63). We summarize these statements in the following Lemma.

Lemma 5 Assume that the return time t̄ in (54) is bounded away from zero and integrable

w.r.t. μR. Then the measure on
(
V,B

(
V
))

such that, for any bounded measurable function

f : V −→ R,

μS ( f ) := 1

μR

(
t̄
)

∫

μR (dx, dω)
∫ t̄(x,ω)

0
dt f ◦ π̌ (x, ω, t) (78)

is invariant under the semi-flow defined by (66) on V.

Moreover, the correspondence μR �−→ μS (and so μT �−→ μR �−→ μS) is injective.
Furthermore, if μR is invariant under R, then

lim
T−→∞

1

T

∫ T

0
dt f ◦ π̌ (x, ω, t) = μS ( f ) . (79)

As a byproduct, if μR is ergodic μS is also ergodic.

Proof The proof of the invariance ofμS under
(
S

t
, t ≥ 0

)
onV followsword byword that of

Lemma 7.28 in Sect. 7.3.6 of [5]. The injectivity of the correspondence μR �−→ μS follows
from that of the correspondence ψ �−→ f associating to any bounded measurable function
ψ :M×� −→ R the bounded measurable function

V � (x, ω, t) �−→ f (x, ω, t) := μR

(
t̄
) ψ (x, ω)

t̄ (x, ω)
1[0,t̄(x,ω)) (t) ∈ R (80)

such that μS ( f ) = μR (ψ) . The proof of the last result as well as ergodicity of μS under the
hypothesis of ergodicity ofμR are identical respectively to that of Lemma 7.28 and Corollary
7.30 in Sect. 7.3.6 of [5]. ��
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Proposition 6 Under the hypothesis of the preceding lemma, the measure on (V,B (V)) such
that, for any bounded measurable function f : V −→ R,

μS ( f ) := 1

μR (t)

∫

μR (dx, dω)
∫ t(x,ω)

0
dt f ◦ π̂ (x, ω, t) (81)

is invariant under the semi-flow defined by (59) on V.

Moreover, the correspondence μT �−→ μR �−→ μS) is injective.
Furthermore, if μR is invariant under R, then

lim
T−→∞

1

T

∫ T

0
dt f ◦ π̂ (x, ω, t) = μS ( f ) . (82)

As a byproduct, if μR is ergodic μS is also ergodic.

Proof If t ∈ L1
μR

the proof of the invariance of μS under
(
St , t ≥ 0

)
onV is identical to that

given in the previous lemma.Moreover, the proof of the ergodicity ofμS under the hypothesis
of ergodicity of μR follows the same lines of that of the corresponding statements involving
μS and μR in view of the previous corollary and the fact that, by (60),

μR

(
t̄
) = K#μR

(
t̄
) = μR

(
t̄ ◦K) = μR (t) , (83)

which, by (67), ∀ f : V −→ R, imply

μS ( f ) = K̃#μS ( f ) = μS

(
f ◦ K̃

)
= 1

μR (t)
μR ⊗ λ

[
1[0,t] f ◦ K̃ ◦ π̂

]

= 1

μR

(
t̄
)μR ⊗ λ

[
1[0,t̄◦K] f ◦ π̌ ◦ K̃

]

= 1

μR

(
t̄
)

∫

μR (dx, dω)
∫ (t̄◦K)(x,ω)

0
dt f ◦ π̌ (K (x, ω) , s) (84)

i.e., sinceμR = K#μR, the r.h.s. of (78). Then, the injectivity of the correspondenceμT �−→
μR �−→ μS readily follows. ��

By the assumption we made on φη, it has been proven in [7] Lemma 2.1 (see also [22]
Proposition 2.6.) that there exists a positive constant C1 such that, for any x ∈M,

τ̄η (x) ≤ C1 log
1

∣
∣q (x)− û0

∣
∣
, (85)

where û0 is the image under q of the intersection of M with the stable manifold of the
hyperbolic fixed point. For example, by what stated in Sect. 12, û0 equal to 0 ifM =M′ or∣
∣û0

∣
∣ ∈ (0, 1) if M =M′′. The integrability of t̄ w.r.t. μR then readily follows.

Lemma 7 If μT is a.c. w.r.t. λ ⊗ Pε with density bounded λ ⊗ Pε-a.s., then t̄ is integrable
w.r.t. μR.

Proof The proof is analogous to that of Lemma 3.7 in [11]. The sequence
{
t̄M
}

M∈N
such

that t̄M := t̄ ∧ M is monotone increasing an converging μR-a.s. to t̄. So for the monotone
convergence theorem is enough to prove thatμR

(
t̄M
)
is uniformly bounded in M .By (2),(54)

and (60) we get

μR

(
t̄M
)
= limn

∫

μT (du, dω) sup
x∈q−1(u)

t̄M ◦ Rn
(x, ω)
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= lim
n→∞

∫

μT (du, dω) sup
(x,ω′)∈Q−1(u,ω)

t̄M ◦ Rn (
x, ω′

)

≤ lim
n→∞

∫

μT (du, dω) sup
(x,ω′)∈{(y,ω′′)∈M×� : Q(y,ω′′)=Tn(u,ω)}

t̄M (
x, ω′

)

=
∫

μT (du, dω) sup
(x,ω′)∈Q−1(u,ω)

t̄M (
x, ω′

)

≤
∫

μT (du, dω) sup
x∈q−1(u)

τ̄π(ω) (x) ∧ M

≤
∥
∥
∥
∥

dμT

d (λ⊗ Pε)

∥
∥
∥
∥∞

C1

∫

I
du log

∣
∣u − û0

∣
∣ <∞ . (86)

��

8 Stochastic Stability

Given η ∈ sptλε, let η̄ ∈ � be such that ∀m ≥ 0, π (θm η̄) = η.

If μT̄η denotes the measure on (I ,B (I )) invariant under the dynamics defined by the map

T̄η given in (25), we can lift the metric dynamical system
(
I ,B (I ) , μTη , T̄η

)
to the metric

dynamical system
(
I ×�,B (I )⊗ F, μTη ,Tη

)
, where

I ×� � (u, ω) �−→ Tη (u, ω) :=
(
T̄η (u) , θω

) ∈ I ×� (87)

and μTη := μT̄η ⊗ δη̄, with δη̄ the Dirac mass at η̄.
In the same fashion, denoting by μRη the measure on (M,B (M)) invariant under the

dynamics defined by the map Rη given in (20), we define the metric dynamical system(M×�,B (M)⊗ F, μRη ,Rη

)
, where

(M\�η
)×� � (x, ω) �−→ Rη (x, ω) ∈

(
Rη (x) , θω

) ∈M×� (88)

and μRη := μRη ⊗ δη̄.

Moreover, setting
(M\�η

)×� � (x, ω) �−→ tη (x, ω) := t (x, η̄) = τη (x) ∈ R
+ , (89)

we define semi-flow
(
St
η, t ≥ 0

)
on (M×�)tη = Mτη × � as in (58) and consequently,

setting

M×�× R
+ � (x, ω, s) �−→ π̂η (x, ω, s) := (

π̃η (x, s) , ω
) ∈ Vη ×� , (90)

the semi-flow

M×�×R
+ � (x, ω, s) �−→ St

η ◦ π̂η (x, ω, s) = π̂η (x, ω, s + t) ∈ Vη×� , t > 0 , (91)

as in (59). Furthermore, we denote by μSη := μSη ⊗ δη̄, where μSη (dt, dx) :=
1[0,τη(x)](t)μRη (dx)

μRη(τη)
, the measure on

(Vη ×�,B (Vη
)⊗ F) invariant under

(
St
η, t ≥ 0

)
.

Since, by the definition of λε, as ε tends to 0,P� weakly converges to the Dirac mass

supported on the realization 0̄ ∈ � whose components are all equal to 0, in the following
we make explicit the dependence of μT, μR, μS, on ε, that is we set μεT := μT, μ

ε
R :=

μR, μ
ε
S := μS.
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Definition 8 We will say that μT0 , μR0 are stochastically stable if, respectively, μεT weakly
converges to μT0 , μ

ε
R weakly converges to μR0 , as ε tends to 0.

Remark 9 We remark that the definition just given of stochastic stability ofμT0 , μR0 isweaker
than the one usually taken into consideration (see e.g. [39]). Indeed, if μεT ∈ IPε (T) admits
the disintegration νε1 ⊗ Pε, which implies, by Remark 3, με

R
= ν̄ε2 ⊗ Pε, and μεR ∈ IPε (R)

admits the disintegration νε2 ⊗ Pε, where νε2 is the stationary measure for the Markov chain
with transition operator

Cb (M) � ψ �−→ PRψ := E [ψ ◦ p ◦ R] ∈ Mb (M) , (92)

then the (weak) stochastic stability of μT0 , μR0 is usually defined as the weak convergence
of νε1, ν

ε
2 respectively to μT0 and μR0 as ε tends to 0, which of course implies that μT0 and

μR0 are the weak limit of respectively μεT and μεR.Moreover, if and νε1 and μT0 are a.c. w.r.t.
the Lebesgue measure, the convergence in L1

λ (I ) of the density of νε1 to that of μT0 , which
is equivalent to the convergence of νε1 to μT0 in the total variation distance, is referred to as
the strong stochastic stability of μT0 .

Definition 10 Wewill say thatμS0 is stochastically stable if,∀ f ∈ Cb (V) , μ
ε
S ( f ) converges

to μS0 ( f ) , as ε tends to 0.

We will now show that, since the correspondence μεT �−→ με
R
�−→ με

S
is injective,

the stochastic stability of μT0 imply the weak convergence of με
S
to μS0 . Furthermore, we

will prove that if μT0 is stochastically stable, the injectivity of the correspondence μεT �−→
μεR �−→ μεS, together with the hypothesis of Rη being continuous for any η ∈ sptλε, imply
the stochastic stability of the physical measure for the unperturbed flow that is what stated in
Theorem 1. We will also show that, in order to prove Theorem 1, we can drop the hypothesis
on the continuity of the Rη’s if we assume the strong stochastic stability of μT0 .

In the rest of the section we will always assume μT0 to be stochastically stable. As an
example, in Sect. 8.4 we will prove that this is the case for the invariant measure of the
Lorenz-like cusp map and for the classical Lorenz map introduced in Sect. 12.

8.1 Stochastic Stability of�R0

The following result refers for example to the case where one considers the first return maps
on the Poincaré section M given in the Appendix in Sect. 11.1.

Theorem 11 If for any η ∈ [0, ε] , Rη :M � is continuous and μT0 is stochastically stable,
then με

R
weakly converges to μR0 .

Proof Let {εm}m≥1 be any sequence in [0, 1) converging to 0 and setμm
T := μ

εm
T , μm

R
:= μ

εm

R
.

For any ψ ∈ L1
Pλ
(�,Cb (M)) , we set

I ×� � (u, ω) �−→ ψ+ (u, ω) := sup
x∈q−1(u)

ψ (x, ω) = sup
(x,ω′)∈Q−1(u,ω)

ψ
(
x, ω′

)
, (93)

I ×� � (u, ω) �−→ ψ− (u, ω) := inf
x∈q−1(u)

ψ (x, ω) = inf
(x,ω′)∈Q−1(u,ω)

ψ
(
x, ω′

)
. (94)
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Suppose first that ψ ≥ 0. Given m ≥ 1, by Proposition 2, since

{

μm
T

(
ψ ◦ Rn

)

+

}

n≥1
is

decreasing,

0 ≤ μm
R
(ψ) = lim

n→∞μm
T

[(
ψ ◦ Rn

)

+

]

= limnμ
m
T

[(
ψ ◦ Rn

)

+

]

. (95)

On the other hand, since

{

μm
T

(
ψ ◦ Rn

)

−

}

n≥1
is increasing,

μm
R
(ψ) = lim

n→∞μm
T

[(
ψ ◦ Rn

)

−

]

= limnμ
m
T

[(
ψ ◦ Rn

)

−

]

. (96)

The same considerations also hold for μR0 (ψ) and

{

μT0

[(
ψ ◦ Rn

)

±

]}

n≥1
, that is

0 ≤ μR0 (ψ) = lim
n→∞μT0

[(
ψ ◦ Rn

0

)

+
]
= limnμT0

[(
ψ ◦ Rn

0

)

+
]

= lim
n→∞μT0

[(
ψ ◦ Rn

0

)

−
]
= limnμT0

[(
ψ ◦ Rn

0

)

−
]

(97)

([5, Sect. 7.3.4.1]). Hence we get
∣
∣
∣μ

m
R
(ψ)− μR0 (ψ)

∣
∣
∣ = μm

R
(ψ) ∨ μR0 (ψ)− μm

R
(ψ) ∧ μR0 (ψ)

= lim
n→∞μm

T

[(
ψ ◦ Rn

)

−

]

∨ lim
n→∞μT0

[(
ψ ◦ Rn

0

)

−
]

− lim
n→∞μm

T

[(
ψ ◦ Rn

)

+

]

∧ lim
n→∞μR0

[(
ψ ◦ Rn

0

)

+
]

= limnμ
m
T

[(
ψ ◦ Rn

)

−

]

∨ limnμT0

[(
ψ ◦ Rn

0

)

−
]

−limnμ
m
T

[(
ψ ◦ Rn

)

+

]

∧ limnμT0

[(
ψ ◦ Rn

0

)

+
]
. (98)

But, since the marginal of μT0 on (�,B (�)) is δ0̄,
∣
∣
∣μ

m
R
(ψ)− μR0 (ψ)

∣
∣
∣ = limnμ

m
T

[(
ψ ◦ Rn

)

−

]

∨ limnμT0

[(
ψ ◦ Rn)

−
]

− limnμ
m
T

[(
ψ ◦ Rn

)

+

]

∧ limnμT0

[(
ψ ◦ Rn

)

+

]

. (99)

Moreover, since ψ ∈
{
φ ∈ L1

Pλ
(�,Cb (M)) : φ ≥ 0

}
, Mψ := supx∈M ψ (·, x) ∈

L1 (�,Pλ) and 0 ≤ ψ− ≤ ψ+ ≤ Mψ, then, by Fatou’s Lemma,

limnμ
m
T

[(
ψ ◦ Rn

)

−

]

∨ limnμT0

[(
ψ ◦ Rn

)

−

]

(100)

−limnμ
m
T

[(
ψ ◦ Rn

)

+

]

∧ limnμT0

[(
ψ ◦ Rn

)

+

]

(101)

≤ μm
T

[

limn

(
ψ ◦ Rn

)

−

]

∨ μT0

[

limn

(
ψ ◦ Rn

)

−

]

(102)

−μm
T

[

limn

(
ψ ◦ Rn

)

+

]

∧ μT0

[

limn

(
ψ ◦ Rn

)

+

]
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= μm
T

[

limn

(
ψ ◦ Rn

)

−

]

∨ μT0

[

limn

(
ψ ◦ Rn

)

−

]

− μT0

[

limn

(
ψ ◦ Rn

)

−

]

+μT0

[

limn

(
ψ ◦ Rn

)

−

]

− μT0

[

limn

(
ψ ◦ Rn

)

+

]

+μT0

[

limn

(
ψ ◦ Rn

)

+

]

− μm
T

[

limn

(
ψ ◦ Rn

)

+

]

∧ μT0

[

limn

(
ψ ◦ Rn

)

+

]

=
(

μm
T

[

limn

(
ψ ◦ Rn

)

−

]

− μT0

[

limn

(
ψ ◦ Rn

)

−

])

∨ 0 (103)

+μT0

[

limn

(
ψ ◦ Rn

)

−

]

− μT0

[

limn

(
ψ ◦ Rn

)

+

]

+
(

μT0

[

limn

(
ψ ◦ Rn

)

+

]

− μm
T

[

limn

(
ψ ◦ Rn

)

+

])

∨ 0

≤
∣
∣
∣
∣μ

m
T

[

limn

(
ψ ◦ Rn

)

−

]

− μT0

[

limn

(
ψ ◦ Rn

)

−

]∣
∣
∣
∣

+
∣
∣
∣
∣μT0

[

limn

(
ψ ◦ Rn

)

+

]

− μm
T

[

limn

(
ψ ◦ Rn

)

+

]∣
∣
∣
∣

+
∣
∣
∣
∣μT0

[

limn

(
ψ ◦ Rn

)

−

]

− μT0

[

limn

(
ψ ◦ Rn

)

+

]∣
∣
∣
∣ . (104)

Sinceμm
T weakly converges toμT0 , settingψ := limn

(
ψ ◦ Rn

)

− , ψ := limn

(
ψ ◦ Rn

)

+
we have ψ,ψ ∈

{
φ ∈ L1

Pλ
(�,Cb (I )) : φ ≥ 0

}
and ∀ε > 0, there exists n′ε

(
ψ
)
such that

∀m > n′ε
(
ψ
)
,

∣
∣μm

T

[
ψ
]− μT0

[
ψ
]∣
∣ < ε as well as there exists n′′ε

(
ψ
)
such that ∀m > n′′ε

(
ψ
)
,

∣
∣
∣μm

T

[
ψ
]

−μT0

[
ψ
]∣
∣
∣ < ε.

On the other hand, ∀n ≥ 0,

μT0

(
ψ ◦ Rn

)

± = μT0

(
ψ ◦ Rn

0

)

± = μT0

(
ψ0 ◦ Rn

0

)

± , (105)

where ψ0 := ψ
(·, 0̄) , so that

∣
∣
∣
∣μT0

[

limn

(
ψ ◦ Rn

)

−

]

− μT0

[

limn

(
ψ ◦ Rn

)

+

]∣
∣
∣
∣

=
∣
∣
∣μT0

[
limn

(
ψ0 ◦ Rn

0

)

−
]
− μT0

[
limn

(
ψ0 ◦ Rn

0

)

+
]∣
∣
∣

≤ μT0

[∣
∣
∣limn

(
ψ0 ◦ Rn

0

)

− − limn

(
ψ0 ◦ Rn

0

)

+
∣
∣
∣

]
. (106)

Sinceψ0 ∈ Cb (M) and ∀u ∈ I , q−1 (u) ⊂M is compact, by Assumption 1, ∀ε > 0, ∃δε >
0, nε > 0 such that ∀n ≥ nε, u ∈ I , diam Rn

0

(
q−1 (u)

)
< δε and ∀x, y ∈ Rn

0

(
q−1 (u)

)
,

|ψ0 (x)− ψ0 (y)| < ε. Then,
∣
∣
∣μT0

[
limn

(
ψ0 ◦ Rn

0

)

−
]
− μT0

[
limn

(
ψ0 ◦ Rn

0

)

+
]∣
∣
∣ ≤ ε . (107)

Hence, ψ ∈ {φ ∈ L1
P
(�,Cb (M)) : φ ≥ 0

}
,∀m > mε (ψ) := n′ε

(
ψ̄
) ∨ n′′ε

(
ψ
)
,

∣
∣
∣μ

m
R
(ψ)− μR0 (ψ)

∣
∣
∣ ≤ 3ε , (108)
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but decomposing any real-valued function ψ on � × M as ψ = ψ ∨ 0 − |ψ ∧ 0| ,
we get that given any ψ ∈ L1

Pλ
(�,Cb (M)) ,∀ε > 0 ∃mε (ψ) such that ∀m >

mε (ψ) ,

∣
∣
∣μm

R
(ψ)− μR0 (ψ)

∣
∣
∣ ≤ 6ε. ��

Lemma 12 If με
R

weakly converges to μR0 , then μεR weakly converges to μR0 too.

Proof For any A ∈ B (M) ⊗ F, we denote by A its closure and recall that μεR (A) =
με
R

(
1K(A)

)
. Moreover, for any real-valued Borel function ψ on M × �,μR0 (ψ) =

μR0 (ψ ◦K) . Hence, defining, for any B ∈ B (M) ,C ∈ F, ε > 0

(B × C)ε :=
{

(x, ω) ∈M×� : inf
y∈B

‖x − y‖ < ε, inf
ω′∈C

ρ
(
ω,ω′

)
< ε

}

(109)

we set

L
(
μεR, μR0

) := inf
{
ε > 0 : μεR

(
B × C

) ≤ μR0

(
(B × C)ε

)+ ε,∀B ∈ B (M) ,C ∈ F}

= inf
{
ε > 0 : με

R

(
K
(
B × C

)) ≤ μR0

(
K
(
(B × C)ε

))

+ ε,∀B ∈ B (M) ,C ∈ F} . (110)

But, for any B ∈ B (M) ,C ∈ F,

K (B × C) =
{
(x, ω) ∈M×� :

(
κ−1π(ω) (x) , ω

)
∈ B × C

}

=
(
⋂

ω∈C

κπ(ω) (B)

)

× C , (111)

hence, since for any η ∈ sptλε, κη is a diffeomorphism, κη (B (M)) = B (M) , i.e.

L
(
μεR, μR0

) = L
(
με
R
, μR0

)
. Therefore, the distance between μεR and μR0 in the Lévy-

Prokhorov metric, namely L P
(
μεR, μR0

) := L
(
μεR, μR0

) ∨ L
(
μR0 , μ

ε
R

)
, equal that

between με
R
and μR0 . Since the weak convergence of measures is equivalent to the con-

vergence in the L P distance we get the thesis. ��
The last two results prove the following.

Corollary 13 If for any η ∈ sptλε, Rη :M � is continuous and μT0 is stochastically stable,
then μR0 is also stochastically stable.

Theorem 14 If νε1 weakly converges to μT0 , then μT0 is stochastically stable and ν̄ε2 weakly
converges to μR0 .

Proof By (50), ∀ϕ ∈ L1
Pλ
(�,Cb (I )) and n ≥ 1, it follows that

μm
R

[
ϕ ◦ Q ◦ Rn

]
= μm

R

[
ϕ ◦ Tn ◦ Q

]
. (112)

Moreover, since ∀ (u, ω) ∈ I ×�,

(ϕ ◦ Q)− (u, ω) = inf
x∈q−1(u)

ϕ ◦ Q (x, ω) = inf
x∈q−1(u)

ϕ ◦ q (x) = ϕ (u) , (113)

as well as

(ϕ ◦ Q)− (u, ω) = sup
x∈q−1(u)

ϕ ◦ Q (x, ω) = sup
x∈q−1(u)

ϕ ◦ q (x) = ϕ (u) , (114)
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∀m ≥ 1, by the invariance of μm
T under T, we get

μm
R
[ϕ ◦ Q] = lim

n→∞μm
T

[(
ϕ ◦ Q ◦ Rn

)

±

]

= lim
n→∞μm

T

[(
ϕ ◦ Tn ◦ Q

)

±
]

= lim
n→∞μm

T

[
ϕ ◦ Tn] = μm

T [ϕ] . (115)

Furthermore, by (22), ∀ϕ0 ∈ Cb (I ) , u ∈ I since

(ϕ0 ◦ q)− (u) = inf
x∈q−1(u)

ϕ0◦q (x) = ϕ0 (u) = sup
x∈q−1(u)

ϕ0◦q (x) = (ϕ0 ◦ q)+ (u) , (116)

then

μR0 [ϕ0 ◦ q] = lim
n→∞μT0

[(
ϕ0 ◦ q ◦ Rn

0

)

±
]
= lim

n→∞μT0

[(
ϕ0 ◦ T n

0 ◦ q
)

±
]

= lim
n→∞μT0

[
ϕ0 ◦ T n

0

] = μT0 [ϕ0] . (117)

Thus, ∀ϕ ∈ L1
Pλ
(�,Cb (I )) , setting ϕ0 = ϕ

(·, 0̄) , ϕ0 ◦ q = ϕ ◦ Q
(·, 0̄) and

μT0 ⊗ δ0̄ [ϕ] = μT0 [ϕ0] = μR0 [ϕ0 ◦ q] = μR0 ⊗ δ0̄ [ϕ0 ◦ q] = μR0 ⊗ δ0̄ [ϕ ◦ Q] . (118)

Therefore, if μm
T weakly converges to μT0 , then

lim
m→∞μm

R
[ϕ ◦ Q] = lim

m→∞μm
T [ϕ] = μT0 [ϕ] = μT0 ⊗ δ0̄ [ϕ]

= μR0 ⊗ δ0̄ [ϕ ◦ Q] = μR0 [ϕ ◦ Q] . (119)

Clearly, if νm
1 weakly converges to μT0 , since Pm weakly converges to δ0̄, then μm

T =
νm
1 ⊗ Pm weakly converges to μT0 = μT0 ⊗ δ0̄. Hence, ∀ϕ̄ ∈ Cb (I ) , by (70), since
ϕ̄ ◦ q ∈ L1

Pλ
(�,Cb (I )) , and since ∀x ∈M, ω ∈ �, ϕ̄ ◦ q (x) = ϕ̄ ◦ q ◦ Q (x, ω) , setting

ϕ = ϕ̄ ◦ q, by (119) we have

lim
m→∞ ν̄m

2 [ϕ̄ ◦ q] = lim
m→∞ ν̄m

2 ⊗ Pm [ϕ̄ ◦ q] = lim
m→∞ ν̄m

2 ⊗ Pm
[
ϕ̄ ◦ q ◦ Q

]

= lim
m→∞μm

R

[
ϕ̄ ◦ q ◦ Q

]

= μR0

[
ϕ̄ ◦ q ◦ Q

] = μR0 [ϕ̄ ◦ q] . (120)

Given A ∈ B (M) , let

q (A) :=
⋃

x∈A

q (x) = {u ∈ I : u = q (x) , x ∈ A} , (121)

b (A) := {x ∈M : q (x) ∈ q (A)} ⊇ A . (122)

Moreover, ∀ε > 0 we set

M � x �−→ ψε
A (x) :=

(

1− inf
y∈A

‖x − y‖
ε

)

∨ 0 ∈ [0, 1] , (123)

as well as

I � u �−→ ϕεJ (x) :=
(

1− inf
v∈J

|u − v|
ε

)

∨ 0 ∈ [0, 1] , J ∈ B (I ) . (124)

Since
inf

y∈b(A)
‖x − y‖ = inf

y∈b(A)
|q (x)− q (y)| = inf

v∈q(A)
|q (x)− v| (125)

∀ε > 0 we get ψε
b(A) = ϕεq(A) ◦ q.
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Hence, given A ∈ B (M) and denoting by A its closure, since ψε
A ∈ Cb (M) , ϕεq(A) ∈

Cb (I ) , from (120), (119) and (117), ∀ε > 0 we have

limm ν̄
m
2

(
A
) ≤ limm ν̄

m
2

[
ψε

b
(

A
)

]
= limm ν̄

m
2

[
ϕε

q
(

A
) ◦ q

]

= limmμ
m
R

[
ϕε

q
(

A
) ◦ q ◦ Q

]
= lim

m→∞μm
R

[
ϕε

q
(

A
) ◦ q ◦ Q

]

= μR0

[
ϕε

q
(

A
) ◦ q

]
, (126)

that is
limm ν̄

m
2

(
A
) ≤ μR0

[
1q
(

A
) ◦ q

]
= μR0

(
A
)

(127)

and the thesis follows from Portmanteau theorem and Remark 9. ��
This result together with Lemma 12 implies the stochastic stability of μR0 .

Corollary 15 If ν̄ε2 weakly converges to μR0 , then μR0 is stochastically stable.

Proof If ν̄ε2 weakly converges to μR0 , then by Remark 3 με
R
= ν̄ε2 ⊗Pε weakly converges to

μR0 and, by Definition 8, the thesis follows from Lemma 12. ��

8.2 Stochastic Stability of�S0

As a corollary of the stochastic stability of μR0 we have the following.

Proposition 16 Let t be bounded away from zero and integrable w.r.t. μR. If μR0 is stochas-
tically stable, then μS0 is also stochastically stable.

Proof Given η ∈ sptλε, if f is a bounded measurable function onV, there exists a bounded
measurable function f̌ on Vη such that, denoting by f̆ its extension on Vη ×� by setting

Vη ×� � (x, s, ω) �−→ f̆ (x, s, ω) := f̌ (x, s) ∈ R , (128)

by (90),
f̌
(
π̃η (·, ·)

) = f̆
(
π̃η (·, ·) , ·

) = f ◦ π̂η̄ (·, ·, ·) . (129)

Then, since the marginal on (�,B (�)) of μR0 is the Dirac mass at 0̄, by (89),

μR0

[∫ t0

0
ds f ◦ π̂ (·, 0̄, s

)
]

= μR0

[∫ t0

0
ds f ◦ π̂0̄ (·, ·, s)

]

= μR0

[∫ t0

0
ds f̆

(
π̃0 (·, s) , 0̄

)
]

= μR0

[∫ τ0

0
ds f̌ ◦ π̃0 (·, s)

]

(130)

and

μS0

[
f̌
]
=

μR0

[∫ τ0
0 ds f̌ ◦ π̃0 (·, s)

]

μR0 [t0]
= μS0 [ f ] . (131)

Since t ∈ L1
μεR
, t0 ∈ L1

μR0
, for any ε > 0, there exists Mε ∈ N such that, ∀M > Mε,

∣
∣μεR (t)− μεR (t ∧ M)

∣
∣+ ∣

∣μR0 (t0)− μR (t0 ∧ M)
∣
∣

= μεR
[
(t − t ∧ M) 1(M,∞) (t)

]+ μR0

[
(t0 − t0 ∧ M) 1(M,∞) (t0)

] ≤ ε . (132)
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Hence, for any bounded measurable function f on V,

μεR

[∫ t

0
ds f ◦ π̂ (·, ·, s)

]

= μεR

[(∫ t

0
ds f ◦ π̂ (·, ·, s)

)
(
1[0,M] (t)+ 1(M,∞) (t)

)
]

= μεR

[∫ t∧M

0
ds f ◦ π̂ (·, ·, s)

]

+ μεR

[

1(M,∞) (t)
∫ t

M
ds f ◦ π̂ (·, ·, s)

]

(133)

which implies
∣
∣
∣
∣μ

ε
R

[∫ t

0
ds f ◦ π̂ (·, ·, s)

]

− μεR

[∫ t∧M

0
ds f ◦ π̂ (·, ·, s)

]∣
∣
∣
∣ ≤ ε sup

(x,ω,s)∈V
| f (x, ω, s)| .

(134)
Therefore, since

μεS [ f ] = μεR (t ∧ M)

μεR (t)

μεR

[∫ t∧M
0 ds f ◦ π̂ (·, ·, s)

]

μεR (t ∧ M)
+
μεR

[
1(M,∞) (t)

∫ t
M ds f ◦ π̂ (·, ·, s)

]

μεR (t)
,

(135)
we obtain
∣
∣
∣
∣
∣
∣
μεS [ f ]−

μεR

[∫ t∧M
0 ds f ◦ π̂ (·, ·, s)

]

μεR (t ∧ M)

∣
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣1−

μεR (t ∧ M)

μεR (t)

∣
∣
∣
∣

μεR

[∫ t∧M
0 ds f ◦ π̂ (·, ·, s)

]

μεR (t ∧ M)

+ sup(x,ω,s)∈V | f (x, ω, s)|
μεR (t) ∧ 1

ε

≤ 2ε
sup(x,ω,s)∈V | f (x, ω, s)|

μεR (t) ∧ 1
. (136)

Moreover, by the same argument, we also get
∣
∣
∣
∣μR0

[∫ t0

0
ds f ◦ π̂0̄ (·, ·, s)

]

− μR0

[∫ t0∧M

0
ds f ◦ π̂0̄ (·, ·, s)

]∣
∣
∣
∣ ≤ ε sup

(x,ω,s)∈V
| f (x, ω, s)|

(137)
and

∣
∣
∣
∣
∣
∣
μS0 [ f ]−

μR0

[∫ t0∧M
0 ds f ◦ π̂ (·, ·, s)

]

μR0 (t0 ∧ M)

∣
∣
∣
∣
∣
∣
≤ 2ε

sup(x,ω,s)∈V | f (x, ω, s)|
μR0 (t0) ∧ 1

. (138)

Let tM := t ∧ M, tM
0 := t0 ∧ M and let {εm}m≥1 be any sequence in [0, 1) converging

to 0. Since μm
R weakly converges to μR0 , for any δ > 0, there exists Nδ > 1 such that,

∀m ≥ Nδ, ∣
∣
∣μ

m
R

(
tM
)
− μR0

(
tM
)∣
∣
∣ =

∣
∣
∣μ

m
R

(
tM
)
− μR0

(
tM
0

)∣
∣
∣ ≤ δ . (139)

Moreover, since tM is bounded, considering the linear map,

C� (V) � f �−→ EM ( f ) :=
∫ tM

0
ds f ◦ π̂ (·, ·, s) ∈ L1

Pm
(�,Cb (M)) , (140)
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from the linear space C� (V) of bounded measurable functions f on V such that
∀ω ∈ �, f (·, ω, ·) ∈ Cb

(Mτπ(ω)

)
to L1

Pm
(�,Cb (M)) , for m large enough, we get

∣
∣μm

R [EM ( f )]− μR0 [EM ( f )]
∣
∣ ≤ δ. Therefore, for m sufficiently large,

∣
∣μm

S [ f ]− μS0 [ f ]
∣
∣ =

∣
∣
∣
∣
μm
R [E ( f )]

μm
R [t]

− μR0 [E ( f )]

μR0 [t0]

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

μm
R [EM ( f )]

μm
R

[
tM
] − μR0 [EM ( f )]

μR0

[
tM
0

]

∣
∣
∣
∣
∣
+ 4ε

sup(x,ω,s)∈V | f (x, ω, s)|
μR0 (t0) ∧ μ (t) ∧ 1

.

(141)

and
∣
∣
∣
∣
∣

μm
R [EM ( f )]

μm
R

[
tM
] − μR0 [EM ( f )]

μR0

[
tM
0

]

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

μm
R [EM ( f )]− μR0 [EM ( f )]

μR0

[
tM
0

]

∣
∣
∣
∣
∣

+ μm
R [EM (| f |)]
μm
R

[
tM
]

∣
∣
∣
∣
∣

μm
R

[
tM
]− μR0

[
tM
0

]

μR0

[
tM
0

]

∣
∣
∣
∣
∣

≤ 1+ sup(x,ω,s)∈V | f (x, ω, s)|
μR0 [t0] ∧ M

δ . (142)

��

For what concerns the weak convergence of the invariant measure of the flow
(
S

t
, t ≥ 0

)

to μS0 we have the following result whose proof is identical to the preceding one and so we
omit it.

Proposition 17 Let t as in the previous proposition. If μR weakly converges to μR0 , then με
S

weakly converges to μS0 .

8.3 Stochastic Stability of the Physical Measure for the Unperturbed Flow

Here we will show that the stochastic stability ofμS0 will imply that of the physical measure.
Setting

M× R
+ � (x, t) �−→ �η (x, t) := �t

η (x) ∈ U ⊂ R
3 , (143)

whereU can be chosen to be independent of η,we define the diffeomorphism χη : Vη −→ U

relating the original flow
(
�t
η, t ≥ 0

)
with its associated suspension semiflow (37), i.e. such

that
χη ◦ π̃η (·, · + t) = �t

η ◦ χη (144)

(see [5, par. 7.3.8]).
Moreover, by (55), for n ≥ 2, we define

U ×� � (y, ω) �−→ ŝn (y, ω) := ŝ1 (y, ω)+ sn−1
(
�

ŝ1(y,ω)
π(ω) (y) , ω

)
∈ R+ , (145)

where ŝ1 is given in (186) and

U ×� � (y, ω) �−→ N̄t (y, ω) := max
{
n ∈ Z

+ : ŝn (y, ω) ≤ t
} ∈ Z

+ . (146)
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For any ω ∈ �, we define the non autonomous phase field R
+ � t �−→ φ̄ω (t, ·) ∈

C0
(
R
3,R3

)
, piecewise Cr

(
R
3,R3

)
, r ≥ 2, such that

R
+ ×U � (t, y) �−→ φ̄ω (t, y) := φ

π
(
θ N̄t (y,ω)ω

) (y) ∈ R
3 (147)

φ
π
(
θ N̄t (y,ω)ω

) := φπ(ω) (x) 1[0,ŝ1(y,ω)) (t)+
∑

n≥1
φπ(θnω)1[ŝn(y,ω),ŝn+1(y,ω)) (t) (148)

and denote by
(
�̂

t,t0
ω , t > t0 ≥ 0

)
the associated semiflow. Hence, because ∀η ∈ [0, ε],

�t
η (U ) ⊆ U it follows that ∀ω ∈ �, t > 0, �̂t,0

ω (U ) ⊆ U .

Since by (57) any v ∈ V can be represented as a vector (x (v) , ω (v) , s (v)) ∈ (M×�)t ,

let us consider the map

V � v �−→ V (v) :=
(
�̂

s(v),0
ω(v) (x (v)) , ω (v)

)
∈ U ×� . (149)

Notice that, by the definition of
(
�̂t,0
ω , t ≥ 0

)
, �̂

s(v),0
ω(v) (x (v)) = �

s(v)
π(ω(v)) (x (v)) . Setting

U ×�× R
+ � (u, ω, t) �−→ Xt (u, ω) :=

(
�̂t,0
ω (u) , θ N̄t (u,ω)ω

)
∈ U ×� , (150)

for t ≥ 0, v ∈V, by (149), (146) and (150) we have

Xt (V (v)) =
(

�̂
t,0
ω(v)

(
�̂

s(v),0
ω(v) (x (v))

)
, θ

N̄t

(
�̂

s(v),0
ω(v) (x(v)),ω(v)

)

ω (v)
)

. (151)

But, by (186), (55) and (145),

ŝ1
(
�̂

s(v),0
ω(v) (x (v)) , ω (v)

)
= ŝ1

(
�

s(v)
π(ω(v)) (x (v)) , ω (v)

)
= t (x (v) , ω (v))− s (v)

(152)

sn

(
�

s(v)
π(ω(v)) (x (v)) , ω (v)

)
= sn (R (x (v) , ω (v)) , ω (v)) , n ≥ 1 , (153)

hence,

ŝn

(
�̂

s(v),0
ω(v) (x (v)) , ω (v)

)
= ŝn

(
�

s(v)
π(ω(v)) (x (v)) , ω (v)

)

= t (x (v) , ω (v))− s (v)+ sn−1
(
�

s(v)
π(ω(v)) (x (v)) , ω (v)

)

= t (x (v) , ω (v))− s (v)+ sn (R (x (v) , ω (v)) , ω (v)) ,
(154)

which implies

N̄t

(
�̂

s(v),0
ω(v) (x (v)) , ω (v)

)
= N̄t

(
�

s(v)
π(ω(v)) (x (v)) , ω (v)

)
= Nt (x (v) , ω (v)) (155)

and

�̂
t,0
ω(v)

(
�̂

s(v),0
ω(v) (x (v))

)
= �̂

t,0
ω(v)

(
�

s(v)
π(ω(v)) (x (v))

)

= �̂
s(v)+t,0
ω(v) (x (v)) . (156)

Therefore, by (58) and (59),

Xt (V (v)) =
(
�̂

s(v)+t,0
ω(v) (x (v)) , θNt (x(v),ω(v))ω (v)

)
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= V
(
St (x (v) , ω (v) , s (v))

)

= V
(
π̂ (x (v) , ω (v) , s (v)+ t)

)
, (157)

that is
V ◦ π̂ (·, ·, · + t) = Xt ◦ V , t ≥ 0 . (158)

By [5, Sect. 7.3.8] μ0 := (�0)#
(
μS0

)
is the physical measure for

(
�t

0, t ≥ 0
)
whose

basin B (μ0) covers a neighborhood V0 of the attractor of
(
�t

0, t ≥ 0
)
of full λ3 measure

which is a subset of χ0 (V0) ⊆ U . In fact, by the definition ofV,∀η ∈ sptλε,Vη×{η̄} ⊂ V,

and by (149) V
(Vη × {η̄}

) = χη
(Vη

)× {η̄} . Hence, setting U := V (V) , χη
(Vη

) ⊆ U0 =:
p (U) ⊆ U and in particular V0 ⊂ U0.

LetμεV := V#μ
ε
S = μεS◦V−1.By the invarianceofμεS under theflow

(
π̂ (·, ·, · + t) , t ≥ 0

)

and (158) we get the invariance of μεV under the evolution given by
(
Xt , t ≥ 0

)
. Indeed,

∀A ⊆ U,
μεV

(
Xt (A)

) = μεV
(
Xt ◦ V (

V−1 (A)
)) = μεV

(
V ◦ π̂ (·, ·, · + t)

(
V−1 (A)

))

= μεS
(
π̂ (·, ·, · + t)

(
V−1 (A)

)) = μεS
((
V−1 (A)

)) = μεV (A) . (159)

Moreover, we have

Proposition 18 If μS0 is stochastically stable, then, as ε tends to 0, μεV weakly converges to
μ0 ⊗ δ0̄ with μ0 the unperturbed physical measure.

Proof Let B ⊆ V0 ⊂ U0. By (144) χ
−1
0 (B) ⊂ V0.Given C ∈ F,we set A := χ−10 (B)×C .

By (59) π̂ (A) ⊂ V and by (90)

μεV
(
V ◦ π̂ (A)

) = μεS
[
π̂ (A)

] −→
ε→0

μS0
[
π̂ (A)

] = 1C
(
0̄
)
μS0

[
π̃0 ◦ p

(
χ−10 (B)× {

0̄
})]

= 1C
(
0̄
)
μS0

[
π̃0

(
χ−10 (B)

)]
. (160)

Since π̃0 acts as the identity on Mτ0 and χ
−1
0 (B) ⊆Mτ0

μS0

[
π̃0

(
χ−10 (B)

)]
= μS0

[
χ−10 (B)

]
= (χ0)#

(
μS0

)
(B) ≡ μ0 (B) . (161)

��

8.3.1 Proof of Theorem 1

ByconstructionμεV is the physicalmeasure of
(
Xt , t ≥ 0

)
that is, for any boundedmeasurable

function f on U × �, limt→∞ 1
t

∫ t
0 ds f ◦ Xs = μεV ( f ) . Moreover, the projection on U

of the evolution
(
Xt , t ≥ 0

)
provides a representation of the system evolution (ut , t ≥ 0)

as it has been already shown in (10). Therefore, the thesis follows considering functions
U ×� � (y, ω) �−→ f (y, ω) := f̃ (y) ∈ R with f̃ bounded measurable on U .

8.4 Stochastic Stability of�T0

In this section, to ease the notation, we will simply refer to the unperturbed map T0 as T
and consequently note μT0 as μT . Moreover, for the same reason, since no confusion will
arise, we will note Tη for T̄η. Furthermore, since as it is explained in the Appendix in the
case M = M′′ the invariant measure for Tη can be reconstructed from those of T̃η, when
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considering this case, here, with abuse of notation, we will refer to the unperturbed map T̃
and to T̃η again as, respectively, T and Tη unless differently specified.

As we stated in Sect. 4.2, the stochastic perturbation of a one-dimensional map T is
realized through sequences of random transformations. This means that we will compose
maps as Tηk ◦ · · · ◦ Tη1 with the {η j } j∈N ∈ sptλε taken independently from each other and
with the same distribution λε. This implies that the invariant measure μT of the skew system
(46) factorizes in the direct product of Pε := λN

ε times the so-called stationary measure νε1
(see Remark 3) which will be the stationary measure of the Markov chain with transition
probability

Q(x, A) := λε{η ∈ [−1, 1] : Tη(x) ∈ A} . (162)

where x and A are respectively a point and a Borel subset of the interval. It is well known
that whenever the stationary measure is absolutely continuous with respect to the Lebesgue
measure, its density will be a fixed point of the random transfer operator which we are going
to define together with the strategy to prove stochastic stability of μT .

We denote by L the transfer operator of the unperturbed map T , by Lε the random
transfer operator defined by the formula Lε f = ∫

[−1,1] dλε (η)Lη f , where f belongs to

some Banach space B ⊂ L1 := L1 (I , λ) and by Lη is the transfer operator associated to the
perturbed map Tη. Let us suppose that:

A1 The unperturbed transfer operator L verifies the so-called Lasota–Yorke inequality,
namely there exists constants 0 < κ < 1, D > 0, such that for any f ∈ B we have

‖L f ‖B ≤ κ ‖ f ‖B + D ‖ f ‖1 . (163)

A2 The map T preserve only one absolutely continuous invariant probability measure μ
with density h, which therefore will be also ergodic and mixing.

A3 The random transfer operator Lε verifies a similar Lasota–Yorke inequality which,
for sake of simplicity, we will assume to hold with the same parameters κ and D.

A4 There exits a measurable function [−1, 1] � ε �−→ υ ′(ε) ∈ R
+ tending to zero when

ε→ 0 such that for f ∈ B :
|||L f − Lε f ||| ≤ υ ′(ε). (164)

where the norm ||| · ||| above is so defined: |||L||| := sup‖ f ‖B≤1 ‖L f ‖1 , for a linear
operator L : L1 � .

Besides, we add two very natural assumptions on the Markov chain given by our random
transformations, namely

A5 The transition probability Q(x, A) admits a density qε(x, y), namely: Q(x, A) =∫

A qε(x, y)dy;
A6 sptQ(x, ·) = Bε(T x), for any x in the interval, where Bε(z) denotes the ball of

center z and radius ε.

Assumptions A1-A3 on the transfer operators together with assumptions A5 and A6 on
the Markov chain defined by the random transformations, by Corollary 1 in [10] guarantee
that there will be only one absolutely continuous stationary measure με with density hε. At
this point, assumptionA4 allow us to invoke the perturbation theorem of [24] to assert that the
norm ||| · ||| of the difference of the spectral projections of the operators L and Lε associated
with the eigenvalue 1 goes to zero when ε → 0. Since the corresponding eigenspace have
dimension 1, we conclude that hε → h in the L1 norm and we have proved the stochastic
stability in the strong sense.
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We will use as B the Banach space of quasi-Hölder functions. We start by defining, for
all functions h ∈ L1 and 0 < α ≤ 1 the seminorm

|h|α := sup
0<ε1≤ε0

1

εα1

∫

osc(h, Bε1(x))dx , (165)

where, for any measurable set A, osc(h, A) := Essupx∈Ah(x)−Essinfx∈Ah(x).We say that
h belong to the set Vα ⊆ L1 if |h|α < ∞.Vα does not depend on ε0 and equipped with the
norm

‖h‖α := |h|α + ‖h‖1 (166)

is a Banach space and from now on Vα will denote the Banach space B := (Vα, ‖·‖α).
Furthermore, it can be proved that B is continuously injected into L∞ and in particular

||h||∞ ≤ Cs ||h||α where Cs = max(1,εα0 )
εn
0

, [35]. The value of α could be chosen equal to 1

thanks to the horizontally closeness hypothesis given below.
We now describe how the one-dimensional map T is perturbed. From now on we will

suppose that sptλε ⊂ (−ε, ε) and choose the maps Tη with absolutely continuous invariant
distribution μη in such a way they are close to T in the following sense:

• denoting by g = 1
|T ′| and gη = 1

|T ′η| the potentials of the two maps defined everywhere

but in the discontinuity, or critical, points x0 and x0,η respectively, we have that g and
gη satisfy the Hölder conditions, with the same constant and exponent (we can always
reduce to this case by choosing ε sufficiently small):

|g(x)− g(y)| ≤ Ch |x − y|ε ; |gη(x)− gη(y)| ≤ Ch |x − y|ε , (167)

where (x, y) belong to the two domains on injectivity of the maps excluding the critical
points. We will call these domains I1, I2 and I1,η, I2,η respectively assuming that the
domain labelled with i = 1 is the leftmost.

• The branches are horizontally close, namely for any z ∈ I we have:

|T−1j (z)− T−1j,η (z)| ≤ υ(ε) ; |T ′(T−1j (z))− T ′η(T−1j,η (z))| ≤ υ(ε), j = 1, 2 , (168)

where T−1j , T−1j,η denote the inverse branches of the two maps and in the comparison of
the derivatives we exclude z = 1. Here and in a few other forthcoming bounds, where
we compare close quantities, we will simply write υ(ε) as the error term, meaning that
such a function goes to zero when ε→ 0 and it is bounded as υ(ε) ≤ ε,with the explicit
form of υ(ε) which could change from an inequality to another 2.

With these assumptions, and those listed in Sect. 12, if uniformly in η ∈ sptλε the L∞
norm gη is bounded by a constant in (0, 1) , it follows from Butterley’s work [12] that the
map T and each Tη verify a Lasota–Yorke inequality with the same constants (these constants
are in fact explicitly given and basically depend on the L∞ norm of gη and on the constants
λ and Cδ appearing Theorems 4.1 and 4.2 in the just cited Butterley’s paper).

Remark 19 It is important to stress at this point that the uniform expandingness of our maps
Tη is essential to prove the quasi-compactness of the associated transfer operators. Therefore
what just stated does not apply directly to the one-dimensional Lorenz-cusp type map T̃
appearing in our previous paper [18]. Nevertheless, making use of Theorem 2 in [34], we

2 Of course we could ask for bounds of the type υ(ε) ≤ Cε, where C is a constant independent of υ; the
presence of the constant will simply modify some factor in the next bounds and it will be irrelevant for our
purposes.
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can consider in place of the T̃η’s the family of uniformly expanding maps
{
T η

}

η∈sptλε
such

that T η ◦ W = W ◦ T̃η, with W a given function defined in Sect. 13 of the Appendix.
Indeed, these maps are uniformly expanding, more precisely, by construction, we have

infη∈sptλε inf
∣
∣
∣T
′
η

∣
∣
∣ > 1,which implies that the conditionsA1 andA3 given above aremet. A2

is also met by the uniqueness ofμT̃η
which we proved in [18], sinceμT η

= μT̃η
◦W−1,while

the validity of conditions A5 and A6 follows by direct computation under the assumption of
ε being sufficiently small.

We now add two more assumptions for future purposes:

A7 Vertical closeness of the derivativesFor anyη ∈ sptλε let kη := inf
{
k ∈ N : x0,η ∈

Bkη (x0)
}
be the the smallest integer k for kη be the radius of a ball centered in x0

containing the critical point of Tη.We then assume that there exists a positive constant
C such that

sup
η∈sptλε

sup
x∈Bc

kηη
(x0)
{|T ′η(x)− T ′(x)|} ≤ Cυ(ε) . (169)

A8 Translational similarity of the branches We suppose that, for any η ∈ sptλε, the
branches Ti := T �Ii and Ti,η := Tη �Ii,η corresponding to the same value of the
index i = 1, 2 will not intersect each other, but in x = 0, 1.

The introduction of assumptions A7 and A8, as one can see by looking at Fig. fig:2
below, which is taken from our previous work [18], are motivated by the change in the
shape of Tη w.r.t. that of T an additive perturbation of order η to the phase velocity field
produces. In particular, A7, which was also already used in [11], requires that outside a small
neighborhood of the abscissa of the cusp of the unperturbedmap T , the derivative of T and of
all its perturbations Tη are ε close. Assumption A8 requires that the left (resp. right) branches
of T and of its perturbations Tη can only meet in 0 (resp. 1).

Theorem 20 For any realization of the noise η ∈ sptλε, let Tη satisfy the assumptions A1-A8.
Then, μT is strongly stochastically stable.

Proof If we were able to prove that the transfer operator for T and for Tη are close in the norm
||| · ||| uniformly in η, we would get desired result no matter of the probability distribution
of the noise λε.We therefore begin to compare the two operators, first of all we have for any
h ∈ B

(Lh − Lηh)(x) =
∑

i=1,2
h(T−1i x)g(T−1i x)−

∑

i=1,2
h(T−1i,η x)gω(T

−1
i,η x) (170)

With the usual adding and subtracting procedure, we can regroup the r.h.s. of the previous
expression in the following blocks:

(Lh − Lηh)(x) =∑
i=1,2[h(T−1i x)− h(T−1i,η x)]g(T−1i x)

+ ∑
i=1,2 h(T−1i,η x)[g(T−1i x)− gη(T

−1
i,η x)]. (171)

We denote with (I) and (II) the first and the second term on the r.h.s.. The second one can be
further decomposed as

(I I ) =
∑

i=1,2
h(T−1i,η x)[g(T−1i x)−g(T−1i,η x)]+

∑

i=1,2
h(T−1i,η x)[g(T−1i,η x)−gη(T

−1
i,η x)] (172)

and we call (III) and (IV) the two terms on the r.h.s.. We now begin to estimate them.
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(I) We have by the horizontal closeness
∑

i=1,2
|h(T−1i x)− h(T−1i,η x)|g(T−1i x) ≤

∑

i=1,2
osc(h, Bε(T

−1
i x))g(T−1i x)

= L[osc(h, Bε(·)] . (173)

By integrating and using duality on the transfer operator we get
∫

|(I )|dx ≤
∫

osc(h, Bε(x))dx ≤ εα|h|α . (174)

(III) Since g is Hölder we immediately have:
∫

|(I I I )|dx ≤ 2εCh ||h||∞ ≤ 2ειChCs |h|α . (175)

(IV) We rewrite the difference of the potential as

|g(T−1i,η x)− gη(T
−1

i,η x)| ≤ |T
′
η(T

−1
i,η x)− T ′(T−1i,η x)|

|T ′η(T−1i,η x)||T ′(T−1i,η x)| . (176)

Let yη := inf x∈Bkηη(x0) Tη (x) . Assumption A8 implies limη→0 yη = 1. Now, we
first compute the integral

∫ |Lh − Lηh|dx removing the interval [y+, 1], where
y+ := infη∈sptλε yη. Clearly the estimate of (I ) and (I I I ) remain unchanged and,
by the assumption A7, (I V ) immediately gives

∫

|(I V )|dx ≤ 2CsCε|h|α . (177)

Therefore, we are left with the estimate of the error term
∫

#
|Lh − Lηh|dx, where

# := [y+, 1].
∫

#

|Lh − Lηh|dx ≤
∫

L(|h|)1#dx +
∫

Lη(|h|)1#dx ≤
∫

(|h|)1# ◦ T dx +
∫

(|h|)1# ◦ Tηdx ≤ 2Cs |h|α[Leb(T−1#)+ Leb(T−1η #)] ≤
16Cs |h|αε . (178)

By collecting all the bounds just got, we conclude that ||L− Lε||1 ≤ O(ε)|| f ||α.
��

The proof we just gave refers to the case where T and its perturbations are respectively
the Lorenz cusp-type map studied in [18].

The same technique can be used to show the stochastic stability of the classical Lorenz-
type map again under the uniformly expandingness assumption. In this case we do not need
the vertical closeness of the derivatives; instead we have to add the additional hypothesis
that the largest elongations between |T (0) − Tη(0)| and |T (1) − Tη(1)| are of order ε for
any η and moreover |T−11 (Tη(0))| and 1 − |T−12 (Tη(1))| are also of order ε, where the last
two quantities are the size of the intervals whose images contains points that have only one
preimage when we apply simultaneously the maps T and Tη. Hence they must be removed
when we compare the associate transfer operators. The proof then follows the same lines of
the previous one and therefore is omitted.
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Part III

The semi-Markov description of the process

In this part of the paper we will discuss the stochastic stability of the unperturbed physical
measure in the framework of PDMP.

9 The Associated Semi-Markov Process in R
3

Let {xn}n∈Z+ be the (homogeneous) Markov chain on (�,F,P) with values inM such that,
by (54), for any A ∈ B (M) , n ∈ N,

P
{
ω ∈ � : xn (ω) ∈ A|Fx

n−1
} = P

{
ω ∈ � : �t(xn−1,θnω)

π(θnω) (xn−1) ∈ A|xn−1
}

P− a.s. ,

(179)
whose transition probability measure is therefore

P {x1 ∈ dz|x0} = �ε

{
η ∈ [−1, 1] : Rη (x0) ∈ dz

}
. (180)

Consequently, we define the random sequence {sn}n∈Z+ such that

� � ω �−→ s0 (ω) := t (x0 (ω) , ω) , (181)

� � ω �−→ sn+1 (ω) := sn (ω)+ t (xn (ω) , ω) ∈ R
+ , n ≥ 0 , (182)

and accordingly the counting process (Nt , t ≥ 0) such that

Nt := sup
{
n ∈ Z

+ : sn ≤ t
}
. (183)

We remark that for ε sufficiently small λε
{
η ∈ [−1, 1] : inf x∈M τη (x) > 0

} = 1 which
imply that for any t > 0,P {ω ∈ � : Nt (ω) <∞} = 1.

The sequence {(xn, tn)}n∈Z+ such that t0 := s0, tn := sn+1 − sn, n ≥ 0 is a Markov
renewal process, since by construction, ∀A ∈ B (M) , t > 0, n ≥ 0,

P {xn+1 ∈ A, tn+1 ≤ t |xn, tn} = P {xn+1 ∈ A, tn+1 ≤ t |xn} P− a.s. ,

P {x1 ∈ A, t1 ≤ t |x0} = �ε

{
η ∈ [−1, 1] : Rη (x0) ∈ A, τη (x0) ≤ t

}
(184)

and
P
{
tn+1 ≤ t | {xn}n∈Z+

} = P {tn+1 ≤ t |xn, xn+1} P− a.s. . (185)

Therefore (xt , t ≥ 0) such that xt := xNt is the associated semi-Markov process [9,26].
Let us set

U ×� � (y, ω) �−→ ŝ1 (y, ω) := inf
{

t > 0 : �t
π(ω) (y) ∈M

}
∈ R

+ . (186)

Then, we introduce the random process (ut (y0) , t ≥ 0) started at y0 ∈ U , such that

� � ω �−→ ut (y0) (ω) := (1− 1M (y0))�
t
π(ω) (y0) 1[0,ŝ1(y0,ω)) (t)

+ 1{�ŝ1(y0,ω)(1−1M(y0))
π(ω)

(y0)}
(x0)

× �t

π
(
θ(1−1M(y0))ω

) (x0) 1[(1−1M(y0))ŝ1(y0,ω),s1(ω)) (t)

+
∑

n≥1
�

t−sn(ω)

π
(
θn+(1−1M(y0))ω

) (xn) 1[sn(ω),sn+1(ω)) (t) ∈ U . (187)
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Setting (lt , t ≥ 0) such that lt := t − sNt , we have that (ut , t ≥ 0) , with ut (·) =(
�

lt
π◦θNt

◦ xt

)
(·) , is a semi-Markov random evolution [26].

10 Stochastic Stability of the Unperturbed Physical Measure

The process (vt , t ≥ 0) such that vt := (xt ,Nt , lt ) is a homogeneous Markov process as well
as the process (wt , t ≥ 0) such that wt := (xt , lt ) .Moreover Fw

t ⊆ Fv
t and it follows from

[16, Theorem A2.2] that these σalgebras are both right continuous.
By setting z = 0 in formula (3.9) in [2, Corollary 1], (see also [2, Theorem 3]) we have

that for any x ∈M, v ≥ 0 and any measurable set A ⊆M,

lim
t→∞P {xt ∈ A, lt > z|x0 = x, l0 = v} =

∫

M ν2 (dx)
[
1A (x)

∫∞
z ds

(
1− Fε

τ (s; x)
)]

∫

M ν2 (dx)
[∫∞

0 ds
(
1− Fε

τ (s; x)
)] , P-a.s.

(188)
where for any x ∈M, t ≥ 0,

Fε
τ (t; x) := P {ω ∈ � : t (x, ω) ≤ t} = λε

{
η ∈ [−1, 1] : τη (x) ≤ t

}
(189)

and (see Remark 9) ν2 ∈ P (M) is stationary for the Markov chain {xn}n∈Z+ .

Proposition 21 For any bounded measurable function f on U and any y0 ∈ U ,

lim
t→∞

1

t

∫ t

0
ds f ◦ us (y0) =

∫

[−1,1] λε (dη)
∫

M ν2 (dx)
∫ τη(x)
0 ds f

(
�s
η (x)

)

∫

M ν2 (dx)
[∫∞

0 ds
(
1− Fε

τ (s; x)
)] , P-a.s.

(190)

Proof Given any bounded measurable function f on U , by (187)
∫ t

0
ds f ◦ us (y0) = (1− 1M (y0))

∫ ŝ1(y0,·)

0
ds f

(
�s
π (y0)

)

+ 1{�ŝ1(y0,·)(1−1M(y0))
π (y0)}

(x0)

∫ s1

ŝ1(y0,·)(1−1M(y0))

× ds f
(
�

s−ŝ1(y0,·)
π◦θ(1−1M(y0))

(x0)
)

+
Nt−1∑

n=1

∫ sn+1

sn

ds f
(
�

s−sn

π◦θn+(1−1M(y0))
(xn)

)
+
∫ t

sNt

ds f

(
�

s−sNt

π◦θNt+(1−1M(y0))
(xt )

)
. (191)

By definition the process (ut , t ≥ 0) is semi-regenerative with imbedded Markov renewal
process {(xn, tn)}n∈N , that is (ut , t ≥ 0) is regenerative with imbedded renewal process
{sn}n≥1 . Indeed, ∀n ≥ 1 the post-process

((
ut+sn , t ≥ 0

)
, {tn+k}k≥1

)
is independent of the

random vector
(
ŝ1 (y0, ·) , s1, .., sn

)
([9, Sect. VII.5]). It is enough to restrict ourselves to the

nondelayed case, that is y0 ∈ M, since E
[
ŝ1 (y0, ·)

]
, supx∈M λε

(
τη (x)

)
< ∞. By (54)

and (55)

lim
n→∞

sn

n
= lim

n→∞
1

n

n∑

k=1
t (xn, ·) = lim

n→∞
1

n

n∑

k=1
τπ

(
Rk (y0, ·)

)
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= P⊗ ν2 [τπ ] =
∫

ν2 (dx)

[∫ ∞

0
ds
(
1− Fε

τ (s; x)
)
]

, P-a.s. . (192)

Moreover, by renewal theory (see e.g. [9, Sect. V])

lim
t→∞

t

Nt
= ν2

[∫ ∞

0
ds
(
1− Fε

τ (s; ·)
)
]

, P-a.s. , (193)

therefore,

lim
t→∞

∣
∣
∣
∣
∣

∫ t

sNt

ds f
(
�

s−sNt

π◦θNt+(1−1M(y0))
(xt )

)
∣
∣
∣
∣
∣
≤ lim

t→∞‖ f ‖∞
lt

t

= lim
t→∞‖ f ‖∞

(

1− sNt

Nt

Nt

t

)

= 0 , P-a.s. ,

(194)

and the thesis follows from [9] Theorem VI.3.1. ��
Defining

με ( f ) :=
∫

[−1,1] λε (dη)
∫

M ν2 (dx)
∫ τη(x)
0 ds

∫
ν2 (dx)

[∫∞
0 ds

(
1− Fε

τ (s; x)
)] f ◦�s

η (x) , (195)

by the stochastic stability of μR0 , since for any bounded real-valued measurable function ϕ
on M× R

+,

lim
ε→0

1

ν2
[∫∞

0 ds
(
1− Fε

τ (s; ·)
)]

∫

M
νε2 (dx)

∫ τη(x)

0
dsϕ (x, s)

=
∫

M
μR0 (dx)

∫ τ0(x)

0
ds

1

μR0 [τ0]
ϕ (x, s) = μS0 (ϕ) , (196)

we get

lim
ε→0

με ( f ) = μS0

(
f ◦�·0

) =
∫

M
μR0 (dx)

∫ τ0(x)

0
ds

1

μR0 [τ0]
f ◦�s

0 (x) , (197)

that is the proof of the following result.

Theorem 22 If νε2 weakly converges to μR0 , then με weakly converges to the unperturbed
physical measure.

Remark 23 This last result provides another proof of the stochastic stability of the phys-
ical measure already given in Sect. 8.3. Notice that, by (187) and by the definition(
�̂

t,t0
ω , t > t0 ≥ 0

)
given at the beginning of that section, for any, u0 ∈ U , ω ∈ �, the

associated trajectory
{
(u, t) ∈ U × R

+ : u = ut (u0) (ω)
}
of (ut (u0) , t ≥ 0) , that is the

process (ut , t ≥ 0) started at u0, coincides with �̂t,0
ω (u0) .

Therefore we are left with the proof of the existence of νε2 and of its weak convergence to
μR0 in the limit of ε tending to 0, i.e. of the stochastic stability of the invariant measure for
the unperturbed Poincaré map R0.

We show that in this framework the existence of the invariant measure ν̄ε2 for the transition
operator PR, and its weak converge toμR0 can be proven following the same argument which
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led to the existence and the strong stochastic stability of ν1, the invariant measure for the
transition operator PT , given in Sect. 8.4.

Since M is foliated by the invariant stable foliation of the unperturbed flow and that the
leaves of the foliation can be rectified because the regularity of the foliation is higher that
C1, any connected component of M can be represented as

O � (u, v) �−→ r (u, v) := (y1 (u, v) , y2 (u, v) , y3 (u, v)) ∈ R
3 , (198)

whereO is a regular open subset of R
2 and r ∈ C1

(O,R3
)∩C

(O,R3
)
is such that, setting

Ī := {u ∈ R : ∃v ∈ R s.t . (u, v) ∈ O} ,∀u ∈ Ī , r (u, ·) ∩M is an invariant stable leaf.
Making the identification ofM with O and of I with Ī , we also identify q :M −→ I with
q̃ : O −→ Ī 3 as well as, for any η ∈ sptλε, the map R̄η : M � defined in (26) with the
skew-product

O � (u, v) �−→ (
T̄η (u) , ϒη (u, v)

) ∈ O′ , O′ ⊆ O. (199)

Hence, denoting by O � (u, v) �−→ m (u, v) ∈ R
+ the Radon-Nikodým derivative w.r.t.

λ2 of the uniform probability distribution λM on M, if h̄ ∈ L1 (M, λM) , let h := h̄ ◦ r ∈
L1
(O,mλ2) .

Proposition 24 If, for any η ∈ sptλε,Lη satisfies the Lasota–Yorke inequality (163), T0
preserves only one invariant measure a.c.w.r.t. λ and the transition operator PR satisfies the
assumption A5 given in Sect. 8.4, then μR0 is strongly stochastically stable.

Proof Let us set M := M (M) . For any μ ∈ M, g ∈ Mb (M) and any subσalgebra B′ of
B (M) ,

μ (g) = μ̂+ (M) μ̄+ (g)− μ− (M) μ̂− (g) = μ+ (M) μ̂+
(
μ̂+

(
g|B′μ+

))

− μ− (M) μ̂−
(
μ̂−

(
g|B′μ−

))

= μ
(Eμ

(
g|B′)) , (200)

where B′μ± is the trace σalgebra of B′ on sptμ±, namely
{

A ⊆ sptμ± : ∃B ∈ B′ s.t . A =
B ∩ sptμ±} and, since μ±

(
μ̂∓

(
g|B′μ∓

))
= 0 because sptμ̂±

(
g|B′μ±

)
⊆ sptμ±,

Eμ
(
g|B′) := μ̂+

(
g|B′μ+

)
+ μ̂−

(
g|B′μ−

)
. (201)

Given μ ∈M and B′ subσalgebra of B (M) , for any g ∈ Mb (M) ,

∣
∣Eμ

(
g|B′)∣∣ ≤ μ̂+

(
|g| |B′μ+

)
+ μ̂−

(
|g| |B′μ−

)
= Eμ

(|g| |B′) ≤ 2 ‖g‖∞ . (202)

Hence, Eμ
(·|B′) is a bounded positivity preserving linear operator from Mb (M) to{

g ∈ Mb (M) : g is B′-measurable
}
.

If B′ = BI := q−1 (B (I )) , for any μ ∈ M, g ∈ Mb (M) , there exists ϕμ,g ∈ Mb (I )
such that Eμ (g|BI ) = ϕμ,g ◦ q μ − a.e.. In particular, for any g ∈ Mb (M) such that
g = f ◦ q with f ∈ Mb (I ) , ϕμ,g = f for any μ ∈M.

Let M be the set of μ ∈ M such that, for any f ∈ Mb (I ) , μ ( f ◦ q) = λ
(
hμ f

)
, with

hμ ∈ L1 (I , λ) . Clearly, if M∼ :M/ ∼ is the set of equivalence classes of the elements of
M w.r.t. the equivalence relation ∼ on M such that, for any BI -measurable g ∈ Mb (M) ,

μ ∼ ν ⇐⇒ μ (g) = ν (g) , (203)

3 If ῑ : Ī −→ I , then ῑ ◦ q̃ = q ◦ r.
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M is the subset of M∼ whose elements are a.c. w.r.t. λ. Since 1M = 1I ◦ q, for any μ
in M, ‖μ‖ = |μ| (1M) = ∥

∥hμ
∥
∥

L1(I ,λ) , hence ∀μ, ν ∈ M, ‖μ− ν‖ = ∥
∥hμ − hν

∥
∥

L1(I ,λ) .

Therefore, if {μn}n≥1 is a Cauchy sequence, then
{
hμn

}

n≥1 is a Cauchy sequence in L1 (I , λ)
which implies that M is a Banach space.

Let B1 be the Banach space
{
μ ∈ M : hμ ∈ B

}
. Then, if ∀η ∈ sptλε,

∥
∥
(
R̄η
)

# μ
∥
∥

B1
= ∥
∥Lηhμ

∥
∥

B
≤ κ

∥
∥hμ

∥
∥

B
+ D

∥
∥hμ

∥
∥

L1(I ,λ)

= κ ‖μ‖B1
+ D ‖μ‖ , (204)

with κ and D as in (163),
∥
∥μPR

∥
∥

B
= ∥
∥Lεhμ

∥
∥

B
≤ κ ‖μ‖B1

+ D ‖μ‖ . (205)

Moreover, for any μ ∈ B1,

∥
∥
(
R̄0
)

# μ− μPR

∥
∥ = ∥

∥(L0 − Lε) hμ
∥
∥

L1(I ,λ) ≤ O (ε)
∥
∥hμ

∥
∥

B
= O (ε) ‖μ‖B1

. (206)

Therefore, all the assumptions A1-A6 in Sect. 8.4 are satisfied and the thesis follows from
Corollary 1 in [10] and Lemma 12. ��

10.1 Constant Additive RandomType Forcing

We consider the special case of random perturbations of
(
�t

0, t ≥ 0
)
previously analysed

realized by the addition to the unperturbed phase vector field of a constant random term,
namely

φη := φ0 + ηH , η ∈ sptλε , (207)

with H as in (18).
Wewill show that in this particular case the stochastic stability of the unperturbed physical

measure will follow directly from that of the Poincaré map defined on a given Poincaré
surface.

In [32] it has been shown that the Casimir function for the (+) Lie–Poisson brackets
associated to the so (3) algebra formula is a Lyapunov function for the ODE system (2).
Namely, assuming additive perturbations of the phase vector field as those given in (18) we
can by rewrite formula (35) of [32] in our notation so that, for any realization of the noise
η ∈ sptλε, by [18, Sect. 2.1] we get

(
C ◦�t

η

)
(y) ≤ C (y) e−t min(1,ζ,β) +

∥
∥Hη

∥
∥2

(min (1, ζ, β))2

(
1+ e−t min(1,ζ,β)

)
, (208)

where R
3 � y �−→ C (y) := 〈y, y〉 = ‖y‖2 ∈ R

+ and Hη := ηH + H0 ∈ R
3, with

H0 := (0, 0,−β (ζ + γ )) . Hence, choosing t = τη (y) we obtain

C ◦ Rη (y) ≤ aεC (y)+ Kε (1+ aε) , (209)

where

aε := e−min(1,ζ,β) infη∈sptλε infu∈M τη(u) ∈ (0, 1) , (210)

Kε :=
supη∈sptλε

∥
∥Hη

∥
∥2

(min (1, ζ, β))2
> 0 . (211)
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Moreover, for any ς > 0, (209) implies

(1+ ςC) ◦ Rη (y) ≤ 1+ ςaεC (y)+ ςKε (1+ aε)

= aε (1+ ςC (y))+ K̄ε , (212)

where K̄ε := (1− aε)+ ςKε (1+ aε) , which entails for PR the weak drift condition

PR (1+ ςC) (y) ≤ aε (1+ ςC (y))+ K̄ε . (213)

Lemma 25 PR admits an invariant probability measure.

Proof Let B0 be the dual space of C (M) and Bς be the dual space of Cς (M): the Banach
space of real-valued functions on M such that supx∈M

|ψ(x)|
1+ςC(x) < ∞.Bς ⊆ B0 and (212),

(213) are respectively equivalent to the Doeblin-Fortet conditions, namely, for any μ ∈ Bς

∥
∥
(
Rη
)

# μ
∥
∥
ς
≤ aε ‖μ‖ς + K̄ε ‖μ‖0 , (214)

‖μPR‖ς ≤ aε ‖μ‖ς + K̄ε ‖μ‖0 , (215)

where ‖·‖0 , ‖·‖ς denote the norm of B0 and Bς .

Let μ ∈ Bς such that ‖μ‖0 = 1. By (215) PR : Bς � and ∀n ≥ 1,

∥
∥μPn

R

∥
∥
ς
≤ an

ε ‖μ‖ς + K̄ε

1− an
ε

1− aε
≤
(

an
ε +

K̄ε

1− aε

)

‖μ‖ς . (216)

Moreover, sinceM is compact B0 is tight4. Therefore, setting μ0 := μ and for k ≥ 1 μk :=
μPk

R, the sequence {νn}n∈Z+ such that ν0 := μ, νn := 1
n

∑n−1
k=0 μk, n ≥ 1, admits a weakly

convergent subsequence whose limit ν is PR invariant since, ∀ψ ∈ C (M) ⊆ Cς (M) ,

νn (PRψ) = νn (ψ)+ μn+1 (ψ)− μ (ψ)

n
, (217)

but

|μn+1 (ψ)− μ (ψ)| ≤ (‖μn+1‖ς + ‖μ‖ς
)
sup

x∈M
|ψ (x)|

1+ ςC (x)

≤
(

2+ K̄ε

1− aε

)

‖μ‖ς ‖ψ‖∞ . (218)

��
The stochastic stability of μR0 then follows from Corollary 15, via Theorem 14 and

Theorem 20.
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μn {(1+ ςC) > L} ≤ 1+ K̄ε

L
< ε .

See also Lemma 4 in [19].
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Part IV

Appendix

Here we give examples of the cross-section M and of the maps Tη and Rη discussed in the
paper, as well as some comments on the results achieved in our previous paper [18]. We also
present the proof of Proposition 2.

11 The Poincaré SectionM
Although what stated in Part I and Part II of the paper are not directly affected by a particular
choice ofM, to set up the problem in a way easy to visualize we found useful to refer to the
following examples.

Let us consider (2) with the parameter γ, ζ, β defining the classical Lorenz flow and let
c0 := (0, 0,− (γ + ζ )) be the hyperbolic equilibrium point of (2). If O : R3 � is such that
O tD�t

0 (c0) O is diagonal, we can distinguish between two cases:

1. in the first case we choose M ≡M′, where

M′ : =
{

y ∈ R
3 : ∣∣(O ty

)

1

∣
∣ ,
∣
∣
(
O ty

)

2

∣
∣ ≤ 1

2
,
(
O ty

)

3 = y3 = 1− (γ + ζ )

}

; (219)

2. in the second, we choose M to be the Poincaré section for the Lorenz’63 flow given in
(2) constructed in [18], namely M :=M′′, where

M′′ :=
{

y ∈ R
3 : ∣∣O ty1

∣
∣ ,
∣
∣O ty2

∣
∣ ≤ 1

2
, y3 ∈

[− (γ + ζ ) , 1− (γ + ζ )
] ;

〈
φ0 (y) ,∇ ‖y‖2〉 = 0 ,

〈
φ0 (y) ,∇

〈
φ0 (y) ,∇ ‖y‖2〉〉 ≤ 0

}
, (220)

with φ0 given by (2), which is given by the union of two C2 compact manifoldsM1,M2

intersecting at c0 only and such that, if

R
3 � (y1, y2, y3) �−→ P (y1, y2, y3) := (−y1,−y2, y3) , (221)

PM1 =M2.

11.1 The Poincaré Map forM′′

Since no confusion will arise, here we will drop the subscript 0 to refer to the unperturbed
one-dimensional maps.

In Sect. 2.2.2 in [18] we showed that the Poincaré surfaceM′′ defined in (220) is foliated
by curves given by the intersection of the spheres

{
y ∈ R

3 : ‖y‖2 = r
}
, r ∈ [

r∗, y23 (c0)
]
,

for some r∗ > 0, with the surface
{

y ∈ R
3 : 〈φ0 (y) ,∇ ‖y‖2〉 = 0,

〈
φ0 (y) ,∇

〈
φ0 (y) ,∇ ‖y‖2〉〉 ≤ 0

}
, (222)

where φ0 is defined in (2). By (221), P defines an equivalence relation between the points
of M′′ and we can identify M1 with the set MP of the corresponding equivalence classes.
Moreover, we can identify the interval

[
r∗, y23 (c0)

]
with the collection of the equivalence

classes of the points of M1, and so of MP, having the same squared Euclidean distance
from the origin, i.e. those belonging to the same leaf of the just mentioned foliation which
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we denote by C. In [33] it has been shown by numerical simultations that C is invariant
exhibiting an automorphism T̂ : [r∗, y23 (c0)

]
� . By construction, the Lorenz-type cusp

map of the interval given in [18, Fig. 1], which we denote by T̃ , is the representation of T̂
as a map of the interval [0, 1] . Furthermore, if ci is the critical point of φ0 different from
c0 having minimal Euclidean distance from the component Mi , i = 1, 2, in Section B of
[33] it has also been shown that the k-th branch of the induced map of T̃ on [u0, 1] , with
u0 := T̃−1 (1) , refers to trajectories of the system started at Mi that wind k times around
c j , i (= j, before returning on Mi , while the trajectories of the points of Mi winding just
around ci before returning onMi correspond to the branch T̃ �[0,u0] of T̃ (see [33, Fig. 11]).
Therefore, from these last observations, the map T (i.e. T̄η : [−1, 1] � in (225) for η = 0)
can be reconstructed from T̃ and consequently also its invariant measure. As a matter of
fact, describing M1 as in (198), setting O � (u, v) �−→ P̄ (u, v) := (p (u) ,p (v)) , with
R � w �−→ p (w) := −w ∈ R, and identifying the unperturbed Poincaré map R0 :M′′ �
with the skew-product O∨

P̄O � (u, v) �−→ (
T̄0 (u) , ϒ0 (u, v)

) ∈ O∨
P̄O, it follows

that P ◦ R0 = R0 ◦ P, hence, since P is an involution, T̃ = p ◦ T̄0 ◦ p �[0,1] and, setting
ϒ := p ◦ ϒ0 ◦ P̄, we get the map R̂0 :MP �, which can be identified with the continuous

skew-product map O � (u, v) �−→
(

T̃ (u) , ϒ (u, v)
)
∈ O. The same considerations apply

to perturbations of the phase velocity field that preserves the same symmetry of the system
under P (see [18, Example 8]). In this case rather than (225) we would have had

[−1, 1] � u �−→ Tη (u) := 1[−1,−u0,η] (u) T̃η (−u)− 1[−u0,η,0] (u) T̃η (−u)

+ 1[0,u0,η] (u) T̃η (u)− 1[u0,η,1] (u) T̃η (u) ∈ [−1, 1] (223)

On the other hand, if the perturbed phase velocity field φη is not invariant under P, the
maps of the interval T̃1 and T̃2, representing respectively the automorphisms, associated with
the pertubed flow, of the collections of the equivalence classes of the points of M1 and M2

belonging to the leaves of C, can be thought as perturbations of T̃ fitting into the perturbing
scheme given in Sect. 8.4, if η is sufficiently small (see [18, Example 9]).

12 The One-Dimensional Map T�

In [7] and [22] it has been proven that, in the case we choose M := M′, identifying I
with

[− 1
2 ,

1
2

]
and, with abuse of notation, still denoting by T̄η :

[− 1
2 ,

1
2

] \ {0} −→ [− 1
2 ,

1
2

]

the corresponding transitive, piecewise continuous map of the interval, there exists α ∈
(0, 1) ,Gη ∈ Cεα

([− 1
2 ,

1
2

])
such that T̄η is locally C1+α on

[− 1
2 ,

1
2

] \{0} and
[

−1

2
,
1

2

]

\ {0} � u �−→ T̄ ′η (u) := |u|−1+α Gη (u) ∈
[

−1

2
,
1

2

]

. (224)

Moreover, T̄η
(
0∓
) = ± 1

2 .Namely, in this case, T̄η is the classical Lorenz-type map (see e.g.
Fig. 3.24 in [5] for a sketch).

In the case M := M′′, �0 = {c0} . Hence, we identify I with [−1, 1] and, again with
abuse of notation, we denote by T̄η : [−1, 1] � the map

[−1, 1] � u �−→ T̄η (u) := 1[−1,−u20,η

] (u) T̃η,2 (−u)− 1[−u20,η,0
] (u) T̃η,2 (−u)

+ 1[
0,u10,η

] (u) T̃η,1 (u)− 1[
u10,η,1

] (u) T̃η,2 (u) ∈ [−1, 1] ,
(225)
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Fig. 2 Experimental plots of the unperturbed map T̃0 (in black) and of its perturbations (in grey)

where, for i = 1, 2, T̃η,i : [0, 1] � is a transitive, continuous Lorenz-like cusp map of the
interval of the type studied in [18], with two branches and a point ui

0,η ∈ [0, 1] such that

T̃η,i

((
ui
0,η

)−) = T̃η,i

((
ui
0,η

)+) = 1.

In fact, in [33], the paper that inspired our previous work [18], the authors showed that
the invariant measure for T̄η can be deduced directly from those of the T̃η,i ’s, whose local
behaviour is therefore the following (compare formulas (52)–(55) in [18] and Fig. 2):

T̃η,i (u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

aη,i u + bη,i u1+cη,i + o(u1+cη,i ) ; aη,i , cη,i > 1, bη,i > 0 u → 0+

1− Aη,i (u0,η − u)Bη,i + o((u0,η − u)Bη,i ) ; Aη,i > 0, Bη,i ∈ (0, 1) u →
(

ui
0,η

)−

1− A′η,i (u − u0,η)
B′η,i + o((u − u0,η)

B′η,i ) ; A′η,i > 0, B ′η,i ∈ (0, 1) u →
(

ui
0,η

)+

a′η,i (1− u)+ b′η,i (1− u)1+c′η,i + o((1− u)1+c′η,i ) ; a′η,i ∈ (0, 1) , b′η,i > 0, c′η,i > 1 u → 1−

.

(226)

We remark that to prove the stochastic stability of the invariant measure for the evolution
defined by the unperturbed map T0 we needed supplementary assumptions on T0; see Sect.
8.4.

In particular, in the case M := M′′, by construction the stochastic stability of T0 will
follow from that of T̃0.

13 Existence of Invariant Measures for the Lorenz-Type CuspMap

In our previous paper [18] the one-dimensional Lorenz-cusp type map T (T̃ in the present
paper) had a branch with first derivative less than one on a open set but still bounded from
below by a positive number. We were unable to show that the derivative became globally
larger that one for a suitable power of the map and therefore we proceeded differently to
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prove the statistical stability of the unperturbed invariant measure; namely we induced and
we showed that on a (lot of) induced set(s), the derivative of the first returnmapwas uniformly
larger than one.

Anyway, the existence of an invariant measure for T follows combining Theorem 2 in
[34] and the results in Sect. 4.2 of [12] since one can check by direct computation that the
map

I � u �−→ T (u) := W ◦ T ◦W−1 (u) ∈ I , (227)

whereW is the distribution function associated to theprobabilitymeasure on ([0, 1] ,B ([0, 1]))
with density

[0, 1] � x �−→ W ′ (x) := Nγ̄ ,β̄e−γ̄ x x β̄ (1− x)β̄ (228)

(see formulas (83) and (84) in [18]) for suitably chosen parameters γ̄ , β̄ > 0 is such that

inf
∣
∣
∣T
′∣∣
∣ > 1.

In particular, by (226), for any η ∈ sptλε, setting B∗η := Bη ∨ B ′η and choosing

0 < β̄ < infη∈sptλε
1

B∗η
− 1, γ̄ > supη∈sptλε

β̄+1
1−x0,η

log 1
a′η
, for any η ∈ sptλε, we get

infη∈sptλε inf
∣
∣
∣T
′
η

∣
∣
∣ > 1. Hölder continuity of 1

T
′
η

follows from (229).

14 Statistical Stability for Lorenz-Like CuspMaps

We take the chance to rectify an incorrect statement we made in [18] about the regularity
properties of the one-dimensional map T .

Therefore, in this section, we will use the same notation we used in [18].
In that paper we state that the map T was C1+ι, for some ι ∈ (0, 1) , on the union of the

two sets (0, x0), (x0, 1),where the map was 1 to 1. This is incorrect. What is true is that T−1
is C1+ι, for some ι ∈ (0, 1) , on each open interval (0, x0), (x0, 1). Indeed, by the result in
[4], the stable foliation for the classical Lorenz flow is C1+α for some α ∈ (0.278, 1) ,which
means, by (54) and (55) in [18], that, for any x ∈ (0, x0), T

′
(x) = |x0 − x |1−B′ [1+ G1 (x)]

with G1 ∈ CαB′(0, x0) and, for any x ∈ (x0, 1), T ′ (x) = |x − x0|1−B [1+ G2 (x)] with
G2 ∈ CαB(x0, 1). In particular this implies that for any couple of points x, y belonging either
to (0, x0) or to (x0, 1)

|T ′(x)− T ′(y)| ≤ Ch
∣
∣T ′(x)

∣
∣
∣
∣T ′(y)

∣
∣ |x − y|ι , (229)

where ι ∈ (0, 1−B∗],with B∗ := B∨B ′, and the constantCh is independent of the location
of x and y.5

We now detail the modifications that these corrections induce on some of the proofs of
the results given in [18], all the statements of our results remaining unchanged.

Distortion The proof of the boundedness of the distortion was sketched in the footnote
(1) of [18] by using arguments given in [15]. In particular, in the initial formula (5) in [15]

we need now to replace the term
∣
∣
∣

D2T (ξ)
DT (ξ)

∣
∣
∣ |T q (x)− T q (y) |, where ξ is a point between

T q (x) and T q (y) ,with 1
|DT (ξ)|Ch |DT (T q (x))||DT (T q (y))||T q (x)−T q (y) |ι which

5 In [6] Sect. 5.3 is stated that the Hölder continuity of 1
T ′ on any domain Ii of bijectivity of T follows from

the Hölder continuity of T ′ �Ii . This cannot be true in general, as one can see looking at the expression of
T ′ given in [22] Proposition 2.6 for the geometric Lorenz flow. On the other hand, in this and in similar cases
the Hölder continuity of 1

T ′ �Ii can be directly proved (see also [5, Sect. 7.3.2]).
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is smaller than Ch (|DT (T q (x))| ∨ |DT (T q (y))|) |T q (x)− T q (y) |ι by monotonicity
of |DT | .The key estimate (11) in [15] will reduce in our case to the bound of the quantity
supξ∈[bi+1,bi ] |DT (ξ) ||bi−bi+1|.By using for DT the expressions given in the formulas
(54) and (55) of [18], and for the bi the scaling given in formula (75) of the same paper,
we immediately get that the above quantity is of order 1

(α′)i , which is enough to pursue
the argument about the estimate of the distortion presented in [15].
Perturbation In order to prove the statistical stability of the invariant measure μT for
the evolution given by the map T , the perturbed map Tε must satisfy at least the same
regularity properties required for T . Therefore, in [18, Sect. 3.2]:

– Assumption A should be replaced by the assumption that there exists ιε ∈ (0, 1) such
that T �(0,xε,0), T �(xε,0,1) are C1+ιε rather than assuming the stronger requirement
that Tε is C1+ιε on (0, xε,0) ∪ (xε,0, 1);

– Assumption C should be replaced by the requirement that the multiplicative Hölder
constant Cε

h of D
(
T−1ε

)
will converge to Ch when ε → 0.

We have then to modify the bounds (92), (99) and (114) in [18] which are all of the
form |DTε(a) − DTε(aε)|, with a ε-close to aε . We have |DTε(a) − DTε(aε)| ≤
Cε

h |DTε(a)||DTε(aε)||a − aε |. By the continuity and the monotonicity of DTε we can
replace aε in |DTε(aε)| with a or with another given point between a and x0; finally we
use the limit (88) in Assumption B to conclude.

15 Proof of Proposition 2

Proof The invariance of μR under R follows by (68), since

μR

(
ψ ◦ R) := lim

n→∞

∫

μT (du, dω) inf
x∈q−1(u)

ψ ◦ Rn+1
(x, ω) = μR (ψ) . (230)

Hence, since

lim
n→∞

∫

μT (du, dω) inf
x∈q−1(u)

ψ ◦ Rn
(x, ω) ≤ lim

n→∞
∫

μT (du, dω)
((

1q−1(u) ◦ p
)
ψ
)
◦ Rn

(x, ω)

≤ lim
n→∞

∫

μT (du, dω) sup
x∈q−1(u)

ψ ◦ Rn
(x, ω) , (231)

it is enough to prove that

lim
n→∞

∫

μT (du, dω) inf
x∈q−1(u)

ψ ◦Rn
(x, ω) = lim

n→∞

∫

μT (du, dω) sup
x∈q−1(u)

ψ ◦Rn
(x, ω) .

(232)
By (48), (32) and the definition of R̄π(ω),∀ω ∈ �,

R
(
Q−1 (u, ω)

) ⊂ Q−1 (T (u, ω)) . (233)

Therefore,

sup
x∈q−1(u)

ψ ◦ Rn+k
(x, ω) = sup

(x,ω′)∈Q−1(u,ω)
ψ ◦ Rn+k (

x, ω′
)

≤ sup
(x,ω′)∈Q−1(Tk (u,ω))

ψ ◦ Rn (
x, ω′

)
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= sup
(x,ω′)∈{(y,ω′′)∈M×� : Q(y,ω′′)=Tk (u,ω)}

ψ ◦ Rn (
x, ω′

)
(234)

and

inf
x∈q−1(u)

ψ ◦ Rn+k
(x, ω) = inf

(x,ω′)∈Q−1(u,ω)
ψ ◦ Rn+k (

x, ω′
)

≥ inf
(x,ω′)∈Q−1(Tk (u,ω))

ψ ◦ Rn (
x, ω′

)

= inf
(x,ω′)∈{(y,ω′′)∈M×� : Q(y,ω′′)=Tk (u,ω)}ψ ◦ R

n (
x, ω′

)
. (235)

Hence, by the invariance of μT under T,
∫

μT (du, dω) sup
x∈q−1(u)

ψ ◦ Rn+k
(x, ω)

≤
∫

μT (du, dω) sup
(x,ω′)∈{(y,ω′′)∈M×� : Q(y,ω′′)=Tk (u,ω)}

ψ ◦ Rn (
x, ω′

)

=
∫ (

Tk
#μT

)
(du, dω) sup

(x,ω′)∈{(y,ω′′)∈M×� : Q(y,ω′′)=(u,ω)}
ψ ◦ Rn (

x, ω′
)

=
∫

μT (du, dω) sup
(x,ω′)∈Q−1(u,ω)

ψ ◦ Rn (
x, ω′

)

=
∫

μT (du, dω) sup
x∈q−1(u)

ψ ◦ Rn
(x, ω) (236)

so that the sequence
{∫

μT (du, dω) supx∈q−1(u) ψ ◦ Rn
(x, ω)

}

n≥1 is decreasing. On the

other hand,
∫

μT (du, dω) inf
x∈q−1(u)

ψ ◦ Rn+k
(x, ω)

≥
∫

μT (du, dω) inf
(x,ω′)∈{(y,ω′′)∈M×� : Q(y,ω′′)=Tk (u,ω)}ψ ◦ R

n (
x, ω′

)

=
∫ (

Tk
#μT

)
(du, dω) inf

(x,ω′)∈{(y,ω′′)∈M×� : Q(y,ω′′)=(u,ω)}
ψ ◦ Rn (

x, ω′
)

=
∫

μT (du, dω) inf
(x,ω′)∈Q−1(u,ω)

ψ ◦ Rn (
x, ω′

)
(237)

so that
{∫

μT (du, dω) infx∈q−1(u) ψ ◦ Rn
(x, ω)

}

n≥1 is increasing. Since∀ω ∈ �,ψ (·, ω) ∈
Cb (M) and ∀u ∈ I , q−1 (u) ⊂ M is compact, by (233), ∀ε′ > 0, ∃δε′ > 0, nε′ > 0 such

that ∀n ≥ nε′ , ω ∈ �, u ∈ I , diam p
(
R

n (
Q−1 (u, ω)

))
< δε′ and ∀

(
x, ω′

)
,
(
y, ω′

) ∈
R

n (
Q−1 (u, ω)

)
,∣

∣ψ
(
x, ω′

)− ψ
(
y, ω′

)∣
∣ < ε′, therefore

∣
∣
∣
∣
∣

∫

μT (du, dω) sup
x∈q−1(u)

ψ ◦ Rn
(x, ω)−

∫

μT (du, dω) inf
x∈q−1(u)

ψ ◦ Rn
(x, ω)

∣
∣
∣
∣
∣
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≤
∫

μT (du, dω)

∣
∣
∣
∣
∣

sup
(x,ω′)∈Q−1(u,ω)

ψ ◦ Rn (
x, ω′

)− inf
(x,ω′)∈Q−1(u,ω)

ψ ◦ Rn (
x, ω′

)
∣
∣
∣
∣
∣
≤ ε′ ,

(238)

that is (232) holds.
Thus, the map

L1
P
(�,Cb (M)) � ψ �−→ μ̂ (ψ) := lim

n→∞

∫

μT (du, dω)
((
1q−1(u) ◦ p

)
ψ
)◦Rn

(x, ω) ∈ R

(239)
is a non negative linear functional such that μ̂ (1) = 1 and, by (232),

μ̂ (ψ) = lim
n→∞

∫

μT (du, dω) inf
x∈q−1(u)

ψ ◦ Rn
(x, ω) . (240)

Moreover,� is compact under the product topology, then the space of quasi-local continuous
functions C∞ (�,Cb (M))6 is dense in L1

P
(�,Cb (M)) , therefore, by the Riesz-Markov-

Kakutani theorem there exists a unique Radon measure μR on (M×�,B (M)⊗ F) such
that μR = μ̂ �CK (�,Cb(M)) .

The injectivity of the correspondence μT �−→ μR follows from the fact that,
∀ϕ ∈ L1

P
(�,Cb (I )) , ϕ ◦ Q ∈ L1

P
(�,Cb (M)) and

∫

μT (du, dω) inf
x∈q−1(u)

ϕ ◦ Q ◦ Rn
(x, ω) =

∫

μT (du, dω) inf
x∈q−1(u)

ϕ ◦ Tn ◦ Q (x, ω)

=
∫

μT (du, dω) inf
x∈q−1(u)

ϕ ◦ Tn (q (x) , ω) = μT
(
ϕ ◦ Tn) = μT (ϕ) . (241)

Therefore, if there exist μ′T invariant under T such that

μR (ψ) := lim
n→∞

∫

μ′T (du, dω) inf
x∈q−1(u)

ψ ◦ Rn
(x, ω) , (242)

then μ′T (ϕ) = μT (ϕ) , hence μ′T = μT.

The proof of the ergodicity of μR under the hypothesis of the ergodicity of μT is identical
to that of Corollary 7.25 in Sect. 7.3.4 of [5]. ��
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