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Abstract

The Fourier transform of orthogonal polynomials with respect to their
own orthogonality measure defines the family of Fourier-Bessel functions.
We study the asymptotic behaviour of these functions and of their products,
for large real values of the argument. By employing a Mellin analysis we
construct a general framework to exhibit the relation of the asymptotic decay
laws to certain dimensions of the orthogonality measure, that are defined
via the divergence abscissas of suitable integrals. The unifying rôle of Mellin
transform techniques in deriving classical and new results is underlined.
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1 Introduction

This is the first of two papers on the asymptotic behaviour of the Fourier trans-
forms of the orthogonal polynomials of a measure. Let µ be a positive Borel mea-
sure supported on the real axis that we suppose to be normalized, and for which
the moment problem is determined [1]: that is, all moments µn :=

∫
dµ(s) sn,

n ∈ N exist, and uniquely identify the measure. This class includes measures with
unbounded support, as well as compactly supported multi-fractal measures, that
are the principal motivation for this study. We then consider the set of associated
orthogonal polynomials {pn(µ; s)}n∈N,

∫
dµ(s) pn(µ; s)pm(µ; s) = δnm, (1)

where δnm is the Kronecker delta. We adopt the convention that
∫

dµ(s) means
applying the integration with respect to the measure µ to all functions of the vari-
able s that follow to the right. Termination of the integral will be imposed, when
not self-evident, by closing it into parentheses. For convenience and consistency,
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the same ordering of symbols will also be used for Riemann integrals. Let us now
define:

Definition 1 The generalized Fourier-Bessel Functions (F-B. functions for short)
Jn(µ; t) are the Fourier transforms of the orthogonal polynomials pn(µ; s) with
respect to µ:

Jn(µ; t) :=
∫

dµ(s) pn(µ; s) e−its. (2)

This paper is concerned with the investigation of the long-time behaviour of the
temporal Cesaro averages of the generalized F-B. functions,

J̄n(µ; t) := C(Jn; t) :=
1
2t

∫ t

−t

dt′ Jn(µ; t′). (3)

Here and in the following C(f ; t) and f̄ indicate the symmetric Cesaro average of
a function f . For F-B. functions this can be rewritten as

J̄n(µ; t) =
∫

dµ(s) Φ(t, s)pn(µ; s), (4)

where Φ(t, s) = sin(ts)/ts = sinc(ts). Eq. (4) also makes it evident that J̄n(µ; t) is
a real quantity. Comparison with eq. (2) shows that the same notation can be em-
ployed for instantaneous values, letting Φ(t, s) = e−its. The techniques presented
here can treat this case equally well, although with different results when µ is
singular continuous. In fact, recourse to Cesaro averaging is dictated in this case
by the presence of intermittent oscillations of the F-B. functions [2].

We shall also study the Cesaro averages of products of two F-B. functions:

Definition 2 The quadratic amplitudes Anm(µ; t) are defined as:

Anm(µ; t) := C(JnJ ∗m; t) :=
1
2t

∫ t

−t

dt′Jn(µ; t′)J ∗m(µ; t′), (5)

where the star indicates complex conjugation. This problem, for the case n = m =
0 is classical in the literature, and a variety of methods for its solution have been
proposed, a brief review of which is outlined in the next section.

In this paper, we will discuss a class of techniques based on the Mellin trans-
form (M.T. for short) that permit to recover the existing results into a global
theory, and to obtain new ones. We adopt the following definition of the Mellin
transform of a function f :

M(f ; z) :=
∫ ∞

0

dt f(t) tz−1. (6)

The precise meaning of this integral will be defined in the following, as convenience
will demand, either as a Lebesgue integral, or as an improper Riemann integral. We
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shall consider the Mellin transforms of the Cesaro averages J̄n(µ; t) and Anm(µ; t),
that we shall call Mn(µ; z) and Mnm(µ; z), respectively, letting the number of
subscripts discriminate between the two cases.

Let now f be positive: in our case, the diagonal amplitudes JnJ ∗n are such.
Then, it is well known that M(f ; z) is analytic in a strip ζ0 < <(z) < ζ∞ in the
complex plane. This domain of analyticity of the Mellin transform is indicative of
the short and long-time behaviour of f(t). Since we are mainly interested in the
latter, we shall investigate the right divergence abscissa of the Mellin transform,
ζ∞. It is an easy exercise to show that ζ∞ interpolates the upper and lower limits
of − log f(t)/ log(t), for t → ∞. Indeed, in a number of cases, equality with the
upper limit follows as a consequence of a classical theorem. It will be apparent
in the following that positivity of the function f is a strong constraint in this
problem. Nonetheless, we shall find that useful results can be obtained via the
M.T. technique also in the case of the non necessarily positive functions J̄n(µ; t)
and Anm(µ; t), with n 6= m.

In this analysis, a key rôle will be played by potential theoretic quantities.
First, we shall consider

Definition 3 The generalized electrostatic potential G(µ; s, z) of the measure µ at
the point s ∈ C is

G(µ; s, z) :=
∫

dµ(r)
1

|r − s|z . (7)

Integrating the potential with respect to µ leads to:

Definition 4 The generalized electrostatic energy E(µ; z) of the measure µ is:

E(µ; z) :=
∫∫

dµ(r)dµ(s)
1

|r − s|z . (8)

It is immediate to see that eqs. (7) and (8) define analytic functions in a half plane.
Their divergence abscissas can be used to define two important quantities:

Definition 5 The electrostatic local dimension d(µ; s) of a measure µ at the point
s is the divergence abscissa of the generalized electrostatic potential G(µ; s, z):

d(µ; s) := sup{x ∈ R s.t. G(µ; s, x) < ∞}.

Definition 6 The electrostatic correlation dimension D2(µ) of a measure µ is the
divergence abscissa of the generalized electrostatic energy E(µ; z):

D2(µ) := sup{x ∈ R s.t. E(µ;x) < ∞}.
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We shall prove that these dimensions are related by

Theorem 1 The electrostatic local dimension of µ at any point s, d(µ; s), is larger
than, or equal to, one-half of the electrostatic correlation dimension of the measure
µ, D2(µ):

d(µ; s) ≥ 1
2
D2(µ) ∀s ∈ R. (9)

We shall prove this theorem, together with an almost-sure variant in Sect. 16.
The electrostatic dimensions coincide with the corresponding lower dimen-

sions of conventional theory, that we define below, as proven in [3], [4]. Indeed,
these results follow from a quite general theorem on the Mellin transform of Stielt-
jes measures that is implicit in the literature, and that we shall spell out and prove
in the following.

We will show in this paper that the electrostatic dimensions are related to
the right divergence abscissas of Mn(µ; z) and Mnm(µ; z): therefore, they control
the asymptotic behaviour of J̄n(µ; t) and Anm(µ; t) for large t, for any measure µ.
Proper analytical tools will be developed and utilized to give a precise meaning to
the asymptotic relation. In addition, relations between the asymptotic behaviours
of the two quantities will be brought to light. In this process, side results of some
interest will be developed, involving, among other things, the asymptotic behaviour
of the potential G(µ; s, z) when z tends to infinity in the analyticity strip in the
complex plane.

The organization of this paper is the following: in the next section we shall
attempt a critical discussion of the results that have already appeared in the
literature on particular subcases of our problem, or that have dealt with a restricted
set of situations: we hope to convince the reader that the Mellin approach achieves
the widest generality. In section 3 we prove a theorem that contains those in [3],
[4] mentioned above as particular cases. A variant of this theorem is applied in
Sect. 4 to re-derive a classical result on the decay of the Fourier transform of a
measure.

We then start the analysis of the Mellin transform of the averaged F-B.
functions. In Sect. 5 we introduce asymptotic exponents defined “electrostatically”
that control their behaviour at infinity via a general decay theorem. Variants of
this theorem will be proven in the successive sections via different techniques,
based on the inversion of the Mellin transform. In Sect. 6 we put in relation the
local properties of the measure µ at zero and the analyticity structure of the Mellin
transform of F-B. functions. This information is then utilized in Sect. 7 to set up an
inverse transform technique. This leads to the proof of a power-law bound on the
asymptotic decay of the averaged F-B. functions, in a restricted range of exponents.
In Sect. 8 the inversion theory, in a weak form originally due to Makarov [5], is
applied in a larger set of exponents. Next, in Sect. 9, an elementary application of
integration by parts in a Riemann integral, combined with a computation of the
Mellin transform of non–averaged F.B. functions, permits to obtain the asymptotic
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decay in strong form over a larger set of exponents, so to overcome the limitations
of the previous two sections.

Starting from Sect. 10 we turn our attention to the quadratic amplitudes
Anm(µ; t), much in line with the methodology of the preceding sections. We first
put in relation the analyticity structure of their Mellin transform with the dimen-
sional properties of the measure µ, and we prove a general decay theorem. These
properties are then utilised in Sect. 11 to set up the Mellin inversion procedure.
Positivity properties of the diagonal quadratic amplitudes (that is, the amplitudes
of physical significance in quantum mechanics) are employed in Sect. 12 to prove
the asymptotic decay of in strong form, for the widest possible set of exponents.
The same strong result is obtained in Sect. 13 for the non-diagonal amplitudes,
still following the techniques developed for linear quantities.

A new object is analyzed in Sect. 14: the asymptotic behaviour of the Mellin
transform of the F-B. functions when the argument goes to infinity in the vertical
strip of analyticity. We show that the techniques of the previous sections can be
applied to these quantities, by introducing a class of measures, νx(µ), constructed
upon the original measure µ, and the abscissa x in the analyticity strip. Under the
restrictive hypothesis of boundedness of the support of µ, the relations between
D2(µ) and D2(νx(µ)) are investigated. In Sect. 15 we show how this analysis can
be employed to extend the L1 property of the Mellin transform on vertical lines
in the strip of analyticity.

Finally, in Sect. 16 we adapt the analysis to the local behaviour of the measure
µ around any arbitrary point. We derive a lower bound on the local dimensions
at all points that is equal to one half of the correlation dimension. The conclu-
sions, Sect. 17, briefly discuss the relevance of the Mellin analysis of spectral and
dynamical properties like those encountered in this paper.

A table of the mathematical symbols of frequent usage, including reference
to their definitions, is added at the end of the paper. An elementary appendix
exemplifies the results of this paper on a simple family of measures. In a companion
paper, the theory is made explicit for the balanced invariant measure of an Iterated
Function System, and the results are applied to quantum dynamics.

2 Previous Results and the Mellin Transform Ap-
proach

It is now important to review previous results that apply to our problem. We
shall not proceed in chronological order, but rather we shall move from specific to
more general results. Of course, we cannot claim completeness, and we apologize in
advance for unwanted omissions. First of all, since p0(µ; x) is a constant, the case
n = m = 0 leads to the Fourier transform of µ. This case has obviously received a
lot of attention.

The first result is Strichartz theorem [6]: it underlines the importance of the
continuity properties of the measure µ. A measure µ is called locally uniformly

5



α-dimensional if there exist a constant C such that the measure of the ball of
radius r centered at s, µ(Br(s)), is bounded by Crα uniformly in s. In a sense,
α is a sort of lower bound to the local dimensions of µ. Under these conditions,
Strichartz theorem (adapted to the n,m case) predicts that

lim sup
t→∞

tα Anm(µ; t) ≤ C ′,

with C ′ another constant. A reverse inequality, this time with the liminf, can be
obtained when the support of the measure is a quasi-regular set [6, 7]. Therefore,
when these conditions are met, Strichartz’s analysis provides us with the leading
asymptotics of the amplitudes: Anm(µ; t) ∼ t−α.

It is a matter of fact that most interesting measures are not uniformly α-
dimensional measures, or with quasi-regular support; typically, multi-fractal mea-
sures do not possess these properties. Among these, there exists a family for which
the problem has been solved to a large extent, the class of Linear Iterated Func-
tions Systems (L.I.F.S.), that we discuss in a second paper. Various techniques
have been used to tackle this class, all of them relying on the self-similarity prop-
erties of the measure [8, 9, 10, 11, 12]. The exponent α of the asymptotic decay
law is then determined by an implicit equation. It turns out, obviously, that this
value coincides with the correlation dimension of the L.I.F.S. measure. The same
result for disconnected L.I.F.S. has also been obtained following a different route,
with the aid of the Mellin transform [13],[2],[5]. Our treatment starts off from
the results of these references, in particular of the last, that, although devoted to
the restricted case of L.I.F.S., initiated the analysis of the inversion of the Mellin
transform in our problem.

The approach via the Mellin transform has the advantage of rendering the
identification of the decay exponents transparent. In addition, it does not require
any open set condition—except, of course, if one wants to compute explicitly such
exponents. One of the goals of this paper is to show that the Mellin transform
is fully general, and applies to any probability measure µ, for which the moment
problem is determined. Indeed, were this not the case, the results for the existing
moments would still hold unchanged.

The Mellin approach is implicitly contained in some estimates on the corre-
lation dimension in Falconer’s book [14], but it was firstly employed in the present
context by Bessis et al. in [13], that offers the earliest explicit proof, to our knowl-
edge, of the relation between the asymptotic behaviour of the Fourier transform
of a measure and its correlation dimension, defined as in section 1. Ref. [13] also
contains the case of linear I.F.S., that was further analyzed in [15]. Since the main
focus of [13] was on correlation integrals, the result may have passed unnoticed. As
a matter of fact, three problems are intimately related, and lead to the generalized
energy integral E(µ; z) of eq. (8): the asymptotic behavior of the Fourier trans-
form of a measure, that of correlation integrals, and that of quantum amplitudes.
In studying the last, Ketzmerick et al. [16] rediscovered the rôle of the correla-
tion dimension by using formal manipulations that have the virtue, as it is often
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the case, of unveiling the nature of the problem. These latter were further made
rigorous and extended by the use of functional analysis in [17], and by wavelet
techniques in [18, 19], to show that lim sup(inf)t→∞ log A00(µ; t)/ log t coincide
with the upper and lower correlation dimension of the measure µ. In the quantum
mechanical context, further results were established in [20], that we shall mention
later, since they also use Mellin-like techniques. Also concerned with the relation
between the continuity properties of the measure, and its Fourier transform is the
work [21].

Linear quantities, leading to the local rather than the correlation dimension,
have been studied in the wavelet theory [22, 23], and it the Green function analysis
of measures of quantum mechanical origin [24].

In [2], [25] the Mellin technique was applied not only to F-B. functions, but
also to a more cumbersome combination of these: the sums ργ(t) :=

∑
n nγ |Jn(µ; t)|2,

where γ is a positive quantity. They can be seen as the moments of a quantum
distribution over a discrete lattice, and the asymptotic behaviour of the sum of
the series is different from that of its individual terms [26].

The results we present here widen the scope of these investigations in many
respects: firstly, our results apply to the case of a general measure, as opposed
to the specific case of L.I.F.S. measures. This specific class being of particular
importance, it will be further analyzed in a companion paper. Moreover, we extend
the analysis from the Fourier transform of the measure alone, to that of the related
orthogonal polynomials, for all values of the index. In addition, we also investigate
the non-positive quantities arising from averaging the F-B. functions themselves,
a theme that has received less attention than the quadratic case. Also new is the
analysis of the asymptotic behaviour of the Mellin transform itself, in the strip of
analyticity, that leads to interesting speculations on a different family of measures,
that we consider only briefly in this paper. Finally, we believe that collecting old
and new results under the unifying theme of Mellin transform techniques is a
valuable endeavour, that might bring benefit to research in different areas.

3 Electrostatic and generalized dimensions

The relation of the electrostatic dimensions defined in Sect. 1, and the more con-
ventional generalized dimensions is well known. It can be seen as a particular case
of a general theorem on Mellin (and Laplace) transforms that is presented in this
section. Let us first recall what the conventional quantities are:

Definition 7 The upper (lower) local dimensions γ±(µ; s) of a measure µ at the
point s ∈ R, are defined by

γ±(µ; s) = lim sup(inf)ε→0
log µ((s− ε, s + ε))

log ε
. (10)
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Definition 8 The upper (lower) correlation dimensions D±
2 (µ) of a measure µ,

are defined by

D±
2 (µ) = lim sup(inf)ε→0

log
∫

dµ(s)µ([s− ε, s + ε])
log ε

. (11)

Theorem 2 ([3], [4]) The electrostatic dimensions d(µ; s) and D2(µ) coincide
with the lower dimensions: γ−(µ; s) = d(µ; s), D−

2 (µ) = D2(µ).

As a matter of fact, Theorem 2 is a consequence of a general theorem on
Mellin (and Laplace) transforms that can be found more or less explicitly in the
literature. A sketch of its proof will be helpful:

Theorem 3 Let m(u) a Stieltjes measure on [0, 1], such that m(0) = 0, m(1) <
∞, and let M[0,1](m; z) be the Mellin-Stieltjes transform of m:

M[0,1](m; z) :=
∫ 1

0

dm(u)u−z. (12)

Let δ(m) be the divergence abscissa of M[0,1](m; z). Clearly, δ(m) ≥ 0. Moreover,

lim inf
ε→0

log m(ε)
log ε

= δ(m). (13)

Proof: Notice the different definition adopted for the definition of the M.T. of a
measure on [0, 1], when compared to the usual eq. (6). Take x ∈ R+, x < δ(m).
Then, M[0,1](m; x) is finite, smaller than a positive constant B. Here and in the
following the letter B will indicate various constants appearing in the proofs. This
implies the chain of inequalities B ≥ ∫ ε

0
dm(u)u−x ≥ ε−x

∫ ε

0
dm(u) = ε−xm(ε) for

all ε. As a consequence, log m(ε)
log ε ≥ x+ log B

log ε . Letting l be the liminf in eq. (13), this
implies l ≥ x for any x < δ(m). Let us now show the reverse inequality. Because
of the definition of lower limit, for any η > 0, there exist εη such that, for any
ε < εη < 1, m(ε) ≤ εl−η. By a standard Laplace-type estimate we can write:

M[0,1](m; x) =
∫ εη

0

dm(u)u−x+
∫ 1

εη

dm(u)u−x ≤ u−xm(u)|εη

0++x

∫ εη

0

du u−x−1m(u)+Bε−x
η .

The last term at r.h.s. is obviously finite. Let us consider the first term. The contri-
bution at εη is also finite. Moreover, u−xm(u) ≤ u−x+l−η, so that limu→0+ u−xm(u)
is null when x < l − η. For the same reason, under this condition the remaining
integral term is also finite, and so is M(m; x). This holds for all η, and therefore
the divergence abscissa δ(m) is larger than, or equal to, l. 2

Proof of Thm. 2. It follows from Thm. 3. For the local dimension, the Stieltjes
measure is ms(u) := µ([s− u, s + u]), and

M[0,1](ms; z) = G(µ; s, z).
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Because of this, the proof is closely related to Theorem 6.4 in [14] – albeit we
employ a slightly different technique. For the correlation dimension, one considers
the correlation measure Ω(µ; u) defined via

Ω(µ; u) :=
∫∫

|s−r|≤u

dµ(s)dµ(r), (14)

and the result follows from

M[0,1](Ω; z) = E(µ; z).

2

Remark 1 Formula (14) above shows that the correlation dimension can be
equivalently considered as the local dimension, at the point zero, of the corre-
lation measure associated with µ. Therefore, the results that we shall obtain for
the local dimensions will immediately extend mutatis mutandis to the correlation
dimension.

4 Long time limits: Laplace-like results

The well known asymptotic behaviour of the Fourier transform of a measure can
be also seen as a particular case of the general Thm. 3. For this, we need a close
analogue of this latter:

Theorem 4 Let m(u) a Stieltjes measure on [1,∞), and let the Mellin-Stieltjes
transform of m, M[1,∞)(m; z), be defined as:

M[1,∞)(m; z) :=
∫ ∞

1

dm(u)uz−1. (15)

Let δ(m) be its divergence abscissa. Put α(m) := min{δ(m), 1}. Let C1(m; r) be
the one–sided, lower bounded Cesaro average, defined as

C1(m; r) :=
1
r

∫ r

1

dm(u), (16)

and finally let L := lim supr→∞ log C1(m; r)/ log r. Then,

−δ(m) ≤ L ≤ −α(m). (17)

Proof: We sketch only the differences with the proof of Thm. 3. The first part of
the proof differs only in the fact that, in order to get the inequality rxC1(m; r) ≤ B
one must require that x < δ(m) and, in addition, x ≤ 1. In so doing, the second
inequality in (17) follows. The second part of the proof is basically unchanged,
with the sole substitution of liminf with limsup, and leads to the first inequality
in the thesis.
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Remark 2 It is easy to see that the thesis can be equivalently stated in terms of
the usual Cesaro average C(f ; t), when the integral of dm(u) = f(u)du between
zero and one can be controlled.

This theorem highlights the relation between the asymptotics of the Fourier
transform and the correlation dimension:

Theorem 5 Let dm(t) = |J0(µ; t)|2dt, so that C1(m; t) is the Cesaro average of
the square modulus of the Fourier transform of the measure µ. Then,

lim sup
t→∞

log C1(m; t)/ log t = −D2(µ).

Proof: We need to compute the Mellin transform

M[1,∞)(m; z) =
∫ ∞

1

dm(t) tz−1 = lim
T→∞

∫ T

1

dt tz−1

∫∫
dµ(r)dµ(s)e−it(r−s).

This can be also written as

M[1,∞)(m; z) = lim
T→∞

∫∫
dµ(r)dµ(s)

1
|r − s|z

∫ |r−s|T

|r−s|
du uz−1e−iu,

thanks to a change of variables, to the symmetry of the domain of integration, and
under the condition that <(z) < D2(µ), so that the integrand of the triple integral
is summable, to apply Fubini theorem. Now, observe that when 0 < <(z) < 1 the
integral with respect to du in the above expression is a bounded function of |r− s|
and T . Then, 1

|r−s|z
∫ |r−s|T
|r−s| du uz−1e−iu is uniformly bounded (with respect to T )

in the L1 norm, and the limit can be taken into the double integral, to get

M[1,∞)(m; z) =
∫∫

dµ(r)dµ(s)
1

|r − s|z
∫ ∞

|r−s|
du uz−1e−iu.

When |r−s| tends to zero, the inner integral tends continuously to the Mellin trans-
form of the exponential function of imaginary argument, M(eit, z) = Γ(z)eiπz/2:
as a consequence, divergence is dictated by the kernel 1

|r−s|z so that D2(µ) is the
divergence abscissa of the Mellin transform M[1,∞)(m; z). To conclude the proof,
apply Thm. 4. 2

Remark 3 This theorem is fully equivalent to the analysis of Last, Lemma 5.2 of
[20], and the remark just following. Scrutiny of these proofs shows their equiva-
lence, via Thm. 4, to the proofs of Thm. 2 in [3], [4]. Our proof of Thm. 2 masters
differently one of the inequalities, in a way that is closer to the standard usage in
Laplace transforms.
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5 Local Properties of the Measure and Asymp-
totic Decay of F-B. functions.

We now start the analysis of the asymptotic behaviour of the Cesaro averages
J̄n(µ; t). We shall find that it is related to the local properties of the measure µ at
zero. This will entail notational simplification with respect to the previous section,
by dropping the explicit reference to the point zero. A movable local analysis will
be reintroduced starting from Sect. 16.

We start by re-writing the function Mn(µ; z), eq. (6), in a convenient way.
Notice that throughout this paper we shall write z = x + iy, with x and y real.
Firstly, we observe that the integral

In(µ; x) =
∫

dµ(s)
∫ ∞

0

dt |tx−1pn(µ; s)
sin ts

ts
| (18)

is convergent, when x belongs to a suitable interval. In fact, we can split the inner
integral in two parts, obtaining

In(µ; x) ≤ ∫
dµ(s)|pn(µ; s)|[∫

π
2|s|

0 dt tx−1 +
∫∞

π
2|s|

dt tx−1 1
t|s| ]

= [ 1
x (π

2 )x + 1
1−x (π

2 )x−1]
∫

dµ(s)|pn(µ; s)||s|−x,
(19)

where we are forced to restrict x to (0, 1), the r.h.s. being infinite otherwise. There-
fore, if 0 < x < 1 and the integral

Gn(µ; x) =
∫

dµ(s)
|pn(µ; s)|
|s|x , (20)

is convergent, so is In(µ; x). The integral G0(µ;x) has been introduced previously:
it is the generalized electrostatic potential at the point zero. It divergence abscissa,
defines the local dimension at the point s = 0 [27]. This latter is certainly larger
than, or equal to zero, since µ is a probability measure, and pn(µ; s) are its orthog-
onal polynomials. We now need to adapt the definitions to let these latter play a
rôle:

Definition 9 The electrostatic local dimensions of µ at zero, dn(µ), are the di-
vergence abscissas of the integrals Gn(µ; z),

dn(µ) := sup{x ∈ R s.t. Gn(µ;x) < ∞}. (21)

Remark 4 Because of Def. 5, this is equivalent to say that dn(µ) is the local
dimension, at zero, of the measure ν = |pn|µ: dn(µ) = d(|pn|µ; 0).

Definition 10 The asymptotic exponents αn(µ) are the divergence abscissas of
the integrals In(µ; z):

αn(µ) := sup{x ∈ R s.t. In(µ; x) < ∞}.
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Asymptotic exponents and local dimensions are related as follows:

Proposition 1 If pn(0) 6= 0, the dimension dn(µ) is equal to d0(µ). If pn(0) = 0,
the dimension dn(µ) is equal to d0(µ) + 1. Moreover,

αn(µ) = min{dn(µ), 1}. (22)

Proof. Let x ≥ 0, a > 0.

Gn(µ;x) =
∫

|s|<a

dµ(s)
|pn(µ; s)|
|s|x +

∫

|s|≥a

dµ(s)
|pn(µ; s)|
|s|x (23)

The second integral defines an analytic function. In fact, it can be bounded by

1
|a|x

∫
dµ(s)|pn(µ; s)| ≤ 1

|a|x (
∫

dµ(s)|pn(µ; s)|2)1/2 =
1
|a|x ,

because µ is a probability measure, and orthogonal polynomials are normalized.
Consider now the first integral in (23). If pn(0) 6= 0, choose a such that on [−a, a]
pn(µ; s) is strictly different from zero. Let m = min{|pn(µ; s)|, |s| < a}, M =
max{|pn(µ; s)|, |s| < a}. We have

m

∫

|s|<a

dµ(s)|s|−x ≤
∫

|s|<a

dµ(s)|pn(µ; s)||s|−x ≤ M

∫

|s|<a

dµ(s)|s|−x,

and the first part of the thesis follows. When pn(0) = 0, recall that zeros of orthog-
onal polynomials are always simple, so that: pn(µ; s) = sqn−1(s), with qn−1(0) 6= 0,
and apply the same reasoning.

The inequality αn(µ) ≥ min{dn(µ), 1} follows upon consideration of eq. (19).
The reverse inequality can be obtained from

In(µ;x) ≥
∫

dµ(s)|pn(µ; s)|
∫ ∞

π
2|s|

dt tx−1|sinc(t|s|)| =

=
∫

dµ(s)
|pn(µ; s)|
|s|x

∫ ∞

π
2

du ux−2| sin(u)|, (24)

that shows that if one of the integrals at r.h.s. is divergent, so is In(µ; x). 2

Remark 5 The first case considered in the proposition above, pn(0) 6= 0, is obvi-
ously typical. On the other hand, pn(0) = 0 happens for instance when the measure
is symmetric with respect to zero, and n is odd, pn(−x) = −pn(x): the divergence
abscissa dn(µ) is then infinite. But in this case the Cesaro average we are studying
is null, and our analysis is empty. A remedy is then to employ a one-sided Cesaro
average, between 0 and t.

The asymptotic exponents αn(µ) deserve their name in virtue of the following
fundamental theorem.
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Theorem 6 Let αn(µ) be the asymptotic exponents in Def. 10. For all x such that
x < αn(µ), when t →∞, the asymptotic estimate J̄n(µ; t) = o(t−x) holds.

Proof. Because of equation (4), one writes

txJ̄n(µ; t) =
∫

dµ(s)txsinc(ts)pn(µ; s) =
∫

dµ(s)
|s|x |st|xsinc(|ts|)pn(µ; s).

Let x ∈ [0, 1]. Then the function u → uxsinc(u) is bounded by a constant B on
R. Therefore, ||st|xsinc(|ts|)pn(µ; s)| ≤ B|pn(µ; s)|. Since x < αn(µ), this latter
function is integrable with respect to the measure dµ(s)/|s|x. Then, the dominated
convergence theorem permits to take the limit for infinite t inside the integral sign,
so that txJ̄n(µ; t) → 0. 2

6 Analytic Representation of the M.T.

In this section we investigate the analyticity properties of the Mellin transform
Mn(µ; z). The considerations of Sect. 5 can be regarded as preparatory work to
the following: when x = <(z) < αn(µ), it is legitimate to exchange the order of
the integrals defining Mn(µ; z), to obtain:

Proposition 2 The integral representation

Mn(µ; z) =
∫ ∞

0

dt tz−1

∫
dµ(s)pn(µ; s)

sin ts

ts
(25)

defines an analytic function in the domain 0 < <(z) < αn(µ). This function can
be also expressed as

Mn(µ; z) = H(z) Gn(µ; z), (26)

where H(z) is the analytic continuation of the Mellin transform of sinc(·),

H(z) = Γ(z − 1) sin[
π

2
(z − 1)], (27)

and where

Gn(µ; z) =
∫

dµ(s)
pn(µ; s)
|s|z . (28)

Proof: Since
∫ ∞

0

dt |tz−1

∫
dµ(s)pn(µ; s)

sin ts

ts
| ≤ In(µ; x) < ∞,

the function t → tz−1J̄n(µ; t) belongs to L1([0,∞], dt) and the first part of the
thesis follows. Moreover, Fubini theorem applies: changing the order of integration
in eq. (25) then provides the formulae (26), (27),(28). 2
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Remark 6 The function H(z) is purely kinematical, and does not depend on the
measure µ. It is a meromorphic function, with simple poles at −2k, k = 0, 1, . . .,
of residuals ρk = (−1)k. The pole at zero is related to the O(1) behavior of
sin(t)/t for small t. The second term in eq. (26), Gn(µ; z), explicitly calls in cause
the short scale properties of the measure µ at zero. Because of this term, we see
that Mn(µ; z) is convergent, for <(z) ∈ [0, 1), if and only if Gn(µ; z) is such.
Furthermore, if dn(µ) is larger than one, Mn(µ; z) can be analytically continued
for <(z) > 1 via eq. (26) until the first singularity of Gn(µ; z), dn(µ). Of course, this
analytical continuation does not imply that the original Mellin transform integral
is convergent in Lebesgue sense. In Sect. 9 we shall employ improper Riemann
integrals to extend the domain of convergence.

7 Inversion of M.T. and Asymptotic Properties

We can now return to the analysis of the asymptotic behaviour of the integral (4).
The poles of H(z), possessing a non-positive real part, are related to the short-
time behaviour of J̄n(µ; t). Indeed, because of the orthogonality property of the
polynomials pn with respect to µ, it is easy to see that some of these poles are
cancelled by zeros of Gn(µ; z):

Gn(µ;−2k) = 0, for 2k < n. (29)

We can use this information to obtain a precise asymptotic of J̄n(µ; t) for small
times.

On the contrary, large times are governed by the interplay between the av-
eraging procedure and the singularities of Gn(µ; z) at, and past, the divergence
abscissa dn(µ). In certain notable cases, as for linear Iterated Function Systems,
discussed in the next paper, these singularities can be mastered, and a precise
asymptotic information obtained. In this section and in the next, we develop the
techniques to achieve this control. The same techniques, in the absence of any
information on the singularities provide nonetheless estimates from above on the
decay of J̄n(µ; t).

Formally, the Mellin transform of any function f can be seen as a Fourier
transform in logarithmic time τ = log t:

M(f ;x + iy) =
∫ ∞

−∞
dτ exτf(eτ ) eiyτ . (30)

We apply this equality to f(t) = J̄n(µ; t), and set

hn(x, τ) := exτ J̄n(µ; eτ ). (31)

Then,
Mn(µ;x + iy)) = F(hn(x, τ))(−y), (32)

where, as usual, F indicates the Fourier transform. So far, this is purely formal.
We now make this precise.
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Proposition 3 For 0 < x < αn(µ), hn(x, τ) belongs to L1(R, dτ) and therefore
Mn(µ;x + iy) exists and belongs to C0(R, y), the set of continuous functions (of
the real variable y) vanishing at infinity.

Proof. Because of Proposition 1, and of Fubini theorem,
∫ ∞

−∞
dτ |hn(x, τ)| =

∫ ∞

−∞
dτ |exτ

∫
dµ(s)pn(µ; s)sinc(eτs)| ≤

≤
∫ ∞

0

dt

∫
dµ(s)|pn(µ; s)tx−1sinc(st)| = In(µ; x) < ∞.

2

Lemma 1 For x < αn(µ), Gn(µ, x + iy) is a bounded, continuous function of y.

Proof. Clearly, |Gn(µ, x + iy)| ≤ Gn(µ;x) < ∞, which also allows to apply the
dominated convergence theorem. 2

Now, we present sufficient conditions for Mn(µ;x + iy)) to belong to an
integrability class.

Lemma 2 For 0 < x < min(αn(µ), 1
2 ), the function Mn(µ; x + iy)) belongs to

L1(R, dy); For 0 < x < αn(µ), the function Mn(µ; x + iy)) belongs to L2(R, dy).

Proof. Because of Stirling formula Γ(z) = e−ze(z− 1
2 ) log z

√
2π

[
1 + O( 1

|z| )
]

for z →
∞, | arg z| < π, we have that

|Γ(x + iy − 1)| ∼
√

2π |y|− 3
2+xe−

π
2 |y| for |y| → ∞.

Therefore, the asymptotic behaviour of H(x + iy), when y → ±∞, is

|H(x + iy)| ' |y|− 3
2+x(1 + o(

1
|y| )). (33)

In addition, because of Lemma 1, Gn(µ; x+iy) is bounded in y for fixed x. Because
of the previous lemma, and of Proposition 3, H(x + iy) is also continuous. Then,
it is integrable in y when x < 1

2 , and square summable for x < 1. 2

We can therefore take the inverse Fourier transform of Mn(µ; x + iy):

Lemma 3 For 0 < x < min(αn(µ), 1
2 ),

hn(x, τ) =
1
2π

∫ ∞

−∞
dy e−iτyMn(µ; x + iy). (34)

Proof. In the x-range considered, the inverse transform of Mn(µ; x+iy) exists, and
belongs to C0(R, τ). It then coincides with the continuous function hn(x, τ). 2

This result allows us to obtain a (weaker) variant of Thm. 6:
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Theorem 7 For all x such that x < min(αn(µ), 1
2 ), the function J̄n(µ; t) can be

written as: J̄n(µ; t) = t−xsn(x; t) where sn(x; t) belongs to C0(R+, t).

Proof. Because of Lemma 7, hn(x, τ) ∈ C0(R, τ). Returning to linear time t, and
using eq. (31) gives the thesis. 2

The fact that in the above Theorem the value of x is bound to be smaller
than one half, even when αn(µ) is not, is a limitation due to the technique, rather
than to the nature of the problem, as it appears from Thm. 6. First of all, the
range where the L1 property of Mn(x + iy) holds can sometimes be extended.
We shall see this in Sect. 14. Also, a few other instructive ways exist to find a
superior limit to the decay exponent. In the next section, Sect. 8, we follow a L2

technique originally developed by Makarov, that permits to obtain an asymptotic
decay in weak form. Then, in Sect. 9, we employ a different technique to obtain
the asymptotic decay in strong form.

8 L2 representation of the asymptotic decay

The asymptotic decay of J̄n(µ; t) can be obtained also in the full range 0 < αn(µ) <
1 following the L2 technique of Makarov [5]:

Theorem 8 For all x such that x < αn(µ), J̄n(t) can be written as J̄n(t) =
t−xsn(x, t), where sn(x, t) belongs to L2((0,∞), t−1dt).

Proof. We must consider the sequence of paths γN defined as follows. They consist
of the straight vertical segment x + iy, with x < 1

2 , y ∈ [−N, N ], the horizontal
segment from x+iN to x̄+iN , with min(αn(µ), 1) > x̄ > 1

2 and the two remaining
segments needed to form a rectangle in complex plane. Then, let us consider the
function m(τ ; z) := Mn(µ; z)e−τz, with τ ∈ R+ where the dependence on n and µ
is left implicit. This function is analytic in the the strip 0 < <(z) < min(αn(µ), 1)
and therefore, its contour integral over γN is null. Moreover, it is easy to see that
the integral on the horizontal pieces go to zero, as N tends to infinity, thanks to
(33). Taking this limit, the integral over the left vertical segment at x tends to 2πi
times hn(x, τ)e−τx, which is nothing else than 2πiJ̄n(µ; eτ ), independently of x.
Therefore, also the integral on the right vertical segment, at abscissa x̄, tends to
the same limit. Expanding the integral, this means that, pointwise in τ ,

J̄n(µ; eτ ) =
1

2πi
e−τx̄ lim

N→∞

∫ N

−N

dy e−iτyMn(µ; x̄ + iy). (35)

Consider now the integrals

IN =
∫ N

−N

dy e−iτyMn(µ; x̄ + iy). (36)

Now, because of Lemma 2, when x̄ belongs to the range considered, the function
Mn(µ; x̄ + iy) belongs to L2, and therefore, the L2 limit of the integral (36) is a
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Fourier-Plancherel transform, call it q(x̄; τ). Since there exists a subsequence Nk

such that INk
converges almost everywhere to q(x̄; τ), we see immediately that

J̄n(µ; eτ ) = e−τx̄q(x̄; τ), (37)

where q(x̄; τ) belongs to L2((−∞,∞), dτ). Returning now to linear time, t = eτ ,
we get J̄n(µ; t) = t−x̄sn(x̄; t), where sn(x̄; t) belongs to L2((0,∞), t−1dt). 2

Remark 7 We have outlined this technique for its importance when the integra-
tion contour can be extended to enclose the singularities of Mn(µ; z). The result
of the previous Theorem could infact be obtained also from Thm. 6 that shows
that hn(x, τ) belongs to Lp(R, dτ) for all p > 0 and x < αn(µ).

9 Strong form of the asymptotic decay

In this section, we apply a different technique to show that the strong asymptotic
form of J̄n(µ; t) can be obtained also in the full exponent range [0, 1], and possibly
beyond it. In fact, let g(t) be a Riemann integrable real function, ḡ(t) be its Cesaro
average, ḡ(t) := C(g; t) and let M(g; z, T ) be the truncated Mellin transform

M(g; z, T ) :=
∫ T

0

dt g(t)tz−1. (38)

Define analogously M(ḡ; z, T ). When the improper Riemann integral M(g, z,∞)
exists, it defines the Mellin transform M(g, z). A simple calculation shows that

Lemma 4 For any continuous function g and any x 6= 1, x > 0:

M(ḡ; x, T ) =
1

x− 1
[T xḡ(T )−M(ge; x, T )], (39)

where ge(t) := (g(t) + g(−t))/2

Proof: The equation above follows simply by integration by parts in the definition
of M(ḡ; x, T ). 2

This lemma can be used to obtain the asymptotic behaviour of ḡ(t):

Theorem 9 Suppose that there exists q ∈ R+ such that the Mellin transforms
M(ḡ, q) and M(ge, q) exist as convergent improper Riemann integrals. Then,

ḡ(t) = o(t−q′)

for all q′ < q.

Proof: Clearly, if the improper integrals definingM(ḡ, q) andM(ge, q) converge, so
must T q ḡ(T ) do for T →∞, because of eq. (39) and therefore the lemma follows.
2

We apply this Theorem to g(t) = Jn(µ; t), the non-averaged F-B. functions.
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Proposition 4 For <(z) < αn(µ), the Mellin transform of Jn(µ; t) exists as a
convergent improper Riemann integral, and it can be represented as

M(Jn; z) =
∫ ∞

0

dt tz−1Jn(µ; t) = Γ(z)ei π
2 zGn(µ; z). (40)

Proof. The following limit, when it exists, defines the Mellin transform in Riemann
sense:

M(Jn; z) = lim
T→∞

∫ T

0

dt tz−1

∫
dµ(s)e−itspn(µ; s). (41)

In fact, when <(z) > 0 integration at the leftmost limit is controlled, since Jn(µ; t)
are bounded. Moreover, the double integral inside the limit is also an absolutely
convergent Lebesgue integral—therefore, the order of integration in eq. (41) can
be inverted, and a change of variables performed, to get

M(Jn; z) = lim
T→∞

∫
dµ(s)pn(µ; s)

1
|s|z

∫ |s|T

0

du uz−1eiu. (42)

We now move the limit within the integral with respect to dµ, in force of the
dominated convergence theorem. Let hT (s) be the integrand in eq. (42):

hT (s) := pn(µ; s)
1
|s|z

∫ |s|T

0

du uz−1eiu. (43)

It is a matter of fact that there exists a summable majorant h of hT : this can
be proven as follows. In the first place the integral I(a) :=

∫ a

0
du uz−1eiu is a

continuous function of the upper integration limit a. Furthermore, as a tends to
infinity, for all z such that 0 < <(z) < 1, the integral tends to a finite limit
that is the Mellin transform of the exponential function of imaginary argument,
M(eit, z) = Γ(z)eiπz/2. Consequently, |I(a)| is bounded by a constant B, that
depends only on z, and so is the companion integral in eq. (43). Summing all this
together, we have

|hT (s)| ≤ B
|pn(µ; s)|
|s|z := h(s).

Since <(z) < dn(µ), h(s) is summable, and we can conclude, letting M(eit, z)
appear in eq. (42), that takes the final form (40). 2

Notice that replacing e−its by sinc(ts) in eq. (41) and following, we obtain an
extension of the range of convergence of the integral representation, and of validity
of the formulae in Proposition 2:

Proposition 5 For <(z) < min{dn(µ), 2}, the Mellin transform of J̄n(µ; t) ex-
ists as a convergent improper Riemann integral, and it can be represented as in
Proposition 2, eqs. (26,27,28).
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Proof. We need only to observe that the integral I(a) in the proof of Proposition
4 becomes here I(a) :=

∫ a

0
du uz−1sinc(u), whose modulus is a bounded function

of a for all 0 < <(z) ≤ 2. Compare also with the proof of Thm. 5 2

Remark 8 We can now obtain a different proof of Thm. 6:
Alternative proof of Thm. 6. It follows from the previous proposition that the
Mellin transforms of J̄n(µ; t) and Jn(µ; t) have the same behaviour in (0, 1): as
improper Riemann integrals, they are either both convergent, or divergent. Then,
the theorem follows from Thm. 9. 2

Remark 9 Proposition 5 above opens the possibility that an extension of the
range of asymptotic decay of J̄n(µ; t) might be found also when 1 < d0(µ) < 2,
that is, beyond the reach of Thm. 6. Indeed, the result of Proposition 4 do not
exclude that the Mellin transform of Jn(µ; t) might exist as an improper Riemann
integral also when <(z) > 1, of course when <(z) < d0(µ). This is the case of the
example worked out in Appendix.

10 Decay of quadratic amplitudes: asymptotic ex-
ponents

We now study the quadratic amplitudes Anm(µ; t). Part of this theory is merely a
two dimensional generalization of the previous sections, so that we shall be concise
in the exposition. To the contrary, new features originating from positivity are to
be found in the diagonal n = m case. From the definition (5), the amplitudes can
be written as:

Anm(µ; t) =
∫∫

dµ(r)dµ(s)pn(µ; r)pm(µ; s)sinc(t(r − s)). (44)

It is evident from eq. (44) that Anm are real quantities.
We start by computing the integral representation of the Mellin transform of

the amplitudes Anm(µ; t), that we have denoted Mnm(µ; z). The µ dependence of
the orthogonal polynomials pn(µ; s) and of other quantities will be left implicit at
times, not to overburden the notation. Because of eq. (44), this can be written

Mnm(µ; z) =
∫ ∞

0

dt tz−1

∫∫
dµ(r)dµ(s)pn(r)pm(µ; s)sinc(t(r − s)). (45)

Before tackling Mnm(µ; z) directly, we consider a companion integral Inm(z) to
(45), as we did in Sect. 5. We put, as usual, z = x + iy, with x, y ∈ R:

Inm(z) :=
∫∫

dµ(r)dµ(s)
∫ ∞

0

dt |tz−1||pn(r)pm(µ; s)||sinc(t|r − s|)| =

=
∫∫

dµ(r)dµ(s)
|pn(r)pm(µ; s)|

|r − s|x
∫ ∞

0

dξ ξx−1|sinc(ξ)|. (46)
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The second equality has been obtained by a simple change of variables. The second
integral is convergent for x ∈ (0, 1). The first defines the function

Gn,m(µ; x) =
∫∫

dµ(r)dµ(s)
|pn(µ; r)pm(µ; s)|

|r − s|x , (47)

As in Sect. 5, we define

Definition 11 The correlation dimensions of µ, dnm(µ), are the divergence ab-
scissas of the integrals Gnm(µ; z), and the asymptotic exponents αnm(µ) are the
divergence abscissas of the integrals Inm(µ; z).

As a matter of fact, they are here related in a simple way:

Proposition 6 For all n, αnn(µ) = dnn(µ) ≥ D2(µ). For n 6= m, dnm(µ) ≥
D2(µ) and αnm(µ) = min{dnm(µ), 1}.
Proof. Part of the proof is similar to that of Prop. 1 and is therefore omitted. Write
Holder’s inequality for the integral (47):

|Gn,m(µ; x)| ≤ (
∫

dµ(r)|pn(µ; r)|q
∫

dµ(s)|pm(µ; s)|q)1/q(
∫∫

dµ(r)dµ(s)
|r − s|px

)1/p,

with p−1+q−1 = 1. For any q > 1 the simple integrals in the above are convergent,
since the measure µ possesses an infinite sequence of orthogonal polynomials. The
double integral, on its part, is convergent for px < D2(µ), that is, x < (1 −
1/q)D2(µ). The divergence abscissa of Gn,m(µ; z) is therefore larger than D2(µ)−ε
for any ε > 0.

Next, if n = m, dnn is the correlation dimension of the measure dν(r) =
|pn(µ; r)|dµ(r). Therefore, because of Frostman theorem, it is smaller than, or
equal to one. It then coincides with αnn. This fact cannot be ascertained in the
case n 6= m. 2

Remark 10 Notice that in the previous proof the existence of moments of arbi-
trary order is crucial to obtain the last inequality in the thesis, even for finite n, m.
In the proof of the parallel Prop. 1 a finite set of n values did only require the
existence of a finite set of moments. The reason behind this asymmetry is that the
functions pn(µ; s)pm(µ; s) are not the orthogonal polynomials of the correlation
measure Ω of eq. (14), unless, of course, n = m = 0.

Remark 11 The inequality dnn(µ) ≥ D2(µ) can be strict, as the following ex-
ample shows: let dµ(s) = |s|−θds on [−1, 1], with θ ∈ (1/2, 1). Then, explicit
calculation gives D2(µ) = 2(1− θ) < 1 and d11(µ) = 1.

We can now prove the general decay theorem:.

Theorem 10 Let αnm(µ) be the asymptotic exponents in Def. 11. For all x such
that x < αnm(µ), when t →∞, the asymptotic estimate Anm(µ; t) = o(t−x) holds.

Proof. Proceed as in the proof of Thm. 6, using the results of Prop. 6. 2
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11 Analyticity of the Mellin Transform and decay
theorems

We now study the properties of the Mellin transform of quadratic amplitudes, its
inversion, and the consequences on decay estimates.

Proposition 7 The integral representation (45) defines an analytic function in
the domain 0 < <(z) < αnm(µ). Moreover, in the same domain, the function t →
tz−1Anm(µ; t) belongs to L1([0,∞], dt). Finally, the Mellin transform of Anm(µ; t),
Mnm(µ; z) can be written

Mnm(µ; z) = Gnm(µ; z) H(z), (48)

where H(z) has been defined in eq. (27) and where Gnm(µ; z) is defined by the
integral representation

Gnm(µ; z) :=
∫∫

dµ(r)dµ(s)
pn(µ; r)pm(µ; s)

|r − s|z . (49)

Proof. All statements are consequence of Prop. 6 and of Fubini theorem. The proof
is similar to that of Prop. 2 and is therefore omitted. 2

A consequence of Proposition (7) is

Lemma 5 The divergence abscissa of the Mellin transform M00(µ; z) coincides
with D2(µ).

Proof. This follows easily from the factorization (48), valid in the domain 0 <
<e(z) < D2(µ). Since G00(µ; z) diverges at D2(µ), and D2(µ) is smaller than, or
equal to one, so necessarily does M00(µ; z). 2

We can now easily generalize the results of sections 7, and 8 to the case of
quadratic amplitudes. The analogues of Prop. 3 and of Lemmas 1 to 3 follow from
an almost verbatim translation. We so arrive at:

Theorem 11 For any 0 < x < min{1
2 , αnm(µ)} the quadratic amplitudes can be

written as Anm(µ; t) = t−xsnm(x; t), where snm(x; t) belongs to C0(R+, t). More-
over, tx̄Anm(µ; t) ∈ L2

(
R+, dt

t

)
for any x̄, 0 < x̄ < αnm(µ).

Proof: is analogous to that of Thms. 7, 8. 2

Theorem 11 is therefore straightforward generalization of [5], and shares the
same weakness, when αnm(µ) > 1/2.

12 Asymptotic Decay of Physical Amplitudes

When n = m, the quantities Anm(µ; t) take on the physical meaning of quan-
tum amplitudes, that is, of occupation probabilities (see paper II). In this case,
positivity properties apply and permit to obtain the decay in strong form.
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Theorem 12 The Cesaro averages Ann(t) of the physical probability amplitudes,
have the asymptotic behaviour Ann(t) = o (t−x), as t → +∞, for any 0 < x <
αnn(µ), where αnn(µ) is the divergence abscissa of the electrostatic energy of
|pn(µ, r)|µ, defined in Def. 11.

Proof. It is apparent from eq. (5) that Ann(t) is the Cesaro average of a positive
function. Let us choose arbitrarily a value t = t∗, and let ξ = Ann(t∗) > 0. Let us
now study the behaviour of Ann(t) in the interval between t∗ and infinity. Clearly,
the fastest decay of Ann at zero at zero is obtained when the integrand of the
Cesaro average is null for t′ > t∗. Let therefore Ãnn(t) be the function defined by
Ãnn(t∗) = Ann(t∗), d

dt Ãnn(t) = − 1
t Ãnn(t), for t′ > t∗. Obviously, Ãnn(t) = ξt∗

t ,
and Ann(t) ≥ Ãnn(t), for t ∈ [t∗,∞]. This fact, and Propositions 6, 7, imply that
for 0 < x < dnn(µ) there exists a finite constant B such that

B =
∫ ∞

0

dt tx−1Ann(t) >

∫ ∞

t∗
dt tx−1Ãnn(t) =

ξtx∗
1− x

.

Recall now that ξ = Ann(t∗): then, the thesis follows. 2

In the same way, positivity properties alone allow to overcome the limitations
of the technique of Sect. 11.

Lemma 6 Suppose that f is the Cesaro average of a positive function g:

f(t) =
1
t

∫ t

0

ds g(s), g(s) > 0.

Suppose also that f(t) = t−xs(t), where s belongs to L2((0,∞), t−1dt), and 0 <
x < 1. Then,

f(t) = t−xo(t) as t →∞.

Proof. We can proceed as in the proof of Thm. 12: Let us choose quite ar-
bitrarily a value t = t∗, and let ξ = f(t∗) > 0, to obtain f(t) ≥ f̃(t) = ξt∗

t ,
t ∈ [t∗,∞]. Therefore,

∫ ∞

t∗

dt

t
s2(t) ≥

∫ ∞

t∗
dt t2x−1(f̃(t))2 = (t∗ξ)2

∫ ∞

t∗
dt t2x−3 =

t2x
∗ ξ2

2− 2x
.

Finally, employing the second hypothesis of the Lemma we see that given any
M > 0, for all t∗ larger than a certain T we have

∫ ∞

t∗

dt

t
s2(t) ≤ M,

which implies that, under the same conditions, ξ ≤
√

M(2− 2x)t−x
∗ Recalling now

that ξ = f(t∗) the thesis follows. 2
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Remark 12 This lemma permits us to prove in a different way Thm. 12:
Alternative proof of Thm. 12. Since physical amplitudes are obtained setting n = m
in eq. (44), the integrand is visibly a positive function. Theorem 11 and Lemma 6
then apply. 2

Remark 13 A similar trick can be applied to the averaged F-B. functions J̄n(µ; t),
relying on theorem 8 and on their boundedness. Since this latter is—for this aim—
weaker than positivity, it leads to the result J̄n(µ; t) = t−

2
3 xo(t) as t → ∞, for

any x < αn(µ). Clearly, this estimate is of lesser significance than those obtained
in Section 9.

13 Asymptotic Decay of Quadratic Amplitudes

In the previous section we have shown that inversion theory can be augmented
with positivity properties to obtain the strong asymptotic behaviour of the Cesaro
averages of physical amplitudes, that is, the diagonal case n = m. As to the non-
diagonal amplitudes, inversion theory leads to a weaker result (Thm. 11) than the
direct Thm. 10. This can be obviated by a generalization of the technique of Sect.
9, to treat conveniently also the non-diagonal entries Anm(µ; t), n 6= m.

Proposition 8 For 0 < <(z) < αnm(µ) the Mellin transforms of Jn(µ; t)J ∗m(µ; t)
has a convergent integral representation, and it can be represented as

∫ ∞

0

tz−1Jn(µ; t)J ∗m(µ; t) = Γ(z)ei π
2 zGnm(µ; z). (50)

Proposition 9 For <(z) < min{dn,m(µ), 2}, the Mellin transform Mnm(µ; z) ex-
ists as a convergent improper Riemann integral, and it can be represented as in
Proposition 7, eqs. (27), (48),(49).

Proof. It is analogous to that of Prop. 4. 2

Remark 14 Finally, we can obtain:
Alternative proof of Thm. 10. Apply Thm. 9 with g(t) = Jn(µ; t)J ∗m(µ; t). 2

We have therefore completed the study of the large time asymptotics of the
Cesaro averages of F-B. functions, and of quadratic amplitudes.

14 Asymptotics of the Mellin Transform in the
Strip of Analyticity

It now our goal to study the asymptotic behaviour of the Mellin transform Mn(µ;x+
iy) itself, for large imaginary argument in the strip of analyticity. Indeed, since
H(z) does not depend on µ, and features the asymptotic behaviour in eq. (33), we
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are left with the problem of studying Gn(µ; x + iy), for x < αn(µ), and large |y|.
We shall later make the hypothesis that the support of the measure µ is bounded.

The function G0(µ;x + iy) can itself be considered as a Fourier transform of
a measure, as it follows from its definition in eq. (20):

G0(µ; x + iy) =
∫

dµ(s)
1

|s|x+iy
=

∫
dνx(µ; τ)e−iyτ . (51)

We shall discuss below the modifications to be made to treat the case of n 6= 0.
The measure νx is constructed upon µ, and can be defined by Riesz representation
theorem via the equation

∫
dνx(µ; τ)f(τ) =

∫
dµ(s)|s|−xf(log(|s|)), (52)

that is required to hold for any continuous function f which vanishes at infinity.

Theorem 13 Let x < α0(µ). The Cesaro average in the variable y up to the
limit t of the function G0(µ;x + iy) decays asymptotically as o(t−a), for any a <
min{d0(νx), 1}. Here, d0(νx) is the divergence abscissa of the integral Gν(w),

Gν(w) =
∫

dµ(r)|r|−x| log |r||−w. (53)

The quadratic amplitude |G0(µ; x + iy)|2 decays asymptotically, in Cesaro average
in the variable y up to the limit t, as o(t−a), for any a < D2(νx), where D2(νx) is
the divergence abscissa of the double integral E(νx; w):

E(νx;w) =
∫ ∫

dµ(r)dµ(s)
1

|r|x|s|x | log |r| − log |s||w . (54)

Proof: Notice that, actually, d0(νx) is the local dimension of νx at τ = 0. In fact,
this latter is defined by the divergence abscissa of the integral

∫
dνx(τ)

1
|τ |w . (55)

We now show that this latter integral is equal to Gν(w). In fact, by the Beppo Levi
theorem, ∫

dνx(τ)
1
|τ |w = lim

ε→0

∫
dνx(τ)χε(τ)

1
|τ |w , (56)

where χε(τ) is a continuous function, equal to one everywhere except in a neigh-
borhood of zero of size ε, and null in a neighborhood of zero of size ε/2. By the
representation (52), the last limit is equal to

lim
ε→0

∫
dµ(s)|s|−x 1

| log |s||w χε(log |s|) =
∫

dµ(s)|s|−x 1
| log |s||w . (57)
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The last equality in eq. (57) follows again via Beppo Levi theorem. A similar
argument shows that the integral E(νx; w) is equal to the generalized electrostatic
energy of the measure νx:

∫ ∫
dνx(r)dνx(s)
|r − s|w =

∫ ∫
dµ(r)dµ(s)

1
|r|x|s|x | log |r| − log |s||w = E(νx; w).

(58)
To conclude the proof, apply Thms. 6 and 10. 2

We now study the generalised dimension D2(νx) as a function of x. In the
course of this work we shall need a couple of technical lemmas, the first of which
is of some interest of its own.

Proposition 10 Let α, β be positive measures. The electrostatic correlation di-
mension of α + β is the minimum of the electrostatic correlation dimensions of α
and β:

D2(α + β) = min{D2(α), D2(β)}

Proof. Define the following symmetric bilinear quadratic form over the vector space
of real measures:

(α, β) :=
∫∫

dα(r)dβ(s)
1

|r − s|x . (59)

The electrostatic energy of α + β is the divergence abscissa of (α + β, α + β).
Clearly,

(α + β, α + β) = (α, α) + (β, β) + 2(α, β) (60)

Since α and β are positive measures (α, β) ≥ 0, and so

(α + β, α + β) ≥ (α, α) + (β, β)

This relation implies that D2(α+β) is smaller than the minimum of D2(α), D2(β).
Now the reverse inequality [28]. Observe that the quadratic form is positive:

in fact, let σ be any signed real measure, and let σ̂ be its Fourier transform:

σ̂(t) :=
∫

dσ(s)e−its.

Clearly, |σ̂(t)|2 is a positive quantity, and so is its Cesaro average, C(|σ̂(t)|2). Let
g(z) be the Mellin transform of this latter function. For x real, 0 < x < 1, g(x) is
also positive. The calculations performed in the previous sections can be carried
over also for a signed measure, showing that

g(x) = E(σ; x)Γ(x) cos(
π

2
x).

It then follows that E(σ; x) is also positive, for x ∈ (0, 1), and for any signed real
measure σ. Then (σ, σ) = E(σ; x) is also positive.
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Positivity of the quadratic form (·, ·) is required to apply Schwartz inequality
to eq. (60), to get

(α + β, α + β) ≤ (α, α) + (β, β) + 2(α, α)1/2(β, β)1/2 (61)

from which D2(α + β) ≥ min{D2(α), D2(β)}. 2

Lemma 7 Let µ be a positive measure. Let µe(s) := µ(s) + µ(−s), s ∈ R+ be its
symmetrization. Then, D2(µe) = D2(µ).

Proof: First let µ+ and µ− be the restriction of µ to R+ and its complementary, re-
spectively, so that µ = µ++µ−. Prop. 10 implies that D2(µ) = min{D2(µ+), D2(µ−)}.
Consider now the measure µ̄− defined via µ̄−(s) = µ−(−s). This measure is
supported on the positive axis. Clearly, D2(µ̄−) = D2(µ−). Now, on the pos-
itive axis, µe = µ+ + µ̄−. Since µe is symmetric, D2(µe) = D2(µ+ + µ̄−) =
min{D2(µ+), D2(µ−)} = D2(µ). 2

We are now ready for

Theorem 14 Let µ have bounded support. Let D2(νx) be the electrostatic correla-
tion dimension of the measure νx defined via eq. (52), and let 0 ≤ x ≤ x′ < d0(µ).
Then,

D2(νx′) ≤ D2(νx). (62)

Moreover,
D2(νx) ≥ D2(µ) for x ≤ D2(µ)

2 ,

D2(νx) ≤ D2(µ) for x ≥ D2(µ)
2 .

(63)

Proof. The electrostatic energy E(νx; w) of the measure νx is defined by the double
integral (54). The electrostatic correlation dimension is the divergence abscissa of
E(νx; w), that can be computed restricting w to the real axis: w ∈ R. Since we can
assume by a proper rescaling that |s|, |r| < 1, the inequality x ≤ x′ implies also
|r|x ≥ |r|x′ , and similarly |s|x ≥ |s|x′ , so that

E(νx; w) ≤ E(νx′ ; w). (64)

It then follows that the divergence abscissa of the second function is smaller than
that of the first: this is the inequality (62).

More work is required to get the inequalities (63). Let us therefore derive a
series of estimates. Firstly,

||r| − |s||
max{|r|, |s|} ≤ | log |r| − log |s|| ≤ ||r| − |s||

min{|r|, |s|} . (65)

These inequalities enforce the following bounds:

E(νx; w) ≤ U(x;w) :=
∫∫

dµ(r)dµ(s)
max{|r|, |s|}w

|r|x|s|x||r| − |s||w (66)
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and

E(νx;w) ≥ L(x; w) :=
∫∫

dµ(r)dµ(s)
min{|r|, |s|}w

|r|x|s|x||r| − |s||w (67)

Moreover, let us compute

U(x;w)− L(x; w) =
∫∫

dµ(r)dµ(s)
max{|r|, |s|}w −min{|r|, |s|}w

|r|x|s|x||r| − |s||w . (68)

Because of symmetry, we get

U(x; w)− L(x; w) ≤ 2
∫ ∫

|s|≤|r|
dµ(r)dµ(s)

|r|w − |s|w
|r|x|s|x||r| − |s||w . (69)

It can be easily verified that, when |s| ≤ |r|, and 0 < w ≤ 1, one has

0 ≤ |r|w − |s|w
||r| − |s||w ≤ 1. (70)

Then,

U(x;w)− L(x; w) ≤ 2
∫ ∫

|s|≤|r|
dµ(r)dµ(s)

1
|r|x|s|x ≤ 2(

∫
dµ(r)

1
|r|x )2. (71)

Since x < d0, the last term at r.h.s. is finite, and so is the difference U(x; w) −
L(x; w) for any value of 0 < w ≤ 1. Therefore, the integrals U(x; w), L(x;w) and
E(νx; w) are all either convergent, or divergent, when 0 < w ≤ 1.

Let us now work on U(x; w). Let M := max{|r|, |s|} and m := min{|r|, |s|}.
Clearly,

U(x; w) =
∫∫

dµ(r)dµ(s)
Mw−x

mx||r| − |s||w ≥
∫∫

dµ(r)dµ(s)
Mw−2x

||r| − |s||w . (72)

If now w < 2x we can bound Mw−2x ≥ 1, and

U(x;w) ≥
∫∫

dµ(r)dµ(s)
1

||r| − |s||w := E(µe; w), (73)

where E(µe; w) is the electrostatic energy of the measure µe. Therefore, if D2(µe) =
D2(µ) is less than 2x, U(x; w) is also divergent at w = D2(µ), or possibly before:
the same goes for E(νx;w), and proves the second estimate in (63).

Similar arguments can be used for L(x; w):

L(x; w) =
∫∫

dµ(r)dµ(s)
mw−x

Mx||r| − |s||w ≤
∫∫

dµ(r)dµ(s)
mw−2x

||r| − |s||w . (74)

Let us now assume that w > 2x, so that mw−2x ≤ 1:

L(x; w) ≤
∫∫

dµ(r)dµ(s)
1

||r| − |s||w := E(µe;w). (75)
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Therefore, if D2(µe) = D2(µ) < 2x, L(x;w) is convergent for all w < D2(µ), and
so is E(νx;w). The divergence abscissa D2(νx) is therefore larger than D2(µ): this
is the first estimate in (63). 2

Remark 15 A consequence of this theorem is that D2(νD2(µ)/2) = D2(µ). If
D2(νx) does not actually depend on x, then it must be equal to D2(µ). This can
be proven to be the case of a class of I.F.S. measures that we shall examine in a
companion paper.

Remark 16 The previous analysis can be extended to treat all functions Gn(µ;x+
iy), under the simplifying assumption of boundedness of the support of µ. First,
define νx,+, and νx,− via a variant of eq. (52),

∫
dνx,±(τ)f(τ) =

∫
dµ±(s)|s|−xf(± log(|s|)). (76)

Then,

Gn(µ;x + iy) =
∑
±

∫
dνx,±(τ)e−iyτpn(µ;±eτ ).

On the support of νx,±, the functions pn(µ;±eτ ) are bounded by the constants
Cn = ‖pn‖L∞(dµ), and the analysis of this section carries over.

15 L1 property of the Mellin transform in the
strip of analyticity

Apart from being interesting in itself, the study of the previous section is instru-
mental in establishing larger domains of validity of the L1 property of Mn(µ; x+iy)
than those obtained in Lemma 2. In fact, the content of Thm. 13 can be used to
show the following:

Lemma 8 For any x < d0(µ) there exists η(x) > 0 such that the Cesaro average
of |Gn(µ; x + iy)| verifies

1
2t

∫ t

−t

dy |Gn(µ;x + iy)| = o(t−η(x)/2+ε),

for any ε > 0. The quantity η(x) is the electrostatic correlation dimension of
D2(νx) of the measure νx defined in eq. (52).

Proof. Observe that we can write
∫ t

−t

dy |Gn(µ;x + iy)| ≤ (
∫ t

−t

dy)
1
2 (

∫ t

−t

dy |Gn(µ; x + iy)|2) 1
2 ,
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which allows us to bound the asymptotic behaviour of the integral of the modulus
of G by that of its square modulus. Then, apply the results of Thm. 13:

∫ t

−t

dy |Gn(µ;x + iy)|2 = o(t1−D2(νx)+ε),

for any ε > 0. The result of the Lemma then follows. 2

Our previous results on the L1 property of Mn(µ;x+ iy) have been based on
the boundedness of Gn(µ;x + iy). The new result permits us to conclude that:

Theorem 15 Let η(x) be as in Lemma 8. For all x such that x < min(d0(µ), 1+η(x)
2 ),

Mn(µ;x + iy) belongs to L1(R, dy), and consequently J̄n(µ; t) = t−xo(t), when
t →∞.

Proof. Let us estimate the integral
∫ t

−t
dy |H(x + iy)||Gn(µ;x + iy)|. Now, the

asymptotic estimate (33) must be combined with the result of Lemma 8: the former
implies that there exists W > 0 so that, for |y| > W , |H(x + iy)| ≤ 2|y|− 3

2+x.
Splitting then the integral above, we obtain

∫ t

−t

dy|H(x + iy)||Gn(µ; x + iy)| ≤ B + 2
∫

t>|y|>W

dy |y|− 3
2+x|Gn(µ; x + iy)|,

where B is a constant. The last integral can be now computed by parts, obtaining
∫

t>|y|>W

dy |y|− 3
2+x|Gn(µ; x + iy)| = B′ + o(tx−

1
2 (1+η(x))),

where B′ is another constant, whence the first part of the thesis follows. The second
part can be proven along the lines of Theorem 7. 2

Note that the range of values of x is defined only in implicit form in the above
theorem. Crucial to its determination is the behavior of the correlation dimension
D2(νx) = η(x).

16 Local Analysis at an Arbitrary Point

The analysis of the asymptotic behaviour of the Cesaro averages Jn(µ; t) has
brought into light the rôle of the measure in the neighbourhood of the point zero.
In fact, we can place zero wherever we please, by usage of the shifted measure
dµ(· − s), where s is the value of the shift. The orthogonal polynomials of the
shifted measure are easily obtained from those of the original measure. Indeed,
their Jacobi matrix, J(s), is given by J(s) = Jµ + sI, where I is the identity
matrix, and Jµ is the Jacobi matrix associated with the measure µ. In addition,
we have that Jn(µ(· − s); t) = e−itsJn(µ; t), a relation that permits to obtain all
the shifted zero order F-B. functions in terms of the one with null shift. These
simple observations permits us to construct a spectrum analyzer tunable to detect
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the local properties of a measure µ at all points, much in the spirit of the wavelet
analysis [22, 23].

The techniques presented so far also permit to obtain the interesting relation
between the local dimensions d0(µ; r) and the correlation dimension D2(µ) stated
in Thm. 1. To do this, let C(f) be the short-hand notation for the function C(f ; T ).
We have the following

Lemma 9 Let f be a complex function, C(f) its Cesaro average, and let us con-
sider the Mellin transform of its modulus, M(|C(f)|; z). Let d|C(f)| be its divergence
abscissa. Then, this latter is larger than, or equal to, the divergence abscissa of the
M.T. of the square root of the Cesaro average of |f |2:

d|C(f)| ≥ d(C(|f |2))1/2 (77)

Proof: Apply Schwartz inequality to the integral defining the Cesaro average:

|
∫ T

−T

dt f(t)|2 ≤ (
∫ T

−T

dt |f(t)|2)(
∫ T

−T

dt) = 4T 2C(|f |2;T ). (78)

Hence,
|C(f ;T )| ≤ C(|f |2;T )

1
2 , (79)

and ∫ W

0

dT T x−1|C(f ;T )| ≤
∫ W

0

dT T x−1C(|f |2;T )
1
2 . (80)

Then, if the rightmost term is convergent, as W tends to infinity, so is the first.
This implies the thesis. 2

Lemma 10 Let g be a positive function, bounded in [0, 1], and with positive di-
vergence abscissa of the Mellin transform, dg. Then, this latter is related to that
of |g|2, d|g|2 , by the inequality

dg ≥ 1
2
d|g|2 (81)

Proof: Apply Schwartz inequality to the integral
∫ T

1
tutx−1−ug(t)dt, to get

|
∫ T

1

dt tx−1g(t)|2 ≤ 1
2u + 1

(T 2u+1 − 1)
∫ T

1

dt t2x−2u−2|g(t)|2, (82)

for any u 6= − 1
2 . This can also be read as

|M(g, x, 1, T )|2 ≤ 1
2u + 1

(T 2u+1 − 1)M(|g|2, 2x− 2u− 1, 1, T ), (83)
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where M(g, x, 1, T ) is the Mellin transform integral of the function g with upper
integration limit T and lower integration limit one. We now let T tend to infinity.
Suppose that 2u + 1 < 0, and put a = −2u− 1 > 0. Then, if |M(g, x, 1, T )| tends
to infinity, forcefully M(|g|2, 2x−2u−1, 0, T ) ≥ M(|g|2, 2x−2u−1, 1, T ) tends to
infinity, too. The first condition is implied by x > dg. Therefore, this also implies
that 2x + a > d|g|2 . Since this holds for any a > 0 we obtain the thesis. 2

Proposition 11 The divergence abscissa of the Mellin transform of the modulus
of the Cesaro average J̄0(µ; t) := C(J0(µ); t) is larger than, or equal to, one-half of
the divergence abscissa of the Mellin transform of the Cesaro average of |J0(µ; t)|2.

Proof: Let g be the following function:

g(t) :=
(C(|J0(µ; ·)|2; t))1/2

.

Lemma 10 then implies that dg ≥ 1
2d|g|2 , where now |g|2 = C(|J0(µ)|2). In addition,

using Lemma 9,
dg = d(C(|J0(µ)|2))1/2 ≤ d|C(J0(µ))|,

and the thesis follows. 2

Lemma 11 When d(µ; s) < 1, the divergence abscissa of the Mellin transform of
the modulus of the Cesaro average of J0(µ(· − s); t) coincides with d(µ; s).

Proof: Let for simplicity of notation s = 0. Recall that, when d0(µ) < 1, one has
α0(µ) = d0(µ). From the definition of I0(x), eq. (18), and letting x < d0(µ), we
get:

I0(µ;x) :=
∫

dµ(r)
∫ ∞

0

dt |tx−1 sin tr

tr
| ≥

∫ ∞

0

dt tx−1|
∫

dµ(r)
sin tr

tr
| =

= M(|J̄0(µ)|;x)) ≥ |
∫ ∞

0

dt tx−1

∫
dµ(r)

sin tr

tr
| = |M(J̄0(µ); x)| (84)

The divergence abscissa of I0(x), α0(µ), is therefore smaller than, or equal to, the
divergence abscissa of M(|J̄0(µ)|; x)). Now we prove the reverse inequality. Since
x < α0(µ), the representation M(J̄0(µ); x) = G0(µ; x)H(x) holds. When x tends
to α0(µ), G0(µ;x) diverges, and so does |M(J̄0(µ); x)|, andM(|J̄0(µ)|; x)) as well.
But this means that the divergence abscissa of this last Mellin transform is smaller
than, or equal to α0(µ). 2

An interesting corollary follows:

Proposition 12 When d0(µ) < 1:

lim sup
t→∞

log C1(|J̄0(µ)|; t)
log t

= −d0(µ). (85)
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Proof. Since the modulus of J̄0(µ) is a non–negative function, we can apply Thm.
4. 2

This result is nonetheless a bit involved, since it considers the Cesaro average
of the modulus of a Cesaro average.

We are now ready to prove Thm. 1 of Sect. 1, that asserts that the local
dimension of µ at any point s is larger than, or equal to, one-half of the electrostatic
correlation dimension:

d(µ; s) ≥ 1
2
D2(µ) ∀s ∈ R. (86)

Proof of Thm. 1 in Sect. 1: The electrostatic correlation dimension of the
measure µ is the divergence abscissa of the generalized electrostatic energy E(µ; z),
eq. (8). It is also the divergence abscissa of the Mellin transform of the Cesaro
average of |J0(µ; t)|2, as proven in Sect. 10 above.

The local dimensions d(µ; s) are the divergence abscissas of the singular in-
tegrals G(µ; s, z), eq. (7). It follows from Lemma 11 that, when d(µ; s) < 1 these
quantities coincide with the divergence abscissa of the Mellin transform of the
modulus of the Cesaro average of J0(µ(· − s); t) = e−itsJ0(µ; t).

Then, two cases must be considered. If d(µ; s) ≥ 1
2 , then forcefully d(µ; s) ≥

1
2D2, since D2(µ) is always smaller than, or equal to, one. On the other hand, when
d(µ; s) < 1

2 the identification of the divergence abscissas of the spectral quantities
(8,7) with their dynamical analogue is valid, we can apply Proposition 11, and the
thesis follows. 2

A few comments to this result are in order. First of all, the validity for
all points s is to be remarked. This is to be compared with the almost certain
statement:

Proposition 13 The local dimensions of µ at µ-almost all points s, d(µ; s), are
larger than, or equal to, the electrostatic correlation dimension of the measure µ,
D2(µ):

d(µ; s) ≥ D2(µ) µ–a.e. s ∈ R.

Proof. For <(z) < D2(µ) the integral E(µ; z) is convergent. Therefore, it is standard
to show that Fubini theorem implies that the integral G(µ; s, z), the potential at
point s, is almost surely finite. This implies the thesis. 2

Remark 17 Thm. 1, and the analysis of this paper, shed light on the results of
Strichartz and Last [20], that assert that if a finite Borel measure on R is uniformly
α Hölder continuous (see [20] or Sect. 2 for a definition) then the Cesaro average
of |J0(µ; t)|2 (in our notation, A00(µ; T )), decays at least as T−α, and conversely,
if this is the case, then µ is uniformly at least α/2 continuous.

Remark 18 The inequality (9), has also been proven to hold separately for in-
ferior and superior limit quantities within the conventional formalism [29]. Also,
the weaker result of Prop. 13 is known to hold.
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17 Conclusions

In this paper we have developed a variety of Mellin transform techniques to analyze
the asymptotic behaviour of the Cesaro averages of the F-B. functions Jn(µ; t) and
of their products. The analysis has brought to light the rôle of suitably defined
measure dimensions in defining the asymptotic decay, much in line with previous
results in the literature. These results are now presented as belonging to a unified
picture, that focuses on the properties of the Mellin transform. The full potential of
this analysis is appreciated when applied to specific examples, like the elementary
ones presented in appendix to this paper, or the case of linear iterated functions
systems, to which a companion paper is devoted.

18 Appendix

The general theory can be exemplified on a scholastic example: the measures
dµ(s) = spds on [0, 1], with integer p. For these measures, we have d0(µ) = 1 + p.
Let us first focus on the linear quantities studied in sections 5 – 9.

Firstly, in the case p = 0 one obtains the Lebesgue measure, with α0(µ) =
d0(µ) = 1. Letting g(t) = J0(µ; t), one easily computes the Fourier transform

g(t) =
sin(t)

t
+

i

t
(cos(t)− 1),

the symmetric part

ge(t) =
sin(t)

t
,

and the Cesaro average

ḡ(t) =
Si(t)

t
∼ π

2t
.

It is apparent that ḡ(t) behaves asymptotically as t−1 for large t. Theorem 7 per-
mits to obtain at most that the decay exponent is larger than, or equal to, one half.
Theorem 8, in weak form, asserts that s(x, t) = txḡ(t) belongs to L2((0,∞), t−1dt)
for all x less than one, a fact that is easily verified, and indeed, one is the superior
limit of the set of x values for which the L2 property is verified. Finally, the full
strong asymptotic decay can be obtained via Theorem 6.

Let now p = 1. Then, d0(µ) = 2 is strictly larger than α0(µ) = 1. In this
case, explicit computations provide

g(t) =
e−it (it + 1)

t2
− 1

t2
,

ge(t) =
1
t2

(cos(t)− 1) +
1
t

sin(t),

and
ḡ(t) =

1
t2

(1− cos(t)).
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The exponent of strong decay of ḡ(t) is therefore two, and cannot be obtained
via Theorem 6. Yet, as predicted by Proposition 5, for <(z) < 2, the Mellin
transform of ḡ(t) exists as an improper Riemann integral. In addition, observe
that M(ge) also exists as an improper R.I. for <(z) < 2. Then, Thm. 9 asserts
that ḡ(t) = o(t−q′) for all q′ < 2.

Finally, let p = 2, so that d0(µ) = 3, α0(µ) = 1. Here,

g(t) =
2 cos(t)

t2
+

sin(t)
t

− 2
sin(t)

t3
+ i[

2(1− cos(t))
t3

− 2 sin(t)
t2

+
cos(t)

t
],

and

ḡ(t) =
sin(t)

t3
− cos(t)

t2
.

The exponent of strong decay is still two, and it is intermediate between α0(µ)
and d0(µ).

The problem of diagonal quadratic amplitudes is simpler. Consider the case
n = m = 0 and let g(t) = |J0(µ; t)|2. Then, the leading behaviour of ḡ(t) is 2Si(t)

t

for p = 0, 1
3

Si(t)
t for p = 1, and 2

5
Si(t)

t for p = 2. This is consistent with the fact
that D2(µ) is equal to one in all the three cases.
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symbol meaning location
pn(µ; s) orthogonal polynomials of µ eq. 1 in Sect. 1
Jn(µ; t) Fourier–Bessel functions of µ eq. 2 in Sect. 1
J̄n(µ; t) average F-B. functions of µ eq. 3 in Sect. 1
C(f ; t) symmetric Cesaro average of f eq. 3 in Sect. 1
f̄ symmetric Cesaro average of f eq. 3 in Sect. 1
Anm(µ; t) quadratic amplitudes of µ eq. 5 in Sect. 1
M(f ; z) Mellin transform of f eq. 6 in Sect. 1
G(µ; s, z) generalized electrostatic potential of µ Def. 3 in Sect. 1
E(µ; z) generalized electrostatic energy of µ Def. 4 in Sect. 1
d(µ; s) electrostatic local dimensions of µ Def. 5 in Sect. 1
D2(µ) electrostatic correlation dimension of µ Def. 6 in Sect. 1
γ±(µ; s) upper (lower) local dimensions of µ Def. 7 in Sect. 3
D±

2 (µ) upper (lower) correlation dimension of µ Def. 8 in Sect. 3
M[0,1](m; z) Mellin-Stieltjes transform of m on [0, 1] eq. 12 in Sect. 3
Ω(µ; u) correlation measure of µ eq. 14 in Sect. 3
M[1,∞)(m; z) Mellin-Stieltjes transform of m on [1,∞] eq. 15 in Sect. 4
C1(m; r) one sided Cesaro average of m eq. 16 in Sect. 4
Gn(µ; x) electrostatic potential of |pn|µ at zero eq. 20 in Sect. 5
dn(µ) electrostatic local dimension dimension of |pn|µ at zero eq. 21 in Sect. 5
αn(µ) asymptotic exponent of |pn|µ Def. 10 in Sect. 5
Mn(µ; z) Mellin transform of J̄n(µ; t) eq. 25 in Sect. 6
H(z) Mellin transform of sinc eq. 27 in Sect. 6
Gn(µ; z) dynamical factor in Mn(µ; z) eq. 28 in Sect. 6
hn(x, τ) auxiliary functions eq. 31 in Sect. 7
C0(R, τ) set of continuous functions vanishing at infinity Prop. 3 in Sect. 7
M(g; z, T ) truncated Mellin transform of g eq. 38 in Sect. 9
ge(t) even part of g Lem. 4 in Sect. 9
Gn,m(µ;x) n−m electrostatic energy of µ eq. 47 in Sect. 10
dnm(µ) n−m correlation dimensions of µ Def. 11 in Sect. 10
αnm(µ) n−m asymptotic exponents of µ Def. 11 in Sect. 10
Mnm(µ; z) Mellin transform of Anm(µ; t) eq. 48 in Sect. 11
Gnm(µ; z) dynamical factor in Mnm(µ; z) eq. 49 in Sect. 11
µe symmetrized measure Lem. 7 in Sect. 14
µ± restriction of µ to R+ and to its complementary Lem. 7 in Sect. 14
νx(µ) auxiliary measure eq. 52 in Sect. 14
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U.M.R. 6207 Centre de Physique Théorique, CNRS, Luminy, Marseille,
Universites d’Aix–Marseille I,II, Université du Sud, Toulon–Var, and Fédération
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