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Abstract
We study the ergodic and statistical properties of a class of maps of the circle and
of the interval of Lorenz type which present indifferent fixed points and points
with unbounded derivative. These maps have been previously investigated in the
physics literature. We prove in particular that correlations decay polynomially,
and that suitable limit theorems (convergence to stable laws or central limit
theorem) hold for Hölder continuous observables. Moreover, we show that the
return and hitting times are exponentially distributed in the limit.

Mathematics Subject Classification: 37E05, 60F05

1. Introduction

The prototype for intermittent maps of the interval is the well-known Pomeau–Manneville
map T defined on the unit interval [0, 1] and which admits a neutral fixed point at 0 with local
behaviour T (x) = x + cx1+α; otherwise it is uniformly expanding. The constant α belongs to
(0, 1) to guarantee the existence of a finite absolutely continuous invariant probability measure
and the constant c could be chosen in such a way that the map T has a Markov structure. This
map enjoys polynomial decay of correlations and this property still persists even if the map is
no longer Markov [33].
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Another interesting class of maps of the interval are the one-dimensional uniformly
expanding Lorenz-like maps (see [13, 17, 32] for their introduction and for the study of
their topological properties), whose features are now the presence of points with unbounded
derivatives and a lack of Markov structure: in this case one could build up towers and find
various rates for the decay of correlations depending on the tail of the return time function on
the base of the tower, see, for instance [9, 10]. The latter paper deals in particular with one-
dimensional maps which admit critical points and, possibly, points with unbounded derivatives,
but it leaves open the case where there is presence of neutral fixed points.

In this paper we are interested in maps which exhibit the last two behaviours, namely
neutral fixed points and points with unbounded derivatives. Such maps have been introduced
into the physics literature by Grossmann and Horner in 1985 [16]; they showed numerically
a polynomial decay of correlations and they also studied other statistical properties, like the
susceptibility and the 1/f -noise. Another contribution by Pikovsky [28] showed, still with
heuristic arguments, that these maps produce anomalous diffusion with square displacement
growing faster than linearly. Artuso and Cristadoro [3] improved the latter result by computing
the moments of the displacement on the infinite replicas of the fundamental domain and showed
a ‘phase transition’ in the exponent of the moments growth. Recently Lorenz cusp maps arose
to describe the distribution of the Casimir maximum in the Kolmogorov–Lorenz model of
geofluid dynamics [27]. Despite this interesting physical phenomenology, we did not find
any rigorous mathematical investigation of such maps. These maps are defined on the torus
T = [−1, 1]\ ∼ and depend on the parameter γ (see below); when γ = 2 the corresponding
map was taken as an example of the non-summability of the first hyperbolic time by Alves and
Araujo in [2]. This maps reads

T̃ (x) =
{

2
√

x − 1 if x � 0
1 − 2

√|x| otherwise
(1)

and it was proved in [2] that it is topologically mixing, but no other ergodic properties were
studied.

Actually, the Grossmann and Horner maps are slightly different from those investigated
in [3, 28], the difference being substantially in the fact that the latter are defined on the circle
instead of on the unit interval. We will study in detail the circle version of these maps in
sections 2 to 5, and we will show, in section 6, how to generalize our results to the interval
version: since both classes of maps are Markov, the most important information, especially in
computing distortion, will come from the local behaviour around the neutral fixed points and
the points with unbounded derivatives and these behaviours will be the same for both versions.
There is nevertheless an interesting difference. The circle version introduced in section 1 is
written in such a way that the Lebesgue measure is automatically invariant. This is not the
case in general for the interval version quoted in section 6. However, the strategy that we adopt
to prove statistical properties (Lai-Sang Young towers) will also give us the existence of an
absolutely continuous invariant measure and we will complete it by providing information on
the behaviour of the density. It is interesting to observe that in the class of maps considered
by Grossmann and Horner on the interval [−1, 1] (see section 6), the analogue of (1) is given
by the following map:

S̃(x) = 1 − 2
√

|x|. (2)

This map was investigated by Hemmer in 1984 [21]: he also computed by inspection the
invariant density which is ρ(x) = 1

2 (1 − x) and the Lyapunov exponent (simply equal to 1/2),
but he only argued about a slow decay of correlations. We will show in section 6 how to
recover the qualitative behaviour of this density (and of all the others in the Grossmann and
Horner class).
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Figure 1. The map T on the circle.

In this paper we study the one-parametric family of continuous maps T (figure 1) which
are C1 on T\{0}, C2 on T\ ({0}∪{1}) and are implicitly defined on the circle by the equations

x =


1

2γ
(1 + T (x))γ if 0 � x � 1

2γ

T (x) +
1

2γ
(1 − T (x))γ if

1

2γ
� x � 1

(3)

and for negative values of x by putting T (−x) = −T (x). We assume that parameter γ > 1.
Note that when γ = 1 the map is continuous with constant derivative equal to 2 and is
the classical doubling map. The point 1 is a fixed point with derivative equal to 1, while
at 0 the derivative becomes infinite. The map leaves the Lebesgue measure ν invariant (it
is straightforward to check that the Perron–Frobenius operator has 1 as a fixed point). We
will prove in the next sections several statistical properties: these will follow from existing
techniques, especially towers, combined with the distortion bound proved in the next section,
which will tell us that the logarithm of the derivative of the first return map is (locally) Hölder
on each cylinder of a countable Markov partition associated with T . Actually one could induce
on a suitable interval only (called I +

0 in the following): the proof we give is intended to provide
distortion on all cylinders of the countable Markov partition covering mod 0 the whole space
[−1, 1], since this is necessary to get the local smoothness of the invariant density is section 6
and in order to apply the inducing technique of [6] which will give us the statistical features of
recurrence studied in section 5. We now summarize the kind of statistical properties which we
are going to prove and that could be useful in physical applications whenever these maps arise
as the first return maps in suitable Poincaré sections; we recall that we are dealing with two
class of maps, T and S which share a few properties but that also exhibit a few differences, in
particular the existence of an absolutely continuous invariant measure must be proved for the
maps S and the regularity of the density must be investigated. The interesting features, even
for applications, are (we defer to the precise statements in the next sections for the correct
choice of the parameters)
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• The maps T and S enjoy polynomial decay of correlations for Hölder observables and
this decay is optimal in the sense that we can exhibit a specific class of functions that
vanishes in a neighbourhood of the indifferent fixed point and for which the correlations
have polynomial lower bounds.

• When we consider the map S, the density of the absolutely continuous invariant measure
is relevant from the physical point of view since it is related to some quantities and
invariants (see, e.g., [27]). We provide a local characterization of such a density, it is
Lipschitz continuous and bounded, but we believe that a precise knowledge of the map
could allow one to improve the smoothness of the density.

• The process Sn/
√

n, where Sn = ∑n−1
k=0 φ ◦ T k and with φ an Hölder observable of zero

mean (the same holds for the map S), will tend in distribution to the normal law for
certain values of the parameters defining the maps; for other values of such parameters
the process Sn/n

ι will converge to a stable law and with ι depending on the parameters.
Our examples enrich the list of one-dimensional maps for which the stable laws could be
exactly computed.

• The process (1/n)Sn satisfies large deviations bounds for the maps T and S in the sense
that, if µ denotes the invariant measure and given a positive ε, then the distribution

µ

(∣∣∣∣1

n
Sn

∣∣∣∣ > ε

)
decays in n polynomially to zero.

• The maps T and S have exponential return and hitting time statistics with respect to the
invariant measure µ and around balls whose centre is chosen µ-almost surely. Moreover,
the number of visits in such balls converge to the Poissonian distribution whenever the
radius of the ball goes to zero. Finally, extreme values laws hold for the distribution of
partial maximum.

2. Distortion

Notations. With an ≈ bn we mean that there exists a constant C � 1 such that C−1bn � an �
Cbn for all n � 1; with an � bn, or equivalently an = O(bn) with an and bn non-negative, we
mean that there exists a constant C � 1 such that ∀n � 1, an � Cbn; with an ∼ bn we mean
that limn→∞ an/bn = 1. Throughout the paper ν will denote the Lebesgue measure. The letter
C will denote often different constants.

There is a countable Markov partition {Im}m∈Z∗ ⋃{0±} associated with the map (3); the
partition is built mod ν as follows: Im = (am−1, am) for all m ∈ Z

∗ and I +
0 = (0, a0+) and

I−
0 = (a0− , 0), where

a0+ = 1

2γ
, a0− = − 1

2γ
and ai = T −i

+ a0+, a−i = T −i
− a−0, i � 1,

with T+ = T|(0,1), T− = T|(−1,0). Then we define ∀i � 1:

b−i = T −1
− ai−1 and bi = T −1

+ a−(i−1).

We now state without proof a few results which are direct consequences of the definition
of the map.

Lemma 1.

(1) When x → 1−: T (x) = 1 − (1 − x) − 1
2γ

(1 − x)γ + o((1 − x)γ )

DT (x) = 1 + 1
2 (1 − x)γ−1 + o((1 − x)γ−1)

D2T (x) = − (γ−1)

2 (1 − x)γ−2 + o((1 − x)γ−2).
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(2) When x → 0+: T (x) = −1 + (2γ )
1
γ x

1
γ + o(x

1
γ )

DT (x) = (2γ )
1
γ 1

γ
x

1
γ
−1 + o(x

1
γ
−1

)

D2T (x) = (2γ )
1
γ 1

γ
( 1

γ
− 1)x

1
γ
−2 + o(x

1
γ
−2

).

The derivations at point 2 are obvious since the map is explicit. The formulae for the
derivatives at point 1 are obtained by computing the first and the second derivative of the local
inverse of T and by using successively the local expansion of T in the neighbourhood of 1.

Lemma 2. We have for all n, a±(n+1) = a±n ± 1
2γ

(1 ∓ a±n)
γ and

1 − an ∼
(

2γ

γ − 1

) 1
γ−1 1

n
1

γ−1

;

a−n + 1 ∼
(

2γ

γ − 1

) 1
γ−1 1

n
1

γ−1

;

ln := length[an−1, an] ∼ 1

2γ

(
2γ

γ − 1

) γ

γ−1 1

n
γ

γ−1

n > 1;

|b±n| ∼ 1

2γ

(
2γ

γ − 1

) γ

γ−1 1

(n − 1)
γ

γ−1

, n > 1.

Our next step is to induce over subsets where the first return map is mixing and has a
nice topological structure. We will see that the first return map is Bernoulli on the cylinders
Im = (am−1, am), m ∈ Z

∗ and I±
0 introduced above. A distortion estimate on those cylinders

is possible although quite lengthy. We proceed therefore in another way. We perform the
distortion estimate on the interval Ĩm := (a−m, am)/{0} which turns out to be much easier,
and we will show that such distortion persists over the (Bernoulli) cylinders Im ⊂ Ĩm (see
corollary 1 below)5. It is important to stress that the distortion only is not enough to work on
the sets of the form Ĩm, since, for example, on the set (a0−, a0+) the first return map is irreducible
but not aperiodic, as it is easy to check by inspection. We then proceed to induce on the interval
Ĩm to get a bounded distortion estimate for the first return map. We define Z+

m,1 := (bm+1, am),
Z−

m,1 := (a−m, b−(m+1)) and Z+
m,p>1 := (bm+p, bm+p−1), Z

−
m,p>1 := (b−(m+p−1), b−(m+p)). Note

that Ĩm = ∪p�1Z
±
m,p and that the first return map T̂m = Ĩm → Ĩm acts on each Z±

m,p as T̂m = T p

and in particular

T p(Z+
m,p) =

{
(a−m, am−1) p = 1
(a−m, a−(m−1)) p > 1

T p(Z−
m,p) =

{
(a−(m−1), am) p = 1
(am−1, am) p > 1.

We finally observe that the induced map T̂m is uniformly expanding in the sense that for each
m and p there exists β > 1 such that |DT̂m(x)| > β, ∀x ∈ Ĩm

6.

Proposition 3. Let us induce on Ĩm; then there exists a constant K > 0 that depends on m,
such that for all p and for all x, y in a cylinder of the form Z+

m,p or Z−
m,p, we have∣∣∣∣∣DT̂m(x)

DT̂m(y)

∣∣∣∣∣ =
∣∣∣∣DT p(x)

DT p(y)

∣∣∣∣ � eK|T p(x)−T p(y)| � e2K.

5 We warmly thank the anonymous referee who suggested this strategy to us which greatly simplifies our previous
distortion estimate performed on each cylinder Im with long combinatorics.
6 Using the chain rule we can see that β ≡ infx∈Zm,1 |DT (x)| > 1.
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Remark 1. The techniques of the proof allow us to get the equivalent result, especially used
in section 6. Let us consider as before the interval Ĩm; then there exists a constant K ′ > 0 that
depends on m, such that for all p and for all x in a cylinder of the form Z±

m,p, we have (Adler’s
condition)

|D2T̂ (x)|
|DT̂ (x)|2 � K ′. (4)

Proof. We work on the cylinders of the form Z−
m,p, the other case being completely similar by

symmetry. We denote with lm the length of the interval (am−1, am) (when m = 0, l0 = length
of (0, a0+)). We start by observing that∣∣∣∣DT p(x)

DT p(y)

∣∣∣∣ = exp

p−1∑
q=0

∣∣∣∣D2T (ξ)

DT (ξ)

∣∣∣∣ |T qx − T qy|
 , (5)

where ξ is a point between T qx and T qy.
We divide the cases p = 1 and p > 1.

• p = 1
For (x, y) ∈ Z−

m,1 and by using |x − y| < |T (x) − T (y)|, we directly get∣∣∣∣DT (x)

DT (y)

∣∣∣∣ � exp [K1|T (x) − T (y)|],

where K1 = sup(Z−
m,1)

D2T = D2T (am).
• p > 1

We start with x, y ∈ Z−
m,p; since T x, T y ∈ (am+p−2, am+p−1); T 2x, T 2y ∈

(am+p−3, am+p−2); . . . ; T p−1x, T p−1y ∈ (am, am+1) we finally have

(5) � exp

 sup(Z−
m,p)

(|D2T |)
inf (Z−

m,p)

(|DT |) |x − y| +
p−1∑
q=1

sup(am+p−q−1,am+p−q )

(|D2T |)
inf (am+p−q−1,am+p−q )

(|DT |) |T qx − T qy|


� exp

 sup(Z−
m,p)

(|D2T |)
inf (Z−

m,p)

(|DT |) |x − y| +
p−1∑
q=1

sup
(am+p−q−1,am+p−q )

(|D2T |)|T qx − T qy|
 (6)

To continue we need the following lemma.

Lemma 4. For x, y ∈ Z−
m,p we have

(i)
∑p−1

q=1 sup(am+p−q−1,am+p−q )

(|D2T |)|T qx − T qy| � C1|T p−1Z|

(ii) supZ−
m,p

(|D2T |)|x − y| � C2
|T p−1Z|

lm+1
,

where we set for convenience Z the interval with endpoints x and y.

Proof.

(i) Denote T p−1x = zx and T p−1y = zy ; since the derivative is positive and decreasing on
(0, m) we have

|T qx − T qy| � 1

DT p−1−q(am+p−q)
|zx − zy |. (7)
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Let us now consider the term

DT p−1−q(am+p−q) = DT (am+p−q)DT (T am+p−q) . . . DT (T p−2−qam+p−q) (8)

Since for q � 1 and ξ1 ∈ (aq, aq+1)

DT (aq) � DT (ξ1) = T (aq+1) − T (aq)

aq+1 − aq

= aq − aq−1

aq+1 − aq

it follows that

(8) � am+p−q − am+p−q−1

am+p+1−q − am+p−q

· am+p−q−1 − am+p−q−2

am+p−q − am+p−q−1
. . .

am+2 − am+1

am+3 − am+2

� am+2 − am+1

am+p+1−q − am+p−q

and thus7:
1

DT p−1−q(am+p−q)
� am+p+1−q − am+p−q

am+2 − am+1
.

Moreover |zx − zy | � |T p−1Z|. Finally

(7) � am+p+1−q − am+p−q

am+2 − am+1
|T p−1Z|. (9)

Using lemmas 1 and 2 we see that there exists a constant C0 depending only on the map
T such that(

sup
(am+q−1,am+q )

|D2T |
)

(am+q+1 − am+q) � C0 · 1

(q + m)
γ−2
γ−1 (q + m)

γ

γ−1

= C0 · 1

(q + m)2
.

Therefore the sum over q = 1, 2, . . . is summable and there exists a constant C1 such that
for x, y ∈ Z−

m,p

p−1∑
q=1

(
sup

(am+p−q−1,am+p−q )

|D2T |
)

|T qx − T qy| � C1|T p−1Z| (10)

(ii) In this case we need to control the behaviour of the map close to 0. In particular, by using
lemmas 1 and 2 (and the symmetry of b±i) we start by noticing that(

sup(bi+1,bi )
|D2T |

inf (bi+1,bi ) |DT |

)
|bi − bi+1| = O

(
1

i

i
2γ−1
γ−1

i
2γ−1
γ−1

)
= O

(
1

i

)
. (11)

Combining (10) and (11) with (6) we get that there exists a constant D2 so that for all
j � p − 1

1

D2
�
∣∣∣∣DT j(x)

DT j (y)

∣∣∣∣ � D2. (12)

Let us call t = b−(m+p−1), u = b−(m+p) the end points of Z−
m,p. For j1, j2 � p − 1 there

exist η1 ∈ (x, y) and η2 ∈ (t, u) such that

|T j1x − T j1y| = DT j1(η1)|x − y|,
|T j2 t − T j2u| = DT j2(η2)|t − u|.

7 We have just proved that if ξ is any point in (am+p, am+p+1) (and the same result holds for its negative counterpart
(a−(m+p+1), a−(m+p)) as well) then DT p(ξ) � am+2−am+1

am+p+1−am+p
. In a similar way we can prove the lower bound:

DT p(ξ) � a0+
am+p−1−am+p−2

, for p � 2.
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The distortion bound (12) yields∣∣T j1x − T j1y
∣∣∣∣T j1 t − T j1u
∣∣ � D2

2

∣∣T j2x − T j2y
∣∣∣∣T j2 t − T j2u
∣∣ .

If we now choose j1 = 0 and j2 = p − 1 then(
sup
(t,u)

|D2T |
)

|x − y| � D2
2

(
sup
(t,u)

|D2T |
)

|t − u| · |T p−1x − T p−1y|
|T p−1t − T p−1u| .

Since |T p−1t − T p−1u| = lm+1 = am − am+1 and x and y belong to Z we get(
sup
(t,u)

|D2T |
)

|x − y| � D2
2

(
sup
(t,u)

|D2T |
)

|t − u| · |T p−1Z|
lm+1

and using distortion bound (11) once more we have that there exists a constant C2 such
that (

sup
(t,u)

|D2T |
)

|x − y| � C2
|T p−1Z|

lm+1
. �

By collecting lemma 4(i) and 4(ii) we see that the ratio |DT p(x)/DT p(y)|, (x, y ∈ Z) is
bounded as ∣∣∣∣DT p(x)

DT p(y)

∣∣∣∣ � exp

[
C2

|T p−1Z|
lm+1

+ C1|T p−1Z|
]

� exp
[
K2|T p−1Z|] (13)

with K2 = C1 + C2/lm+1.
We finish the proof of the proposition by choosing K = max(K1, K2). �

We now return to the induction over the sets of the form Im = (am−1, am), m ∈ Z which,
for m = 0 are intended to be I +

0 = (0, a0+) and I−
0 = (a0− , 0). We then define a partition of

Im by Wm = {Wm,1, Wm,2, . . . , Wm,p, . . .}, where

Wm,p = {x ∈ Im , τIm
(x) = p}.

τIm
(x) being the first return time of x into Im. We call Wc

m,p any of the connected components

of Wm,p and we set T̂ ′
m : Im → Im the first return map to Im. Wm,p is the disjoint union of

its connected components Wc
m,p and moreover T̂ (Wc

m,p) = T p(Wc
m,p) = Im and the map T̂ is

surjective and onto8.

8 It easy to describe symbolically such connected components; we first give a suitable coding of each point x ∈ T\S,
where S = ∪i�0T

−i{0}. We associate with such a point x the sequence ω = (ω0 ω1 . . . ωn . . .); ωl ∈ Z
∗ ∪{0−}∪{0+}

such that (from now on n will denote a positive integer) ωl = n iff T lx ∈ (an−1, an); ωl = −n iff T lx ∈
(a−n, a−(n−1)); ωl = 0+ iff T lx ∈ I+

0 ; ωl = 0− iff T lx ∈ I−
0 .

The grammar is the following:

ωl = n > 0 ⇒ ωl+1 = n − 1; ωl = −n < 0 ⇒ ωl+1 = −(n − 1),

ωl = 0+ ⇒ ωl+1 = 0− or − n (any n); ωl = 0− ⇒ ωl+1 = 0 + or n > 0 (any n).

A cylinder (ω1, ω2, · · · , ωn), with ωi ∈ Z
∗ ⋃{0±} and compatible with the grammar, will denote the open set⋂n

i=1 T −i Iωi
. Therefore we see that every Wm,p is the disjoint union of connected cylinders Wm,p(k1, . . . , kn) of the

form

Wm,p(k1, . . . , kn) =
(

k1 k1 − 1 . . . 1︸ ︷︷ ︸
k1

0+ 0− . . . 0+︸ ︷︷ ︸
k2

−k3 . . . − 1︸ ︷︷ ︸
k3

0−0+ . . . 0− m + kn − 1 . . . m︸ ︷︷ ︸
kn

)
, (14)

with k1 + . . . + kn = p + 1 and k1 = m.
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Corollary 1. Let us consider the cylinders Im = (am−1, am), m ∈ Z. Then there exists
constants K and K ′ (possibly different from those given in proposition 3), depending on
m such that for all x, y in any connected component Wc

m,p we have∣∣∣∣∣DT̂ ′
m(x)

DT̂ ′
m(y)

∣∣∣∣∣ =
∣∣∣∣DT p(x)

DT p(y)

∣∣∣∣ � exp
[
K|T p(x) − T p(y)|] � e2K

and

|D2T̂ ′
m(x)|

|DT̂ ′
m(x)|2 � K ′

Proof. We first observe that by standard arguments the first return map T̂ ′
m induced by T on

Im coincides with the first return map induced by T̂m on Im, where T̂m is the first return map
induced by T on Ĩm ⊃ Im. Then we conclude by noticing that an induced map of a map
satisfying the bounded distortion condition or Adler’s condition (on Z±

m,p in our case) satisfies
the bounded distortion condition or Adler’s condition as well (on Wc

m,p in our case) [5]. �

3. Decay of correlations

In this section and the next we prove several statistical properties for our map: they are
basically consequences of the distortion inequality obtained in the previous section matched
with established techniques.

Proposition 5. The map T enjoys polynomial decay of correlations w.r.t. the invariant
Lebesgue measure ν, for Hölder continuous functions on T. More precisely, for all Hölder
ϕ : T → R and all ψ ∈ L∞

ν , we have∣∣∣∣∫ (ϕ ◦ T n) ψ dν −
∫

ϕ dν

∫
ψ dν

∣∣∣∣ = O
(

1

n
1

γ−1

)
.

Proof. We will use Lai-Sang Young’s tower technique [33]. We build the tower over the
interval I +

0 and we define the return time function as the first return time:

for all x ∈ I +
0 , τI+

0
(x) := min{n ∈ N

+; T nx ∈ I +
0 }.

The tower is thus defined by

� = {(x, l) ∈ I +
0 × N ; l � τI+

0
(x) − 1}

and the partition of the base I +
0 is given by the sets W0+,p. Recall that the dynamics on the

tower is given by

F(x, l) =
{

(x, l + 1) if l < τI+
0
(x) − 1,

(T
τI+

0
(x)

(x), 0) if l = τI+
0
(x) − 1.

According to [33], the decay of correlations is given by the asymptotics of
ν{x ∈ I +

0 ; τI+
0
(x) > n} namely

ν{x ∈ I +
0 ; τI+

0
(x) > n} =

+∞∑
p=n+1

ν{x ∈ I +
0 ; τI+

0
(x) = p} =

+∞∑
p=n+1

ν(W0+,p).
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Before computing this quantity explicitly, we must verify another important requirement
of the theory; this will also be useful in the next section about limit theorems. Let us
first introduce the separation time s(x, y) between two points x and y in I +

0 . Put T̂ ′
0

the first return map on I +
0 ; we define s(x, y) = minn�0{(T̂ ′

0

n
(x), T̂ ′

0

n
(y)) lie in distinct

W0+,p, p � 1}. We ask that ∃C > 0, θ ∈ (0, 1) such that ∀x, y ∈ W0+,p, p � 1,
we have ∣∣∣∣∣DT̂ ′

0(x)

DT̂ ′
0(y)

∣∣∣∣∣ � exp[Cθs(T̂ ′
0(x),T̂ ′

0(y))]. (15)

Let us prove this inequality. Suppose s(T̂ ′
0(x), T̂ ′

0(y)) = n; then since the orbits (under

T̂ ′
0) of the two points will be in the same cylinder of type W0+,p, p � 1 up to time n − 1

and on these cylinders T̂ ′
0 is monotone and uniformly expanding, |DT̂ ′

0| � β > 1 (see

footnote 5), we have |T̂ ′
0(x) − T̂ ′

0(y)| � β−(n−1). Therefore by the distortion inequality (13)
we get ∣∣∣∣∣DT̂ ′

0(x)

DT̂ ′
0(y)

∣∣∣∣∣ � exp

[
Kβ−(n−1)

l0

]
� exp[Cθs(T̂ ′

0(x),T̂ ′
0(y))], (16)

where C = Kβ

l0
and θ = β−1. This bound is often called the local Hölder condition for

log |DT̂ ′
0| with exponent θ ; we will encounter it again pretty soon and when we refer to it, it

will be associated with a given Markov partition of the induced space. We now come back
to estimate the quantity ν(W0+,p). The cylinder-set W0+,p could be easily described using
symbolic dynamics (see footnote 8): it will be the disjoint union of cylinders of the following
form:

Cp,q = (
0+ −q · · · − 1︸ ︷︷ ︸

q

0− p − q − 2 · · · 1︸ ︷︷ ︸
p−q−2

0+
)
.

Thus, there are p−1 cylinders whose first return time in I +
0 is p. Noticing that T p : Cp,q → I +

0

is surjective we know that there exists ξ ∈ Cp,q such that ν(Cp,q) = ν(I+
0 )

|DT p(ξ)| . Since as

usual DT p(ξ) = DT (ξ)DT q(T ξ)DT (T q+1ξ)DT p−q−2(T q+2ξ) and ξ ∈ (b−q−1, b−q) and
T q+1ξ ∈ (bp−q−2, bp−q−1), by using the asymptotic bound on the b±n given by lemma 2
and the lower bound on the term DT p(x), x ∈ (ap−1, ap) given in the footnote 7, we
immediately get

ν(Cp,q) � a+0

DT (b−q)DT (bp−q−2)

aq − aq−1

a1 − a+0

ap−q−2 − ap−q−3

a1 − a+0

� a+0

DT (b−q)DT (bp−q−2)

(1 − aq−1)
γ

(1 − 1
2γ

)γ

(1 − ap−q−3)
γ

(1 − 1
2γ

)γ

� a+0

q(p − q − 2)

1

(q(p − q − 2))
γ

γ−1

� 1(
q(p − q − 2)

) γ

γ−1 +1
.

The cases q = 0 (for which Cp,0 = (0+ 0− (p − 2) . . . 2 1 0+)) and q = p − 2 (for which
Cp,p−2 = (0+ − (p − 2) . . . − 2 − 1 0− 0+) can be computed in a similar way and both are
bounded by a quantity of order 1

(p−2)
γ

γ−1 +1
.
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Since there are only p − 1 ways to place 0− in Cp,q , we get

ν(W0+,p) = ν

p−2⋃
q=0

Cp,q


�

p−3∑
q=1

1

q
γ

γ−1 +1
(p − q − 2)

γ

γ−1 +1

 +
2

(p − 2)
γ

γ−1 +1

� 1

p
γ

γ−1 +1

[ p−3
2 ]∑

q=1

1

q
γ

γ−1 +1
(1 − q−2

p
)

γ

γ−1 +1

 +
2

(p − 2)
γ

γ−1 +1
� 1

p
γ

γ−1 +1
.

Finally

ν{x ∈ I +
0 ; τI+

0
(x) � n} �

+∞∑
p=n

1

p
γ

γ−1 +1
� 1

n
γ

γ−1

.

According to [33] the correlations decay satisfies | ∫ (ϕ ◦ T n) ψ dν − ∫
ϕ dν

∫
ψ dν| =

O(
∑

k>n ν{x ∈ I +
0 ; τI+

0
(x) � n}) and the right-hand side of this inequality behaves

like O
(

1

n
1

γ−1

)
. �

Optimal bounds. The previous result on the decay of correlations could be strengthened to
produce a lower bound for the decay of correlations for integrable functions supported on
the cylinders of the countable Markov partition Im constructed in the previous section. For
that we will use the renewal technique introduced by Sarig [31] and successively improved
by Gouëzel [15]. In this regard we need a few assumptions that we directly formulate in our
setting:

• Suppose we induce on the rectangle I +
0 ; call W+

0 the Markov partition into the rectangles
W0+,p with first return p. A cylinder [d0, d1, · · · , dn−1] with di ∈ W+

0 will be the set

∩n−1
l=0 T̂ ′

0

−l
dl .

We first need that the Jacobian of the first return map is locally Hölder continuous with
exponent θ , but this is an immediate consequence of formula (16) with θ = β−1 and C =
Kβ/l0. Using the separation time s(·, ·), we define D0+f = sup |f (x) − f (y)|/θs(x,y),
where f is an integrable function on I +

0 and the supremum is taken over all couples
x, y ∈ I +

0 . We then put ||f ||Lθ,0+ ≡ ||f ||∞ + D0+f . We call Lθ,0+ the space of θ -Hölder
functions on I +

0 and we call D0+f the Hölder constant of f (on I +
0 ).

• We need the so-called big image property, which means that the Lebesgue measure of the
images, under T̂ ′

0, all the rectangles W0+,p ∈ W+
0 are uniformly bounded from below by a

strictly positive constant. This is actually the case since all these images coincide with I +
0 .

• We finally need that ν(x ∈ Im|τ(x) > n) = O(n−χ ), for some χ > 1 (this is Gouëzel’s
assumption, which improves Sarig’s one, asking for χ > 2). But this has been proved
above with χ = γ

γ−1 .

Under these assumptions, Sarig and Gouëzel proved a lower bound for the decay of correlations
which we directly specialize to our map and for the interval I +

0 : the same kind of result of
course holds for any other rectangle Im.
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Proposition 6. There exists a constant C such that for all f ∈ Lθ,0+ and g ∈ L∞
ν with norm

|| · ||∞ and both supported in I +
0 we have∣∣∣∣∣Corr( f, g ◦ T n) −

( ∞∑
k=n+1

ν(x ∈ I +
0 |τ(x) > n)

)∫
g dν

∫
f dν

∣∣∣∣∣ � CFγ (n)||g||∞||f ||Lθ,0+ ,

where Fγ (n) = 1

n
γ

γ−1
if γ < 2, (log n)/n2 if γ = 2 and 1

n
2

γ−1
if γ > 2.

Moreover, if
∫

f dν = 0, then
∫
(g ◦ T n) f dν = O

(
1

n
γ

γ−1

)
. Finally the central limit theorem

holds for the observable f .

Remark 2. The last sentence about the existence of the central limit theorem will be also
obtained, using a different technique, in proposition 7, part 2, (a).

4. Limit theorems

Let us recall the notion of stable law (see [11, 14]): a stable law is the limit of a rescaled i.i.d
process. More precisely, the distribution of a random variable X is said to be stable if there
exist an i.i.d stochastic process (Xi)i∈N and some constants An ∈ R and Bn > 0 such that in
distribution

1

Bn

(
n−1∑
i=0

Xi − An

)
−→ X.

We will denote by X(p, c, ϑ) the law whose characteristic function is

E(eX(p,c,ϑ)) = e−c|t |p
(

1−iϑsgn(t) tan(
pπ

2 )

)
,

where p ∈ (0, 1) ∪ (1, 2], c > 0, ϑ ∈ [−1, 1]. Note that when p ∈ (1, 2] the law is of zero
expectation. The case p = 2 corresponds to the normal law and the value of ϑ is irrelevant. The
case p = 1 is problematic and it is not included here. We defer to [14] for a characterization of
the constant c in terms of the asymptotic behaviour of the distribution of the random variable
X. For one-dimensional Gibbs–Markov maps such a constant c enters the tail of the first return
times, as it is showed in equation (17).

Proposition 7. Let us denote Snϕ = ∑n−1
k=0 ϕ ◦ T k , where ϕ is a υ-Hölder observable, with∫

ϕ(x) dx = 0.

(1) If γ < 2 then the central limit theorem holds for any υ > 0. That is to say there exists a
positive constant σ 2 such that Snϕ√

n
tends in distribution to N (0, σ 2). Moreover σ 2 = 0 iff

there exists a measurable function ψ such that ϕ = ψ ◦ T − ψ .
(2) If γ > 2 then

(a) If ϕ(1) = 0 and |ϕ(x)| � C̃|x − 1|υ ′
T

, where | · |T denotes the distance on the circle,
C̃ is a positive constant and 1

2 (γ − 2) < υ ′ < γ − 1 then the central limit theorem
still holds with a positive variance σ 2. Moreover σ 2 = 0 iff there exists a measurable
function ψ such that ϕ = ψ ◦ T − ψ .

(b) If ϕ(1) �= 0 then Snϕ

n
γ−1
γ

converges in distribution to the stable law X
(
p, c, ϑ

)
with

p = γ

γ − 1
,

c = 1

γ

(
2γ |ϕ(1)|
γ − 1

) γ

γ−1

�

(
1

(1 − γ )

)
cos

(
πγ

2(γ − 1)

)
,

ϑ = sgn ϕ(1).
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(3) If γ = 2 then

(a) If ϕ(1) = 0 then the central limit theorem holds.
(b) If ϕ(1) �= 0 then there exist a constant b such that Snϕ√

n log n
tends in distribution to

N (0, b).

Proof.

(1) As a by-product of the tower’s theory we get the existence of the central limit theorem
whenever the rate of decay of correlations is summable ( [33], theorem 4); this happens
in our case for γ < 2. As usual we should avoid that ϕ is a co-boundary.

(2) (a)
We proceed as in [14] theorem 1.3 where this result was proven for the Pomeau–Manneville
parabolic maps of the interval. We defer the reader to Gouezel’s paper for the preparatory
theory; we only prove here the necessary conditions for its application. We induce again

on I +
0 and we put ϕI+

0
(x) := ∑τI+

0
(x)−1

i=0 ϕ(T ix). We need

• ϕ must be locally Hölder continuous on I +
0 ( with exponent θ ).

• ν{x ∈ I +
0 ; τI+

0
(x) = n} = O(1/nη+1), for some η > 1.

• ϕI+
0

∈ L2
(
I +

0

)
.

Recall that the induced map T̂ ′
0 on I +

0 is uniformly expanding with factor β > 1; therefore
for any couple of points x, y ∈ T we have |x − y|T � Bβ−s(x,y), where B is a suitable
constant and | · |T denotes the distance on the circle. Using the Hölder assumption on ϕ

we get |ϕ(x) − ϕ(y)| � D|x − y|υ
T

� Eβ−υs(x,y), which shows that ϕ is locally Hölder
with θ = β−υ < 1.
The quantity in the second item above is exactly ν(W0+,n) for which we obtained in the
previous section a bound of order n

−(
γ

γ−1 +1). Hence η = γ /(γ − 1).
To prove the third item denote Cϕ = ∫

I+
0
|ϕ(x)|2 dx. As in section 3 we obtain (we simply

put here dν = dx)

∫
I+

0

|ϕI+
0
(x)|2 dx � Cϕ +

+∞∑
l=2

∫
W0+ ,l

∣∣∣ τI+
0
−1∑

i=0

ϕ(T ix)

∣∣∣2 dx

� Cϕ +
+∞∑
l=2

l−2∑
q=0

∫
Cl,q

∣∣∣ l−1∑
i=0

ϕ(T ix)

∣∣∣2 dx

� Cϕ + C̃

+∞∑
l=2

l−2∑
q=0

∫
Cl,q

∣∣∣ l−1∑
i=0

|T ix − 1|υ ′
T

∣∣∣2 dx

� Cϕ + C̃

+∞∑
l=2

l−2∑
q=0

∫
Cl,q

∣∣∣ q∑
m=0

|a−m + 1|υ ′
+

l−q−2∑
m=0

|am − 1|υ ′
∣∣∣2 dx

� Cϕ + C̃

+∞∑
l=2

l−2∑
q=0

ν(Cl,q)
∣∣q −υ′+γ−1

γ−1 + (l − q − 2)
−υ′+γ−1

γ−1
∣∣2

� Cϕ + C̃

+∞∑
l=2

[(l−2)/2]∑
q=0

ν(Cl,q)(l − q − 2)
2(−υ′+γ−1)

γ−1

∣∣∣1+
( q

(l −q −2)

) −υ′+γ−1
γ−1

∣∣∣2



1084 G Cristadoro et al

� Cϕ + C̃

+∞∑
l=2

l
2(−υ′+γ−1)

γ−1

l
γ

γ−1 +1

1 +
(l−2)/2∑

q=1

1

q
γ

γ−1


� Cϕ + C̃

+∞∑
l=2

l
2(−υ′+γ−1)

γ−1

l
γ

γ−1 +1
.

Finally if 2(−υ ′+γ−1)

γ−1 − γ

γ−1 − 1 < −1 (i.e. υ ′ > 1
2 (γ − 2)) then ϕI+

0
∈ L2

(
I +

0

)
.

(b)
The proof proceeds as for the analogous case of theorem 1.3 in [14]; in order to use what
we got at the point (a), we introduce the auxiliary function ϕ = ϕ(1) + ϕ̃, where ϕ̃ is
υ-Hölder and satisfies ϕ̃(1) = 0. The corresponding functions on the induced space will
verify ϕI+

0
= ϕ̃I+

0
+ s, where s(x) = nϕ(0) when x belongs to the cylinders Z0+,n with first

return n. It is argued in [14], and the same remains true in our case, that the constant c of
the stable law should verify

ν(s > nϕ(1)) = ν(τI+
0

> n) ∼ cng, (17)

where g is a given exponent. Previous estimates suggest that g = −(
γ

γ−1 ), but they are
not enough to get the asymptotic equivalence prescribed to obtain the constant c. This is
achieved by the following lemma.

Lemma 8. Let us define Rn = (τI+
0

> n); then

ν(Rn) ∼ 2bn.

The proof of this lemma is postponed to the appendix; thanks to it we immediately see
that c = 1

γ
(

2γ

γ−1 )
γ

γ−1 .
(3) This could also be obtained as in the proof of theorem 1.3 in [14]. �

Large deviations. The knowledge of the measure of the tail for the first returns on the tower
(in our case built over I +

0 ) will allow us to apply the results of Melbourne and Nicol [24],
Melbourne [25] and Pollicott and Sharp [29] to get the large deviations property for particular
classes of observables. We will apply to our map Melbourne’s result [25], which states that
whenever ν(x; τI+

0
> n) = O(n−(ζ+1)), with ζ > 0 (in our case ζ = 1

γ−1 ), then for some
observables φ : [−1, 1] → R (for the regularity see below), which we take of zero mean, we
have the following proposition.

Proposition 9. If ζ > 0 (γ > 1) then the map T verifies the following large deviations
bounds:

(I) whenever the observable φ is Hölder9, then for all ε > 0 there exists a constant Cφ,ε such
that

ν

∣∣∣∣∣∣1

n

n−1∑
j=0

φ(T j (x))

∣∣∣∣∣∣ > ε

 � Cφ,εn
− 1

γ−1

for all n � 1.

9 In the paper [25] the observable φ is in L∞
ν . But in this case one needs a specific assumption on the algebraic decay

of correlations for L∞
ν functions.
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(II) There exists a constant c1 and an open and dense set A of Hölder observables in the space
of of Hölder observables, such that whenever φ ∈ A, then one can find ε0 > 0 such that
for all ε ∈ (0, ε0) we have

ν

∣∣∣∣∣∣1

n

n−1∑
j=0

φ(T j (x))

∣∣∣∣∣∣ > ε

 � c1n
− 1

γ−1

for infinitely many n.

5. Recurrence

First returns. In the past ten years the statistics of first return and hitting times have
been widely used as new and interesting tools to understand the recurrence behaviours in
dynamical systems. Surveys of the latest results and some historical background can be found
in [1, 19, 22].

Take a ball Br(x) of radius r around the point x ∈ T and consider the first return τBr (x)(y)

of the point y ∈ Br(x) into the ball. If we denote with νr the conditional measure to Br(x),
we ask whether there exists the limit of the following distribution when r → 010:

Fe
r (t) = νr

(
y ∈ Br(x); τBr (x)(y)ν(Br(x)) > t

)
.

The distribution Fh
r (t) for the first-hitting time (into Br(x)) is defined analogously just

taking y and the probability ν on the whole space T.
A powerful tool to investigate such distributions for non-uniformly expanding and

hyperbolic systems is given by the conjunction of the following results, which reduce the
computations to induced subsets.

• Suppose (T , X, µ) is an ergodic measure preserving transformation of a smooth
Riemannian manifold X; take X̂ ⊂ X an open set and equip it with the first return
map T̂ and with the induced (ergodic) measure µ̂. For x ∈ X̂ we consider the ball Br(x)

(Br(x) ⊂ X̂) around it and we write τ̂Br (x)(y) for the first return of the point y ∈ Br(x)

under T̂ . We now consider the distribution of the first return time for the two variables
τBr (x) and τ̂Br (x) in the respective probability spaces (Br(x), µr ) and (Br(x), µ̂r ) (where
again the subindex r means conditioning to the ball Br(x)), as

Fe
r (t) = µr(y ∈ Br(x); τBr (x)(y)µ(Br(x)) > t)

and

F̂ e
r (t) = µ̂r (y ∈ Br(x); τ̂Br (x)(y)µ̂(Br(x)) > t).

In [6] we proved the following result: suppose that for µ-a.e. x ∈ X̂ the distribution
F̂ e

r (t) converges point wise to the continuous functions f e(t) when r → 0 (remember
that the previous distribution depends on x via the location of the ball Br(x)); then
we also have Fe

r (t) → f e(t) and the convergence is uniform in t11. We should note
that whenever we have the distribution f e(t) for the first return time we can ensure the
existence of the weak-limit distribution for the first-hitting time Fh

r (t) → f h(t), where
f h(t) = 1 − ∫ t

0 f e(s) ds, t � 0 [18].
Note: From now on we will say that we have f e(t) as limit distributions for balls, if we
get them in the limit r → 0 and for µ-almost all the centres x of the balls Br(x).

10 We call it distribution with abuse of language; in probabilistic terminology we should rather take 1 minus that
quantity.
11 The result proved in [6] is slightly more general since it does not require the continuity of the asymptotic distributions
over all t � 0. We should note instead that we could relax the assumption that X̂ is open just removing from it a set
of measure zero, which happens on our induced sets Im.
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• The previous result is useful if we are able to handle the recurrence on induced subsets,
see [7, 8] for a few applications. Induction for one-dimensional maps often produces
piecewise monotonic maps with countably many pieces. We proved in [6], theorem 3.2,
that whenever such maps are of Rychlik’s type [30] (see definition 3.1 in [6] for a precise
definition), then we have exponential return time statistics around balls (i.e. f e(t) =
f k(t) = e−t ). Our first return maps on the Im are Bernoulli and expanding; in order
to satisfy Rychlik’s property it will be enough to show that the total variation of the
potential, in our case 1/|DT (x)|, is finite. This is again an easy consequence of the
bounded distortion property12.

We therefore have the following proposition.

Proposition 10. The map T has exponential return and hitting time distributions with respect
to the measure ν provided γ > 1.

Number of visits. Let us come back to the general framework introduced in section 5.1 with
the two probability spaces (X, T , µ) and (X̂, T̂ , µ̂). We now introduce the random variables
ξe
r and ξ̂ e

r which count the number of visits of the orbits of a point y ∈ Br(x) to the ball itself
and up to a certain rescaled time. Namely

ξe
r (x, t) ≡

[
t

µ(Br (x))

]∑
j=1

χBr(x)

(
T j (y)

)
,

where χ stands for the characteristic function and x ∈ X. If we take x ∈ X̂ we can define in
the same manner the variable ξ̂ e

r (x, t) by replacing the action of T with that of T̂ . We now
introduce the two distributions

Ge
r(t, k) = µr(x; ξe

r (x, t) = k), Ĝe
r (t, k) = µ̂r (x; ξ̂ e

r (x, t) = k),

where again the index r for the measures means conditioning on Br(x). We proved in [6]
that whenever the distribution Ĝe

r (t, k) converges weakly (in t) to the function g(t, k) and
for almost all x ∈ X̂, the same happens, with the same limit, to the distribution Ge

r(t, k).
For systems with strong mixing properties the limit distribution is usually expected to be
Poissonian [1, 19, 20, 22]: tke−t

k! .

12 Let us consider the cylinder Im and partition it into the cylinders Wm,p with first return p � 1; then we have for
the variation on Im

Var
1

|DT̂ ′
m| �

∑
Wm,p

∫
Wm,p

|D2T̂ ′
m(t)|

|DT̂ ′
m(t)|2 dν(t) + 2

∑
Wm,p

sup
Wm,p

1

|DT̂ ′
m| .

By the distortion bound proven in the first section we have that K � | log DT̂ ′
m(x)

DT̂ ′
m(y)

| = | ∫ y

x

D2 T̂ ′
m(t)

DT̂ ′
m(t)

dν(t)| =∫ y

x

|D2 T̂ ′
m(t)|

DT̂ ′
m(t)

dν(t) for any x, y ∈ Wm,p , since the first derivative is always positive and the second derivative has

the same sign for all the points in the same cylinder. But this immediately implies that
∫
Wm,p

|D2 T̂ ′
m(t)|

|DT̂ ′
m(t)|2 dν(t) �

supWm,p

1
|DT̂ ′

m| K . Since T̂ ′
m maps Wm,p diffeomorphically onto Im there will be a point ξ for which DT̂ ′

m(ξ)ν(Wm,p) =
ν(Im). Applying the bounded distortion estimate one more time, we get supWm,p

1
|DT̂ ′

m| � eK ν(Wm,p)

ν(Im)
. We finally

obtain

Var
1

|DT̂ ′
m| � eK(2 + K)

ν(Im)

∑
Wm,p

ν(Wm,p) � eK(2 + K) � ∞.
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In [12] it was shown that Rychlik maps enjoy Poisson statistics for the limit distribution of
the variables ξe

r and whenever the centre of the ball is taken a.e.. Hence we get the following
result.

Proposition 11. Let γ > 1. Then for ν-almost every x the number of visits to the balls Br(x)

converges to the Poissonian distribution as r → 0.

Extreme values. The last quoted paper [12] contains another interesting application of the
statistics of the first-hitting time that we could apply to our map T too. Let us first briefly
recall the extreme value theory. Given the probability measure preserving dynamical system
(X, T , µ) and the observable φ : X → R ∪ {±∞}, we consider the process Yn = φ ◦ T n for
n ∈ N. Then we define the partial maximum Mn ≡ max{Y0, · · · , Yn−1} and we see if there are
normalizing sequences {an}n∈N ⊂ R

+ and {bn}n∈N ⊂ R such that

µ({x : a − n(Mn − b − n) � y}) → H(y)

for some non-degenerate distribution function H : in this case we will say that an extreme
value law (EVL) holds for Mn. If the variables Yn were i.i.d., the classical extreme value
theory prescribes the existence of only three types of non-degenerate asymptotic distributions
for the maximum Mn and under linear normalization, namely

• Type 1: EV1 = e−e−y

for y ∈ R, which is called the Gumbel law.
• Type 2: EV2 = e−y−α

for y > 0, EV2 = 0, otherwise, where α > 0 is a parameter, which
is called Frechet law.

• Type 3: EV3 = e−(−y)α for y � 0, EV3 = 1, otherwise, where α > 0 is a parameter,
which is called Weibull law.

In the paper [12] it has been proved, in a very general setting which applies to our situation
too, that whenever the system (X, T , µ) has exponential hitting time statistics, then it
satisfies an extreme value theory for the partial maximum Mn constructed on the process
φ(x) = g(d(x, ξ)), where d denotes the distance function, ξ is a chosen point in X and g is
a strictly decreasing non-negative bijection in a neighbourhood of 0 where it attains a global
maximum. In particular for some choices of g (see [12] for the details), one recovers the
Gumbel, Frechet and Weibull laws.

Of course this result can be immediately applied to the mapping T under investigation in
this paper.

6. Generalizations to Lorenz-like maps

As mentioned in the introduction, the original paper by Grossmann and Horner [16] dealt with
different Lorentz-like symmetric maps S which map [−1, 1] onto itself with two surjective
branches defined on the half intervals [−1, 0) and (0, 1]: we will suppose that the map is
C1 on [−1, 1]/{0} and C2 on [−1, 1]/{0} ∪ {±1}). Moreover we will ask for the following
local behaviours (C will denote a positive constant which could take different values from one
formula to the other):

S(x) = 1 − b|x|κ + o(|x|κ), x ∼ 0, b > 0,

|DS(x)| = C|x|κ−1 + o(|x|κ−1); |D2S(x)| = C|x|κ−2 + o(|x|κ−2), x ∼ 0,

S(x) = −x + a|x − 1|γ + o(|x − 1|γ ), x ∼ 1−, a > 0,

DS(x) = −1 + C|x − 1|γ−1 + o(|x − 1|γ−1);
D2S(x) = C|x − 1|γ−2 + o(|x − 1|γ−2), x ∼ 1−,
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Figure 2. The Lorenz-like map S on the interval.

(This figure is in colour only in the electronic version)

S(x) = x + a|x + 1|γ + o(|x + 1|γ ), x ∼ −1+, a > 0,

DS(x) = 1 + C|x + 1|γ−1 + o(|x + 1|γ−1);
D2S(x) = C|x + 1|γ−2 + o(|x + 1|γ−2), x ∼ −1+,

where κ ∈ (0, 1) and γ > 1 are two parameters. We also require that

(i) in all points x �= −1, 1 the derivative is strictly bigger than 1.

(ii) S is strictly increasing on [−1, 0), strictly decreasing on (0, 1] and convex on the two
intervals (−1, 0), (0, 1).

The map has a cusp at the origin where the left and right first derivatives diverge to ±∞ and
the fixed point −1 is parabolic (figure 2). Although the map S is Markov with respect to the
partition {[−1, 0), (0, 1]} it will be more convenient to use a countable Markov partition whose
endpoints are given by suitable preimages of 0 (see below).

The reflection symmetry of the map T in section 2 was related to the invariance of the
Lebesgue measure. We do not really need the map S being symmetric with respect to the
origin. We made this choice to get only two scaling exponents (κ and γ ) in 0 and in ±1. This
implies in particular the same scalings for the preimages of 0 on (−1, 0) and (0, 1). If the left
and right branches are not symmetric anymore, still preserving the Markov structure and the
presence of indifferent points and a point with unbounded derivative, one should play with, at
most, four scaling exponents giving the local behaviour of S in 0 and ±1.

We denote by S1 (respectively S2) the restriction of S to [−1, 0) (respectively (0, 1]) and
define a0+ = S−1

2 0; a0− = S−1
1 0; a−p = S

−p

1 a0−; ap = S−1
2 S

−(p−1)

1 a0− for p = 1, 2, . . ..
It follows that Sa−p = Sap = a−(p−1). In the same way as we did in the first section we
define the sequence bp, p � 1 as Sb±p = ap−1. The countable Markov partition mod ν will
be {(a−p, a−(p−1)) : p � 1} ∪ {(ap, ap+1) : p � 1} ∪ {I0±}; I0+ = (0, a0+); I0− = (a0−, 0).
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From the local behaviours one gets the following scaling relations (use the symmetry to
get the analogous relations for a−p and b−p):

1 − ap ∼
(

1

a(γ − 1)

) 1
γ−1 1

p
1

γ−1

,

ap − ap+1 ∼ a

(
1

a(γ − 1)

) γ

γ−1 1

p
γ

γ−1

,

bp ∼
(

1

ab(γ−1)(γ − 1)

) 1
κ(γ−1) 1

p
1

κ(γ−1)

,

bp−1 − bp ∼ 1

κ(γ − 1)

(
1

ab(γ−1)(γ − 1)

) 1
κ(γ−1) 1

p
κ(γ−1)+1
κ(γ−1)

.

Bounded distortion, invariant measure and decay of correlations. An important difference
with the map on the circle is that we are not guaranteed that the Lebesgue measure ν is invariant
anymore; so we have to build an absolutely continuous invariant measure µ. Fortunately the
tower’s technique helps us again but we first need a useful change. As in section 2 we will
induce over the disjoint union: I0 ≡ (a0−, 0) ∪ (0, a0−). The cylinders Zp of I0 with first
return time p will have the form

Z1 = (a0−, b−1) ∪ (b1, a0+), (18)

Zp = (b−(p−1), b−p) ∪ (bp, bp−1) p > 1.

The first return map Ŝ for S on I0 is not onto I0 on each cylinder Zp with prescribed first
return time. In fact Ŝ maps all the cylinders (bp, bp−1) and (b−(p−1), b−p) onto (a0−, 0), but it
maps the cylinders (a0−, b−1) and (b1, a0+) onto (0, a0−). Nevertheless Ŝ is an irreducible and
aperiodic Markov map, as it is easy to check, and this is enough for the next considerations;
moreover distortion can be proved exactly as in proposition 313.

The advantage of this induction scheme could be immediately seen in the exact scaling
of the following tail (the Lebesgue measure of the points in I0 with first return bigger than n,
cf (17)), the precise form of it being essential to get stable laws later on:

ν(x ∈ I0; τI0(x) > n) = 2
∞∑

p=n+1

(bp−1 − bp) ∼ 2

κ(γ − 1)

(
1

ab(γ−1)(γ − 1)

) 1
κ(γ−1) 1

n
1

κ(γ−1)

.

(19)

For the decay of correlations we invoke theorem 1 in Young’s paper [33] and we get the
following proposition.

Proposition 12. Let us consider the map S depending upon the parameters γ and κ . Then for
0 < κ < min( 1

γ−1 , 1), we get the existence of an absolutely continuous invariant measure µ

which mixes polynomially fast on Hölder observables with rate O
(
n

− 1−κ(γ−1)

κ(γ−1)

)
.

The map has exponential return and hitting times distributions and Poissonian statistic
for the limit distribution of the number of visits in balls.

13 If one wants a genuine first return Bernoulli map, one should induce over (a0−, 0): the cylinders with given first
return time are simply slightly more complicated to manage. One could reduce to this situation as in corollary 1.
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Density. Before continuing with the other statistical properties, we need a better knowledge
of the invariant density ρ for the measure µ. We stress that our first return map Ŝ

on I0 is Gibbs–Markov according to the terminology of Aaronson and Denker in [4]
(this is a fortiori true for the first return maps of Bernoulli type over the rectangles
(a−p, a−(p−1)), (ap, ap+1), (a0−, 0), (0, a0+))14. We now observe that as a consequence of
the action of Ŝ on I0 described above, the sigma-algebra generated by the images of the
rectangles (18) is the same as that generated by the open intervals (a0−, 0), (0, a0+). Hence
by the Doëblin–Fortet inequality proved in proposition 1.4 in [4], the map Ŝ admits a mixing
absolutely continuous invariant measure µ̂ whose density ρ̂ is Lebesgue essentially bounded
on I0 and Lipschitz continuous on each of the two intervals (a0−, 0), (0, a0+)

15. It is possible
to get one more property of the density ρ̂, namely it is bounded away from zero from below on
the rectangles where we induced: this has been proved in [23, 26]. We now relate the densities
ρ̂ and ρ, supposing we induce over I0, although similar results hold by inducing over the
rectangles (a−p, a−(p−1)), (ap, ap+1), (a0−, 0), (0, a0+). The measures µ and µ̂ satisfy

µ(B) = Cr

∑
i

τi−1∑
j=0

µ̂(S−j (B) ∩ Zi), (20)

where B is any Borel set in [−1, 1] and the first sum runs over the cylinders Zi with prescribed
first return time τi and whose union gives I0. The normalizing constant Cr = µ(I0) satisfies
1 = Cr

∑
i τi µ̂(Zi) and ρ(x) = Crρ̂(x), x ∈ I0. The latter equality and the fact that ρ̂ is

essentially bounded and Lipschitz continuous over I0 imply that the two limits

lim
x→0−

ρ(x) = ρ−; lim
x→0+

ρ(x) = ρ+ (21)

exist, although they could be different. We have now to investigate the behaviour of the density
ρ(x) when x → 1− (respectively x → −1+); we first note that the Lipschitz continuity being
local on the rectangles (a−n, a−n+1) (respectively (an, an+1)) approaching −1 (respectively 1)
we cannot conclude that limx→1− ρ(x) (respectively limx→−1+ ρ(x)) exist. To get at least a
partial answer, we need a finer analysis. Since, as we said above, µ̂ is uniformly equivalent
to ν on I0, we will use the latter measure in the next computations. We first note that in
order to estimate the µ-measure of a set B we need to consider only the cylinders Zp of I0

whose iterates will have non-empty intersection with B before they return to I0: we use that
to estimate the µ-measure of the cylinder (an−1, an) (for big n) near the point 1. We get that
S−1(an−1, an) ∩ Zn+1 = Zn+1 is the only possible non-empty intersection of the preimage
S−j (an−1, an) with Zp, for every p and for 0 � j � p − 1. Therefore we have

µ((an−1, an)) ≈ Crν(Zn+1) ≈ n
− 1−κ+κγ

κ(γ−1) .

The density on (an−1, an) will satisfy
1

ν((an−1, an))

∫
(an−1,an)

ρ dν = µ((an−1, an))

ν((an−1, an))
≈ n

− 1−κ
κ(γ−1) .

14 We already checked that the partition, mod-ν, of I0 given by the rectangles {Zp} is Markov and moreover the first

return map Ŝ is uniformly expanding. We are left with the proof of the Adler’s condition supx∈Zp∈I0
|D2 Ŝ(x)|
|DŜ(x)|2 < ∞;

but this can be proved along the same lines of the proof of proposition 3, as we already pointed out in remark 1.
15 It is argued in [4] that if α is a Markov partition of the standard probability metric space (X, B, m, T ) with distance
d , then T α ⊂ σ(α), where σ(α) denotes the sigma-algebra generated by the partition α, and therefore there exists a
(possibly countable) partition β coarser than α such that σ(T α) = σ(β). Moreover if the system is Gibbs–Markov,
then the space Lip∞,β of functions f : X → R, f ∈ L∞

m and which are Lipschitz continuous on each Z ∈ β is a

Banach space with the norm ||f ||Lip∞,β
= ||f ||L∞

m
+ Dβf , where Dβf = supZ∈β supx,y∈Z

|f (x)−f (y)|
d(x,y)

. The space

Lip∞,β is compactly injected into L1
m, which gives the desired conclusions on the smoothness of the density as soon

as the Doëblin–Fortet (or Lasota–Yorke) inequality is proved.
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We now study the density in the neighbourhood of −1, by considering the cylinder (a−n, a−n+1),
for large n > 0. The cylinders Zp of I0 whose iterates will have non-empty intersection with
(a−n, a−n+1) before they return to I0, have p � n + 2. Therefore we get in the usual way:

µ((a−n, a−n+1)) ≈ Cr

∞∑
p=n+2

ν(Zp) ≈ n
− 1

κ(γ−1) .

The density on (a−n, a−n+1) will satisfy

1

ν((a−n, a−n+1))

∫
(a−n,a−n+1)

ρ dν = µ((a−n, a−n+1))

ν((a−n, a−n+1))
≈ n

− 1−κγ

κ(γ−1) .

Now, suppose that in the last estimate the exponent of n is strictly negative, namely that
κ < 1/γ . We want to prove that lim infx→−1+ ρ(x) = 0. Suppose it is not zero, say v > 0; fix
0 < ε < v, then there exists δ > 0 such that for all −1 < x < −1 + δ, we have v − ε < ρ(x).
Take n large enough such that (a−n, a−n+1) ⊂ (−1, −1 + δ). Then on such a rectangle we have
that 1

ν((a−n,a−n+1))

∫
(a−n,a−n+1)

ρ dν > v − ε, which is false. This argument could be applied to the
various cases above to get the following result.

Proposition 13. Let us consider the map S with γ > 1 and 0 < κ < min( 1
γ−1 , 1). The

density ρ of the invariant measure µ is Lipschitz continuous and bounded on the open cylinders
(a−p, a−(p−1)), (ap, ap+1), (a0−, 0), (0, a0+), p � 1. Moreover we have

• lim infx→1− ρ(x) = 0,
• When x → −1+ the density verifies

(i) if κ = 1
γ

then lim infx→−1+ ρ(x) and lim supx→−1+
ρ(x) are O(1), eventually

different,
(ii) if 1

γ
< κ , then lim supx→−1+

ρ(x) = ∞,

(iii) if 1
γ

> κ , then lim infx→−1+ ρ(x) = 0.

• In the neighbourhood of 0 the limits (21) hold.

Note that our proposition fits with the density found by Hemmer for the map (2); for this map
and its circle companion (1) the correlations decay as n−1.

Optimal bounds. As shown in the previous section, the result on the decay of correlations
could be strengthened to produce a lower bound for the decay of correlations using the renewal
technique introduced in [15, 31]. The only difference from the previous section is that now the
Lebesgue measure is not any more invariant and thus we additionally need to show that the
invariant density ρ is Lipschitz in the region of inducing. We established above the Lipschitz
continuity of the density on the rectangles (a−p, a−(p−1)), (ap, ap+1), (a0−, 0), (0, a0+), p � 1.
We now keep, for instance, I0− = (a0−, 0); the space of locally Hölder continuous functions
with exponent θ and Hölder constant D0− (on I0−), will produce the space Lθ,0−,µ by adding
to the Hölder constant on I0− the L∞

µ norm of the function analogously to what we did before
proposition 6. Thus, we get in the same manner the following proposition.

Proposition 14. There exists a constant C such that for all f ∈ Lθ,0−,µ and g ∈ L∞
µ with

norm || · ||∞, and both supported in I0− we have (remember that γ > 1)∣∣∣∣Corr( f, g ◦ Sn) −
( ∞∑

k=n+1

µ(x ∈ I0−|τ(x) > n)

)∫
g dµ

∫
f dµ

∣∣∣∣
� CFγ,κ(n)||g||∞||f ||Lθ,0− ,µ

,
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where

Fγ,κ(n) =



n
− 1

κ(γ−1) if 0 < κ < min

(
1

2(γ − 1)
, 1

)
,

(log n)/n2 if κ = 1

2(γ − 1)
,

n
− 2

κ(γ−1)
+2 if

1

2(γ − 1)
< κ < min

(
1

γ − 1
, 1

)
.

Moreover, if
∫

f dµ = 0, then
∫
(g ◦ T n) f dµ = O

(
1

n
1

κ(γ−1)

)
. Finally the central limit

theorem holds for the observable f .

Remark 3. The last sentence about the existence of the central limit theorem will be also
obtained in proposition 15, part 2, (a).

Limit theorems. To get the limit theorems we could induce again over I0 since we only need
that the induced map be Gibbs–Markov with a density which is eventually piecewise Lipschitz.
As we stressed above, the advantage to induce over I0 is that we easily control the Lebesgue
measure of the points in I0 with first return bigger than n, see formula (19). Passing from
Lebesgue to the invariant measure µ we have to take care of the fact that the density could
be discontinuous at 0. Following the corresponding arguments in section 3 we thus have the
following proposition.

Proposition 15. Let us denote Snϕ = ∑n−1
k=0 ϕ ◦ Sk , where ϕ is an υ-Hölder observable, with∫

ϕ(x) dx = 0.

(1) If 0 < κ < min( 1
2(γ−1)

, 1), then the central limit theorem holds for anyυ > 0, namely there

exists a positive constant σ 2 such that Snϕ√
n

tends in distribution to N (0, σ 2). Moreover

σ 2 = 0 iff there exists a measurable function ψ such that ϕ = ψ ◦ S − ψ .
(2) If 1

2(γ−1)
< κ < min( 1

γ−1 , 1), then

(a) Ifϕ(−1) = 0 and |ϕ(x)| � Ĉ|x+1|υ ′′
, where Ĉ is a positive constant andυ ′′ > 1

2κ(γ−1)

then the central limit theorem still holds with positive variance σ 2. Moreover σ 2 = 0
iff there exists a measurable function ψ such that ϕ = ψ ◦ S − ψ .

(b) If ϕ(−1) �= 0 then Snϕ

n
1
p

converges in distribution to the stable law X
(
p, c, ϑ

)
with

p = 1

κ(γ − 1)
,

c = (ρ+ + ρ−)

( |ϕ(−1)|
ab(γ−1)(γ − 1)

) 1
κ(γ−1) 1

κ(γ − 1)
�(1 − p) cos

(πp

2

)
,

ϑ = sgnϕ(−1).

(3) If κ = 1
2(γ−1)

then

(a) If ϕ(−1) = 0 then the central limit theorem holds.
(b) If ϕ(−1) �= 0 then there exist a constant b such that Snϕ√

n log n
tends in distribution to

N (0, b).

Large deviations. Large deviations results can be derived following the corresponding
arguments in previous sections. In particular, and by using the recent result by Melbourne [25],
we can state that for Hölder observables, the large deviation property holds with polynomial
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decay at a rate which is given by that of the decay of correlations; for our Lorenz maps it is of

order n
− 1−κ(γ−1)

κ(γ−1) , provided that 0 < κ < min( 1
γ−1 , 1).

Appendix

We prove here lemma (8).
Let us call

β+
i = (bi, bi−1); β−

i = (b−(i−1), b−i );
these sets are such that T i(β±

i ) = I∓
0 .

Put H(x) the first-hitting map from I +
0 in I−

0 : H(x) = T i(x) if x ∈ β+
i and define

Ap,q := (T −1
+ T

−(p−1)
− (β−

q )) ∩ β+
p, that is the subset of β+

p that will go exactly in β−
q under the

action of H and will return in I + in p + q iterations. Note that ∪∞
q=1Ap,q = β+

p .

The set that will return after n is Cn = ∑n−1
p=1 Ap,n−p and

Rn =
∞∑

m=n+1

Cm =
∞∑

m=n+1

m−1∑
p=1

Ap,m−p.

Let us decompose the set Rn in

Rn =
∞∑

p=n

∞∑
q=1

Ap,q +
n∑

p=1

∞∑
q=n

Ap,q +
∑

p+q>n;p,q<n

Ap,q

=
∞∑

p=n

∞∑
q=1

Ap,q +
∞∑

p=1

∞∑
q=n

Ap,q −
∞∑

p=n+1

∞∑
q=n

Ap,q +
∑

p+q>n;p,q<n

Ap,q . (22)

Note that the measure of the sets of the first two sums in (22) is
∞∑

p=n

∞∑
q=1

ν(Ap,q) =
∞∑

p=n

ν(β+
p) = ν(0, bn) (23)

and

ν(b−n, 0) =
∞∑

q=n

ν(β−
q ) =

∞∑
q=n

ν(T −1
+ β−

q ) + ν(T −1
− β−

q )

=
∞∑

q=n

ν(A1,q) + ν(T −1
− β−

q )

=
∞∑

q=n

ν(A1,q) + ν(T −1
+ T −1

− β−
q ) + ν(T −2

L β−
q )

=
∞∑

q=n

ν(A1,q) + ν(A2,q) + ν(T −2
− β−

q )

· · ·
=

∞∑
q=n

∞∑
p=1

ν(Ap,q). (24)

We already showed in the proof of proposition (5) that the measure of each Ap,q scales as

ν(Ap,q) � (pq)−ξ with ξ = γ /(γ − 1) + 1
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and thus the remaining two terms in (22) scale faster than n−2(ξ−1), that is faster than
bn ∼ n−(ξ−1) and therefore they can be neglected.

Using (23) and (24) we have finally

ν(Rn) ∼ 2bn.
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