
Validation and Fidelity in Numerical Simulations

I. Rosiello1 ∗, S. Vaienti3 †

(1) 6 BD Michelet, 13008 Marseille
(3) UMR-CPT 6207, Universités d’Aix-Marseille I,II

et du Sud Toulon-Var, Marseille, France
and Fédération de Recherche des Unités de Mathématique
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Abstract

We discuss the validity of numerical simulations by addressing the question of how
the models implemented on a computer will give outcomes possibly different from what
is expected, since such models will be perturbed in different unavoidable manners. The
question of their stability, global and local in time is discussed.

1 Introduction

The object of this note is to discuss and to investigate the fidelity of numerical simulations.
This concept is part of the more general issue of the validity of numerical simulations and
it addresses the fundamental question of how the result of a simulation, or the simulation
itself, are faithful to the object they are simulating. This question could be posed at different
ontological levels. Let us explain what we mean with the famous example of the well celebrated
Schelling model [15]. The opponents of this model wonder if it is possible and meaningful to
describe the urban segregation with two dimensional cellular automata. The reduction of the
true social behavior to the simple rules which govern the automaton is so drastic that the
complexity and the variety of the former are inevitably lost and therefore any conclusion that
we could get from such a model are either purely academic or ideological. The tenants of the
model, who consider it as the paradigmatic example of numerical simulations applied to social
phenomena, would answer that despite the crude approximations, it produces knowledge since:

• it attempts to reproduce the urban society as a network with the underlying assumption,
or hope, that simple local rules (e.g. individual and well recognized actions), could
produce global and emerging patterns:
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Thus the model continues to be influential, although it has little or no empirical
support, because it remains a fruitful source for theorising and for developing
new models.[2]

• even if the same phenomenon could be explained otherwise 1, simulations with cellular
automata establishes (explain?) this causality link between the individual interactions
and the appearance of macroscopic behaviors;

And a simulation model which generates a macro structure which resembles
real-world macro structures from simulated micro structures which resemble
micro structures observable in the real world might be accepted as a provisional
explanation of real-world macro structures. [7]

• summarizing, we are in presence of an exploratory simulation in the sense of Conte and
Gilbert:

Our stress, instead, is on a new experimental methodology consisting of observ-
ing theoretical models performing on some testbed, such a new methodology
could be defined as exploratory simulation. The exploratory aim synthesizes
both the prescriptive and descriptive objectives : on the one hand, as with
the testing of existing theories, the aim is to increase our knowledge ; but on
the other, as happens with studies oriented to the optimization of real life pro-
cesses, the aim is not to reproduce the social world, but to create new, although
not necessarily better, or more desirable, systems. Here lies the difference from
optimization research. Exploratory research based on social simulation can
contribute typically in any of the following ways :
(a) implicit but unknown effects can be identified. Computer simulations al-
low effects analytically derivable from the model but as yet unforeseen to be
detected;
(b) possible alternatives to a performance observed in nature can be found;
(c) The functions of given social phenomena can be carefully observed;
(d) sociality, that is, agent hood oriented to other agents, can be modeled
explicitly. [6]

If we accept this approach to simulations as virtual laboratories where different scenarii2

are proposed and tested on computers, we are therefore tempted to move our investigation to

1In the PhD thesis [13] there are examples of such simulations which admit a better and easy explanation:
the model of gender discrimination in German school quoted in [7], the example of the fish market in Marseille
discussed in [10], etc. At this regard P. Livet wrote

Nous pourrons donc admettre comme valides des simulations dont les résultats simulés ne sont pas
en correspondance directe avec les phénomènes sociaux, ou des programmations qui ne sont pas
en correspondance directe avec les processus formels, ou encore des processus psychologiques et
sociologiques de constitution du social qui ne sont pas en correspondance directe avec les relations
de programmation-simulation. Il faudra seulement que ces correspondances puissent être rétablies
par des révisions sur un autre axe de similarité que celui qui est en cause de maniére obvie.[10]

2We would like to stress the importance of the concept of scenario in the understanding of simulation. In
the paper [1], Armatte and Dalmedico consider the simulation as a link (médiateur) between the numerical
model and the narration which we could extract from its results. They wrote:
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other issues, in particular we go from the first level where the model has been proposed (in our
guiding example the cellular automata) to the second level where the model will be critically
analyzed according to some standard scientific methodology and practices. This is very well
depicted by B. Latané:

It is often assumed that the true test of a scientific model, whether it is a verbal or
mathematical theory or a simulation, is whether it can predict empirical outcomes.
Yet, I have found relatively little occasion so far to compare the results of these
simulations of dynamic social impact directly to data from the real world. Instead,
in addition to making unexpected theoretical discoveries such as the predicted
emergence of clustering and correlation and the ability of social systems to maintain
stable diversity in the face of strong pressures to uniformity, I have found simulation
especially useful for three other non-empirical purposes:
1. Determining whether the theory is robust with respect to variations in stochastic
and other theoretically uninteresting variations (models that are not robust in this
way are useless and probably wrong);
2. Identifying which elements of the theory are critical to the resulting dynamics
(by narrowing the focus of the model, we can separate the theoretical wheat from
the chaff, avoiding controversy about irrelevant details and achieving a maximally
simple or parsimonious model). [3]

Let us consider in particular the first item in the previous citation, about the robustness of
the theory: Latané rightly points out that a model which is not robust is useless. We see that
a critical investigation of formal (mathematical or numerical) nature at the second level could
invalidate the model not because of its assumptions (first level), but because these assumptions
will not produce a realistic or a controlled systems. Suppose that a model always gives the same
asymptotic behavior independently of the initial conditions: this could of course happen, for
example in presence of global attractive fixed points, but this is not very interesting (realistic),
and it is surely false, if we deal with macroscopic social patterns. Analogously, suppose we have
a model which is extremely sensitive to small changes of its parameters: the results would be
unreliable (out of control) most of the time and the simulation will be again useless for pratical
purposes. This second example, sensitivity on the initial conditions, could not be appreciated
by those who consider that in this way we are neglecting all the simulations of chaotic systems.
This is actually the starting point of our contribution. We will in fact try to understand how
the outcomes of a model change if the model is perturbed and this perturbation could be of
two types: a change of the parameters or of the initial conditions of the models, or the errors
introduced by the numerical algorithms. Our aim is to understand what kind of characteristics
the model should have in such a way its ideal outcomes (in absence of errors) are faithful to
what the computer will produce at the end of its runs. A general answer to this question does
not exist; it is however important to keep it in mind when we evaluate a simulation. There is a
sort of undecidability related to this numerical processing of the model which let Zellini says:

Le scénario cristallise pourtant une articulation de plus en plus étroite entre le temps de
l’exploration et celui de l’action, entre la dynamique de la science et celle du politique.[ibid]

On another side, the failure of simulation to take into account micro-behaviors, could be absorbed in the
production of a scenario which carries global dynamics [13].
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I risultati intermedi di un calcolo automatico sono normalmente nascosti nella
memoria del calcolatore e sono quindi sconosciuti alla mente del programmatore. Il
calcolo tende per questo a diventare un processo in gran parte inaccessibile al con-
trollo umano. Di qui la necessità di una delega, fondata su una valutazione a priori
della natura del risultato, in particolare del possibile errore da cui tale risultato sar
affetto. Il rumore causato da instabilità e mal-condizionamento deriva forse ancora
più da questo aspetto di inaccessibilità dei risultati intermedi che dall’aumento del
numero di operazioni da eseguire. [19]

2 Shadowing

As we said above ”local sensitivity to small errors is the hallmark of a chaotic systems”, [14].
As a consequence one could wonder whether the numerical solutions obtained with a computer
are valid. We emphasize here that chaoticity is one of the features of complexity and that,
contrarily to the latter, chaotic phenomena could now be studied with a well based and ac-
cepted mathematical background. For these reasons, we believe that the (partial) answers to
the question addressed above could give a legitimate direction and hints to deal with the much
more difficult problem of the simulations of (perturbed) complex systems.
As we said at the end of the previous section, there are intrinsic computational errors, the
floating-point calculations, or round-off errors, which affect the solutions of differential equa-
tions or the computation of discrete maps, by simply replacing a real number with a version
of it with a finite number of digits. This produces a small error at each computational step.
Let us suppose that the dynamical systems we are simulating is hyperbolic. To have an idea
of such systems, which carry what is usually considered as chaotic motion, take the circle of
radius one and a point on it which is initially located at the angle θ0; consider the orbit of
such a point when we double it, namely after n step the point will be located at 2nθ0-mod 1
(where mod 1 means that the point 2nθ0 is unfolded again on the circle). Now, by choosing
with probability one the initial point θ0, its orbit will spread up uniformly on the circle with
an exponential speed, and if we take another initial condition θ′

0
(with probability 1) and close

to the previous one, the orbits of the two will diverge exponentially fast (sensitivity on initial
conditions). More complicated examples of such systems are the strange attractors which could
be detected and observed even in physical situations (Lorenz attractor, Hénon attractor, etc.).
For these hyperbolic systems the perturbation induced on the original system by round-off
errors could be considered similar to the perturbation which affects the original system when
we slightly change, for instance, its structural parameters. A deep mathematical result due to
R. Bowen [5] says that when the perturbation is not too strong, the perturbed orbit could be
recovered with a true one but with a different initial condition which allows to conclude that

locally sensitive trajectories are often globally insensitive, in that there exist true
trajectories with adjusted initial conditions, called shadowing trajectories, very
close to long computer-generated pseudo trajectories.[14]

This result is not useful if it is applied to a single pseudo trajectory (that generated by a com-
puter), since the theorem does not tell us where is the initial condition whose orbit will closely
shadow the true one. The strength of the theorem is in the assertion that the asymptotic
global phase portrait of the system which we will see on the screen of the computer will be
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undistinguishable of the true one, which will be, however, intrinsically inaccessible at the level
of individual trajectories.
Another interesting question addressed by this theorem is what happens when its assumptions
are not anymore verified, in particular if the system is not hyperbolic. This could be achieved,
for example, by constructing a systems with a geometric structure and admitting a few direc-
tions with an hyperbolic behavior and other directions which are not hyperbolic at all. In this
case the local sensitity will be experienced only along the former directions, the motions being
much more regular along the latter: we could define fluctuating the resulting global behavior.
The conclusion is (at least on the model tested by authors):

In the presence of this fluctuating [behavior], global sensitivity may led to trajectory
mismatch, in particular when long times are considered. The result is that no
trajectory of the theoretical model matches, even approximately, the true system
outcome over long time spans. The fundamental conclusion...is that to obtain a
long trajectory which is even approximately correct is for some systems virtually
impossible.[14]

If we think that most of the complex systems which are the target of numerical simulations
are fluctuating in the previous sense, this fluctuation being often a signature of complexity,
we realize how much we should be careful when we argue about the reliability of a numerical
simulation. In particular the three kind of validity formulated in the textbook [4] ”to make
impossible to distinguish the model and the system in the experimental frame of interest”, are
seriously questioned:

The most basic concept, replicative validity, is affirmed if, for all the experiments
possible within the experimental frame, the behavior of the model and system agree
within acceptable tolerance. Stronger forms of validity are predictive validity and
structural validity. In predictive validity we require not only replicative validity,
but also the ability to predict as yet unseen system behavior. To do this the model
needs to be set in a state corresponding to that of the system. Finally, structural
validity means that the model not only is capable of replicating the data observed
from the system, but also mimics in step-by-step, component-by-component fashion
the way in which the system does its transitions. The term accuracy is often used
in place of validity. Another term, fidelity, is often used for a combination of both
validity and detail. [ibid, p. 30]

3 Fidelity

We do not know if the concept of fidelity that we are going to use in this section fits the
meaning that [4] attributed to it; on the other hand the goal is the same: to give some criteria
for declaring satisfactory a numerical simulation. The following technique has been proposed
in a series of papers to understand the distribution of errors in randomly perturbed dynamical
systems [12, 16, 18]. Contrarily to the shadowing theorem, the attention is now focused on the
initial conditions and on the realizations which will produce a random pseudo trajectory close
to the true one. Let us consider a given observable Φ defined on the phase space and that we
will compute along the true orbit leaving the point x0, and along a slightly perturbed orbit
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starting from the same point x0; this second pseudo trajectory could be constructed by adding
at the step n + 1 a small adittive noise to the map at the step n. This noise will be chosen
randomly in a small ”ball” around 0 (the ball of radius 0 being the zero noise): we write εn

for the realization of the particular sequence {ε1, · · · , εn}, each member being the small error
added at the corresponding step and with all of them being chosen independently in the small
ball and with the same distribution. We then consider the difference ∆Φ(x0, εn) between the
values of the observable computed along the true trajectory at time n and along the pseudo
trajectory with realization εn. This difference is a random variable depending on the choice
of the initial condition x0 and of the realization εn. In several situations the random process
∆Φ(x0, εn) will converge in distribution to a random variable ∆Φ∞ which could be considered
as the distribution of the error between the true and the perturbed orbit for very large times.
The expectation of this asymptotic error will tell us how far is the average of Φ computed
along the true orbit with respect to the average computed along the pseudo trajectory. This
difference will be in general small, of the order of the size of the noise, but the variance will
be large, of the same order of magnitude of the diameter of the phase space, indicating that
the values of the observable along the true and the perturbed orbits are uncorrelated. But
the interesting feature of this approach is elsewhere, in particular in the rate of convergence
of the process ∆Φ(x0, εn) to its limiting value ∆Φ∞. This convergence is ruled out by the
decay of a particular integral, which is called fidelity [9] and which is, in our context, the
characteristic function of the process ∆Φ(x0, εn). In order to continue we need first to come
back to our hyperbolic systems and compare them with another class of systems which we could
call regular and which exhibit, roughly speaking, a motion which is a non-periodic translation.
To give an idea, we still consider, as in the previous section, a point θ0 on the unit circle, but
this time it will evolve by simply adding, at step n + 1, an irrational number α to the position
occupied at time n, so that the location of the initial point after n steps will be θ0 +nα-mod1.
We now return to the decay of the fidelity. When the system is hyperbolic (chaotic), the fidelity
shows a sharp transition at a time n∗ which is of the order of the logarithm of the reciprocal
of the size of the noise. For times n less than n∗ the fidelity decays very slowly, which means
that the perturbed system can be considered as equivalent to the unperturbed one; instead the
fidelity will decrease super-exponentially fast for times bigger than the threshold value and
with a decay rate which will became insensitive to noise (Fig 1, where we used the chaotic map
3nθ0-mod 1).

We stress again that this implies that for chaotic systems the true evolution of the system
remains close to a generic perturbed version of it, provided the two start with the same initial
condition, and moreover they stay close for a time interval proportional to the logarithm of the
reciprocal of the size of the noise. We call it a statistical local stability in time, when compared
with the global stability given by the shadowing theorem, we will return on these concepts in
the next section. It is interesting to apply our result to the round-off errors generated in the
numerical computations. Although the nature of the roundoff is deterministic (we know at each
step how the machine operates on numbers), by increasing the ergodic properties of the system,
the pseudo random character of roundoff errors becomes more pronounced and the decay law of
fidelity becomes equivalent to that of systems perturbed with additive noise. In particular the
threshold n∗ will grow now like the logarithm of the reciprocal of the accuracy specified by the
least significant bit used to represent a real number. We have here a quantitative estimation
of the uncertainty associated with the intrinsic approximations given by digital representation
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Figure 1: Comparison between analytical results and random orbits for the decay of fidelity
for 3θ-mod 1 with ε = 10−4 in black and ε = 10−8 in gray (analytical result: line and stars;
random: squares), cf. [12].
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Figure 2: Comparison between analytical results and random orbits for the decay of fidelity in
rotations and with ε = 0.1 (analytical result: gray dashed line and crosses; random: circles);
cf. [12]

of real numbers.
We introduced above the other class of regular systems. In this case the decay of fidelity is not
so straightforward. For some of them the fidelity does not decay at all, for others the decay
is much slower and without a sharp transition. On the contrary, this transition is a gradual
process; when these systems are simulated on a computer this transition gets longer with the
number of bits used to represent real numbers. Regular systems which are affected by a small
noise begin to loose memory and to become uncorrelated, but the time they take to do it is
much longer than for desordered systems and moreover they do not exhibit precise bifurcation
patterns which testify of a sudden change of regime: this seems to happen smoothly in time
and in the space (Fig. 2).

4 Conclusions

Complex systems mix chaotic and regular motions with a large number of elements and on
different scales. The stability of such systems become therefore a difficult task. Simulations
are done to enlighten those systems because simulations offer the only reasonable way, in time,
to explore a large number of elements, in space, and of the interactions among them. On the
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other hand we have just seen how the simulations themselves suffer of the complexity of the
object they want to study, since this complexity affects the deterministic equations and rules
which transpose the model of simulation in the numerical algorithms. We showed in this note
that in particular cases, it is better to assume a probabilistic point of view, which of course
will not tell us how and where the system will be in a given future, but for how long we
could consider what we compute numerically as faithful to the object that we would like to
simulate. We evoked the stability at the beginning of this section; actually we explored three
kinds of stability up to now and it is probably better to summarize them in a precise way.
Shadowing gives us the structural stability of the system, as a matter of fact it is the keys of
the proof. Structural stability means that, provived we slightly modify the parameters of the
system, the equations of motion (the flows) of the perturbed system and of the original one
are continuously conjugated, isomorphic in a wide sense [8]. Therefore, if the original system
will asymptotically relaxes on a strange attractor, the same will do the perturbed one and the
attractor for the latter will be topologically and geometrically close to the unperturbed one. In
this picture only the qualitative global portrait of the system is preserved, we loose the control
of each single trajectory.
Our approach using fidelity tries to recover, locally in time, a sort of statistical stability, in
the sense that the original and the perturbed systems are compared on a probabilistic base by
showing that the distribution functions of the observables defined on the systems (perturbed
and not), remains close for times growing as the noise goes to zero.
Still in this approach we are not focusing on individual orbits and on their evolution: this will
lead us to the third kind of stability. It is well known that for chaotic systems (in the precise
mathematical sense that we introduced above), the predictability, namely the time interval on
which one can typically forecast the systems:

...is limited up to a time which is related to the first Lyapunov exponent, and the
time sequence generated from one of its chaotic trajectories cannot be compressed
by an arbitrary factor, i.e. is algorithmically complex. On the contrary, a regular
trajectory can be easily compressed (e.g. for a periodic trajectory it is sufficient to
have a sequence for a period) so is is ”‘simple” [17]

This is again a consequence of the sensitivity on initial conditions which unavoidably affects
the accuracy of any future forecasting.
Global, statistical, individual stability. These are three kinds of constraints that each simula-
tion should be aware of, especially when the simulation is built on a model with a mathematical
structure. We focused on them in this note, but there are of course other validation criteria.
As P. Livet said [11]

Quand les simulations se bornent à imiter les phénomènes sans se soucier de la
comptabilité des opérations théoriques avec les processus effectifs, alors les choses
se dégradent. Les problèmes sont encore plus troublants quand les simulations sont
les seuls outils de réperage dans les phénomènes, et qu’elles orientent les actions
d’acteurs qui font partie des phénomènes.

And Livet also pointed put

C’est le cas de l’économie et particulièrement de la finance. Les modèles qui sous-
estiment la complexité des comportements collectifs ne voient pas arriver les crises,
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et les modèles qui tiennent mieux compte de cette complexité ne peuvent pas prévoir
quand il n’y aura pas crise.

Let us stress another danger which affects the relationship between models and simulations
and which happens when simulations are conceived and produced as pure technology. This
means, roughly speaking, that a simulateur is a black box in a computer which receives data
to process and gives outputs and where the input devices change accordingly to the intensity
and the varieties of the incoming data, but without modifying, eventually, the background
on the underlying model. Let us give an example. Recently a colleague working on weather
forecast told us that the theoretical models are still those of the sixties and that the only
improving in climate predictions came from the much higher performances of the computers
and of the numerical tools. He also added that deep conceptual questions deserved to be
better investigated, in particular the contribution of the new massive computational techniques
could have altered the setting and the conditions where the basic equations of motion were
formulated!
Simulations are scientific practices with their own autonomy and protocols; but simulations
are only one part of the understanding of the object, this one being the result of different
constructions provided by models, theories, experiences, imagination.
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Modèlisation et simulation multi-agents, applications pour les Sciences de l’Homme
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