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Summary. - -  We give rigorous estimates of the dimensions, entropies, 
characteristic exponents and scaling function of hyperbolic Julia sets, for any 
Gibbs measure, by the direct computations of the topological pressure. 

PACS 03.20 - Classical mechanics of discrete systems: general mathem~s 
aspects. 

Introduction. 

The thermodynamic formalism introduced by Ruelle et al. (1) has proved to be 
an essential scheme in order to understand and compute the dynamical and 
fractal properties of strange sets and in particular of the so-called mixing 
repellers (2). To this class the linear Cantor sets belong, for which all the relevant 
dynamical variables can be analytically computed, and the disconnected Julia 

(1) D. RUELLE: Thermodynamic Formalism (Addison-Wesley, Reading, Mass., 1978); 
R. BOWEN: Lecture Notes in Mathematics, Vol. 470 (1975). 
(2) D. RUELLE: Ergod. Th. Dyn. Syst., 2, 99 (1982). 
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sets (3), for which an approximation scheme based on sequences of linear Cantors 
was developed and rigorous convergence proofs were given (*~). 

For  the linear Cantor sets we first relate the generalized dimensions, 
entropies and Lyapunov indices to the free energy and show that, for the Gibbs 
measures, it can be expressed in terms of the pressure which is a purely 
topological quantity. 

These relations are extended to the nonlinear Cantor sets, like the 
disconnected Julia sets, with a limit procedure that can be rigorously justified. 

From a numerical point of view it is equivalent, and may be simpler, for the 
Julia sets not belonging to the real line, to compute the pressure using an 
expression which involves only the preimages of a given initial point. Moreover, 
the same method can be applied to connected Julia sets, provided that the 
hyperbolicity condition is satisfied (that is no critical point belongs to the Julia 
set). Even in this case we can relate to the pressure the generalized dimensions, 
entropies and Lyapunov indices for the one-parameter family of the Gibbs 
measures, among which the physically most interesting ones are the balanced 
measure with equal weights, the ordinary Gibbs measure and the Sinai-Bowen- 
Ruelle (SBR) measure. 

1. - Gibbs  m e a s u r e s  and  C a n t o r  sets .  

Consider an expanding map T, let J be its invariant set and ~ an ergodic 
invariant measure on J, such that, for any measurable subset A c J, we have 

~(T-1A) =~(A). 

An important subclass, to which the hyperbolic Julia sets belong, is given by the 
conformal mixing repellers. These are sets J, invariant with respect to maps T, 
which are uniformly expanding: 

(1.1) HDT~(x)II>c~ ~, c > 0 ,  ~>1 ,  V x e J ,  V n e Z ,  

where DT(x) denotes the tangent map, which is a scalar times an isometry, and 
enjoy the property 

(1.2) closure {T-'~(x)}~=o = J,  x e J .  

(s) H. BROLIN: Ark. fist Math., 6, 103 (1965). 
(4) G. TURCHETTI and S. VAIENTI: to appear in Phys. Lett. A (1987). 
(5) G. TURCHETTX and S. VAIENTI: Generalized dimensions of strange sets and 
Cantorian approximation, to appear on Egypt. J. Phys. (1988). 
(~) S. VAmNTn to appear in J. Phys. A (1988). 
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The hyperbolic Julia sets for polynomial maps are also defined as the closure of 
the repulsive fixed points, or the boundary of the basin of attraction of the point 
at infinity. 

We introduce a one-parameter family of invariant ergodic measures ~,(x) on 
J,  defined as follows: the pressure for the function -zlog[tDT(x) H is given by 

(1.3) P(z) = lim sup (h(~) - z f  log ItDT(x)II d~(x)}, 

where ~ ( T ,  J) is the space of all the invariant measures on J and h is the 
entropy. The measure for which the maximum of the functional in .the r.h.s, of 
(1.3) is achieved will be denoted by ~(x) and will be called Gibbs measure (1): 

(1.4) P(z) = h(~o) - z f log II DT(x)tl d~(x). 

For the rational Julia sets the integral term in (1.4) is the Lyapunov exponent A 
with respect to ~o and we can also write 

(1.5) P(~) = h(~:) - zA(~,). 

A particular measure corresponding to ~ = 0 is the balanced measure (we denote 
it with ~B-----~0), for which 

(1.6) P(0) = h(~B) = h~p, 

where htop is the topological entropy, that is the maximum of h(~) with respect to 
all the measures in dr (T ,  J). 

For  a polynomial map of degree s the balanced measure enjoys the following 
property on any set A on which T is injective (with unique inverse)(3.7): 

(1.7) tLB( TA ) = s~B(A ) . 

When ~ is equal to the Hausdorff dimension DH, where the pressure vanishes, 
according to the well-known Bowen-Ruelle formula (2) 

(1.8) P(DH) = h(~Da) -- DHA(#DH) = O, 

we call the corresponding measure ~D H the uniform Gibbs measure, since it is 
equivalent to the Ds-Hausdorff  measure of j(8). 

(7) M. Ju. LJUBICH: Ergod. Th. Dyn. Syst., 3, 351 (1983). 
(8) K. J. FALCONER: The Geometry of Fractal Sets (Cambridge University Press, 
Cambridge, 1985). 
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Finally, when z = d, where  d = 1, 2 is the dimension of the space where  the set  
J is embedded,  the measure  tzd becomes the SBR measure(9) and one has 
P(d) = -  ~TH, the theoretical  escape rate  (6.9). 

Fo r  the linear Cantor sets  the Gibbs measures  can be explicitly computed. 
Le t  us consider a linear Cantor C on the real line, C c [0, 1], with diam C = 1 and 
a map L(x) which is piecewise linear on L-l([0, 1]) such that  

(1.9) L-l([0, 1]) = ~ Ik, 
k~l 

Ikr~I~=O for k C j .  

We denote with L~-I(x) the inverse of L(x) on Ik, where  it is injective. The 
diameter  of Ik, that  is its length, is equal to the slope of the linear function 
L;l(x) ,  and is called a scale ~k of the Cantor C: 

(1.10) 

Since ~k < 1, 
defmed by  

(1.11) 

diam (Ik) = diam (L;I([0, 1])) = ~k. 

one has L-~([0, 1])cL-~([0,  1 ] ) fo r  m < n ,  and the Cantor is 

C = ~mL-n([0, 1]). 

The set  L-~([0, 1]) consists of s n disjoint preimages of [0, 1] denoted with 

(1.12) Ikl...k. = Lg 1--.  L;I([0, 1]). 

F rom these intervals we immediately obtain an order n partition ~(~) of C 
according to 

(1.13) ~r = kUk Akl...k~, Ak,...k, = Ik~...~,o n C.  

I t  is easy to check that  

(1.14) diam (Ikl...k,) = diam (Akl...k,) = ~k~... ~k,. 

We introduce a sequence of measures  ~(,)(x), uniform on the intervals Ik~...k,, 

defined by  

(1.15) ~(i)(Ik) = pk, ~ pk = 1 
k=l 

(9) T. BOHR and D. RAND: Physica (Utrecht) D, 25, 387 (1987). 
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and 

(1.16) ~(~)(Ik~...k.) = Pkl .... Pkg. 

For  a detailed analysis of these measures we refer  to (10). 
This sequence of measures tz(n)(x) can also be represented numerically since, 

for any finite n, their  density p(~)(x) is given by 

(1.17) 
0, 

p(n)(X) = Pkl"-" P~ 

x ~ Ikl. . .~ �9 

X E ] k l . . . ~  �9 

Then we observe that ,  lett ing ~(x) be an invariant measure on J,  and requiring 

(1.18) ~(Akl...k~) = ~(~)(Ikl...k,), 

the measure ~ will be completely defined and will be an invariant ergodic 
measure of J.  

I f  we choose 

hl 
(1.19) Pk - , 

k=l 

then we obtain the Gibbs measures on C. The balanced measure is given for 
= 0, that  is 

1 
(1.20) Pk = - ,  

8 

while the uniform Gibbs measure is given by (8) 

(1.21) pk= )~H, ~ )~D, = 1. 
k=l  

The same analysis applies to any linear Cantor  set in R n and obviously to Cantor 
sets in C. We consider a map L(x) defined on an open set 
l) ~ C, diamD = diamC, such tha t  L-t(~) is the union of s disjoint sets I~, . . . ,  I~ 
and the inverse of L(x) restricted to Ix is linear. Such inverses, denoted by 
L;l(x),  are given by 

(1.22) L;I(x) = ak + ~kRkx, 

(lo) M. F. BARNSLEY and S. DENKO: Proc. R. Soc. London, Sect. A, 399, 243 (1985). 
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where Rk are rotation matrices and [2kl < 1. With such a condition one has 
L-~(t~) r L-~(~9) for m < n and C is defined by C = limL-~(~9). 

Given any disconnected J and a nonlinear map T(x), we choose a disk t )3  J 
with the same diameter as J and such that it does not contain any critical point of 
T. Then we consider s linear maps L~ ~)-~ which transform the disk ~9 into s disks t~k 
which contain T[~(Q) and such that diamtgk = diamT;l(t~). 

At order n there are s ~ such maps r(~)-~ for kl, kn = 1, ..., s, which l - ~ k l . . . k n  , �9 �9 � 9  

transform ~9 into s" disks containing T;1... Tg~(~) and having the same diameter. 
As a consequence one associates to (J, T) a sequence (C~, L (~)) of linear 

Cantors and the approximation theorems for the pressure and the relevant 
dynamical variables have been proved for the balanced measures (4,6). Indeed one 
can introduce on C~ a Gibbs measure ~(~) and prove that in the limit n -*  ~ they go 
into the Gibbs measure ~: on J (see sect. 3 and Appendix A); one can also prove, 
using only arguments based on fractal geometry, that the Hausdorff distance of 
C~ from J goes to zero and that the Hausdorff dimension of C,, D~ ), becomes the 
Hausdorff dimension DH of J as n goes to :r (see appendix B). 

The geometric interpretation of this construction is simple for the 1-dimen- 
sional Cantor sets: in fact, in this case, the linear maps are simply defined by 

(1.28) 
n) -1 L~l...k~([0, 1])= T~:~..k.([0, 111. 

2. - Free  energy,  pressure and general ized variables.  

Consider an hyperbolic totally disconnected set J (Cantor set) and an open set 
t~ ~ J which does not intersect any critical point of the map T(x) with respect to 
which J is invariant. Let ~r be a partition of J: 

(2.1) d (~) = (T-1D) N J= ~JA~, 
k~l  

AknAj=O ff k C j .  

Denoting with T; ~ the inverse of T(x) on the set Bk, where T-I(t~) = U Bk and 
k 

Ak = B~ n J,  the refinement ,~(n) of the partition at order n is defined by 

(2.2) d (') = (T-nt~) r J = ~.J Akl...k,, 
k l . . . k n ~ l  

where 

(2.3) Akl...i~. = Bkl...k~ n J ,  Bkl...k~ = T;~ ... T;l(t)) 

are all disjoint sets. 
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The order n partition function is defined by (11) 

(2.4) Z~(fl, a; ~)= 
[diam (Akl...k~)] ~ /Cl.....k~ =1 

and the free energy (11) is given by the thermodynamic limit 

(2.5) F(/~, a; ~) = lim 1 logZ~(/~, ~; ~). 
~ n 

The pressure is then given by(1) 

(2.6) P(a) = lim 1 log ~ [diamAkl...j ~ 
n - - ~  ~ kl. . .k n 

and is related to the free energy according to 

(2.7) P(a) = F(O, -a; ~z). 

The generalized dimensions Dq are given by (12.1~) 

~q(~) 
(2.8) Dq(tZ) - 

q - l '  

% being the point where the partition function Z~(q, ~; ~) is of order one when 
n--* ~. Indeed, for any real z r  %, the limit of the partition function Z~(q, z; ~) is 
0 or oo. It is easy to check that % is also the unique solution of the implicit 
equation 

(2.9) F(q, ~; ~) = O. 

The generalized Renyi entropies are defined by (14) 

(2.10) hq(~) = lira 1 log ~ [~(Akl...k.)] q 
n--)~ n kl. . .kn= 1 

(11) p. COLLET, J. L. LEBOWITZ and A. PORZIO: J. Stat. Phys., 47, 609 (1987); E. VUL, K. 
KHANIN and Y. SINAI: Russ. Math. Survey, 39, 1 (1984). 
(12) D. BESSIS, G. PALADIN, G. TURCHETTI and S. VAIENTI: to appear in J. Stat. Phys. 
(1988). 
(18) T. C. HALSEY, M. H. JENSEN, L. P. KADANOFF, I. PROCACCIA and B. J. SHRAIMAN: 
Phys. Rev. A, 33, 1141 (1986); H. G. HENTSCHEL and I. PROCACCIA: Physica (Utrecht) D, 
8, 435 (1983); P. GRASSBERGER: P h y s .  Left. A, 107, 101 (1983). 
(14) j .  p. ECKMANN and D. RUELLE: Rev. Mod. Phys., 57, 617 (1985); L. K. KADANOFF 
and C. TANG: Proc. Nat. Acad. Sci. USA, 81, 1276 (1984). 
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and consequently are related to the free energy by 

1 
= ~ F ( q ,  0; ~). (2.11) hq(g.) 1 - q 

Finally the generalized Lyapunov indices are given by (12,15) 

(2.12) ~q(t~) = lira 1 log f II D T ' ( x )  ]]q d ~(x). 
n--~| n 

J 

It can be proved that (a sketch of the proof for the Gibbs measures will be given 
in the next section) 

(2.13) -~Fq(tz) = F(1, q; ~). 

For the Gibbs measures ~: defined in the previous section, it can be shown (see 
next section for the proof) that 

(2.14) F ( t ,  ~; ~ )  = P ( t z  - ~) - t i P ( z ) .  

As a consequence, for these measures, the generalized dimensions, entropies 
and Lyapunov indices can be expressed in terms of the pressure only, that is a 
function of purely topological nature. 

Indeed, from (2.8), (2.9) and (2.14), we have that the generalized dimensions 
Dq are given by 

(2.15) P ( q z  - (q - 1)Dq(~)) - qP(~) = O . 

The Renyi entropies become 

(2.16) hq(t~:) = 1--1q [P(qz) - qP(~)] 

and the generalized Lyapunov indices 

(2.17) ~q(~:) = P(z - q) - p(z). 

For the balanced measure ~B with z = 0, we recover the formulae quoted in (12), 
namely 

(2.18) 

P ( -  (q - 1) Dq(~B)) = qP(O) ,  

hq(/~B) = P(0) - hto,, 

~r = P ( -  q) - P(0), 

(15) R. BENZI, G. PALADIN, G. PARISI and A. VULPIANI: J. Phys .  A ,  17, 3521 (1984). 
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while for the uniform Gibbs measure ~D~ we have 

(2.19) 

I Dq(lZD~) = Da, 
P(qDH) 

t hq(~DH) = - ' i - ~ ,  

~ q ( ~ , )  = P(Dn - q) , 

where we have used (1.8) and observed that 

P(qDn - (q - 1)Dq(~D.)) = qP(DH) = 0 

which implies the first of (2.18). For the SBR measure we have only to choose 
= d, where d = 1 for Julia sets on the real line and d = 2 for Julia sets extending 

on the complex plane. 
The first couple of relations (2.18) and (2.19) were already given in(9'~1,16), 

while the third one, concerning the Lyapunov exponents, was given in U). The 
extension to any Gibbs measure was proposed in U). 

Here a unified derivation from the free energy is presented and an explicit 
and simple construction of the measures, using the linear Cantorian 
approximation, is given. 

We recall, finally, that we can easily evaluate the scaling function of any 
measure ~ ,  once we know the pressure. Let E(a, ~,) be the subset of J given by 
all the points x such that (denoting with B(x, l) the sphere of radius I centred at x) 

log~(B(x, 1)) 
(2.20) lim sup - 

~o log I 

and E(a, t~:) the set obtained by replacing lim sup with lira inf in (2.20). Then the 
scaling function f(~; ~:) is the Hausdorff dimension of the sets E(a; ~), E(~, ~:) 
and is related to zq(t~:) in (2.8) by the equations(~,~) 

(2.21) 

d 
= ' 

q%(t~:) - f ( % ( ~ ) ;  ~)  = Zq(t~,). 

To conclude this section we recall that, using the well-known relation 

(2.22) UTn = -- P(d),  

(16) M. J. FEIGENBAUM: J. Stat. Phys., 46, 919 (1987). 
(17) S. VAIENTI: to appear in J. Phys. A (1988). 
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one recovers, for the SBR measure, other relations already quoted in the 
literature (6,9). 

We can also observe that, differentiating (2.15) with respect to q and 
evaluating the derivative at q = 1, one has 

P(~) h(~) 
(2.23) ni (~J  = ~ P'(z) A ~ )  " 

Indeed P'(z) is equal to the Lyapunov exponent A(~,) -- - d~q/dq (~)lq=o as can 
be seen from (2.17) and zA(~:)+P(a)=h(~:) is the Kolmogorov entropy 
according to (1.5) or to (2.16) if the limit q--~ 1 is taken. 

In (18) it was shown that the r.h.s, of (2.23) is exactly the Hausdorff dimension 
of the measure ~: defined as in (14): 

(2.24) D~(t~=) = lim {Hausdorff dimension of A) .  
A c J  

~(A)=I 

For connected Julia sets one has DH(t~0) = 1 for the balanced measure, since (18) 
h(t~o) =A(~o). In the literature D~(~0) is called ,dnformation dimension,. 

3. - T h e  l i n e a r  C a n t o r  s e t s .  

Let  us consider a linear Cantor set C r [0,1] with s scales ~1, - - . ,  )~s and let L(x) 
be the piecewise linear map on L-l([0, 1]). Letting pl, ..., p~ be the weights 
defining a measure ~ according to (1.15), (1.16) and (1.18), it is easy to compute 
the free energy defined by (2.5) and the result reads 

(3.1) 

The pressure is given by 

(3.2) 

The Renyi entropies read 

(3.3) 

F(fl, a; t~) = log p~g~ . 
\k=l / 

P(a) = log ~ . 

hq(~) = log p~ . 

and the Kolmogorov entropy is the limit for q -~  1 

(3.4)  h (~ )  - h l (~)  -- - ~ Pk logpk �9 
k=l 

(18) A. MANNING: Ann. Math., 119, 425 (1984). 
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The generalized Lyapunov exponents read 

(3.5) ~q(tL) = log( ~ Pk~; q) 

and consequently the ordinary Lyapunov exponent is given by 

(3.6) A(~) -= lira --~q(~) - ~ pklogEk. 
q~o q k=l 

From (3.6) and (3.4) we obtain 

(3.7) 
s 

h(t~) - zA(~) = ~ pklog ~-~ 
= P k  ' 

and it follows that, for 

(3.8) P k -  , , 

k = l  

the r.h.s, of (3.7) becomes exactly P(z) so that (3.8) is the Gibbs measure tL: for 
the linear Cantor. Replacing (3.8) into (3.1) we immediately obtain that for the 
measure t~: the relation between the free energy and the pressure is given by 
(2.14): 

F(fl, a; ~) = P(flz - ~) -tiP(z). 

4. - C o m p u t a t i o n  o f  the  pressure .  

Disconnected sets. The basic formula we use to compute the pressure of a 
disconnected hyperbolic set of the complex plane (Julia set) is given by (2.6). 
Introducing the scales ~(~) %1...k. of the associated linear Cantors C~ according to 

diam (A~l...k .) 
(4.1) ~(') - 

%,...k, diam (t) n J) ' 

the pressure can be written as (4,~) 

(4.2) 

where 

P(a) = lim 1 P . ( a ) ,  

(4.3) 

20 - I I  N u o v o  C imen to  B.  
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can be interpreted as the pressure for the linear Cantor C~ associated to the 
linear maps L(')(x) defined at the end of sect. 2. The thermodynamic limit (4.2) is 
the central step of the linear Cantorian approximation which was developed for 
the conformed disconnected repellers. In the same way we can write the free 
energy for the Gibbs measures t~: as 

(4.4) F(f l  , ~; :z:) = lim 1 F~(fl, =; :z(2)), 
n ~  n 

where F~ is the free energy of a linear Cantor set with scales ~(n) given by kl...kn, 

(4.1), and weights 

r~(~) 1 ~ 

Pk,...k. = t,~(~)(B~...k~) = ,"k~...k,,-' , (4.5) 

namely, according to (3.1), 
31..4n 

(4.6) F,~(3, a; :z:(m: = log 
E<!..j,.-:\ 

/ ~ " ~i...J,~' ! # 
k s'..+: / / 

= P . ( f l z  - ~)  - f l p ~ ( ~ ) .  

It is, therefore, sufficient to use the convergence theorem on the pressure to 
prove that (2.14) holds. 

Connec ted  sets. If the Julia set is connected, we have to replace the partition 
~(1) with any Markov partition of j(1) and the limit (4.2) is still true. However 
this limit is difficult to compute numerically since the Markov partitions are hard 
to construct. Nevertheless we have another useful method to compute the 
pressure, whose motivation is in the Walter's theory (19) of the Ruelle-Perron- 
Frobenius operator C7). 

Let x be any nonexcluded point of the complex plane (for polynomial maps 
there are at most two such points, one of which is the point at infinity); then 

1 
(4.7) P(a) = lim~ In log y~r-.(~) • I u r  ( )1 ,~m~.y.,~ �9 

The existence of limit (4.2) for Markov partitions, the techniques of theorem (4.6) 
in (8) and all the relations between the pressure and the dynamical variables 
written in sect. 2 apply also to the connected hyperbolic Julia sets. 

(19 P. WALTERS: Trans. Am.  Math. Soc., 236, 121 (1978). 
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5. - N u m e r i c a l  r e s u l t s .  

We have computed the pressure for several Julia sets (connected and 
disconnected) using (4.2) and (4.7), with a maximum iteration order N = 14. A 
good stability is observed, not only for the pressure, but also for all the computed 
dynamical variables, that is the generalized dimensions, entropies and the 
scaling functions. 

For each case three different Gibbs measures ~: were considered, namely the 
balanced measure z =  0, the uniform Gibbs measure z=DH and the SBR 
measure r = 1 for the Julia set on the real line, r = 2 for the Julia sets on the 
plane. Comparison with rigorous bounds given in (20) were satisfactory. 

The numerical values were checked with the theoretical bounds (20) 

(5.1) log s - a log V~x ~< P(a) ~< log s - ~ log Vr~n, 

where 

(5.2) vmi. = min IDT(x)l, Vm~x = max IDT(x)[ 
~r x~J 

and s is the degree of the mapping. When Vm~ < 1, we look for the smallest 
iteration T m of T such that IDTm(x)] = p ~ > l  for x e J  and replace (5.2) with 
Vmi n ~ ~lm/m" 

We have considered three Julia sets of the quadratic map 

(5.3)  T ( z ) = z 2 - p  

with 

i) p = 3: the Julia set is a totally disconnected subset of the real line, 
ii) p = 0.15: the Julia set is homeomorphic to the unit circle, 

iii) p = -  2: the Julia set is totally disconnected and extends onto the 
complex plane. 

For the case i) the pressure was already computed, with a very good 
accuracy, using (4.2) and (4.3), in(4) when the linear Cantorian approximation 
was first proposed. When IPl is small as in case ii) one can compute the pressure 
using a perturbation expansion proposed by Ruelle C): 

(5.4) Ipl P(a) = log2 + -~ -  - ~log2 + O(lp[ a) 

and the generalized dimensions read 

(5.5) Dq(~.:) = 1 + IPl 2 +O(ipl ~) 
4 log 2 

(2o) S.  VAIENTI :  N u o v o  Cimento, 99, 77 (1987). 
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wh i l e  t h e  R e n y i  e n t r o p i e s  a r e  

lpl 2 
(5.6) hq(fz:) = l o g 2  + - ~ -  

F o r  t h e  q u a d r a t i c  m a p s  t h e  b o u n d s  (5.1) a r e  ea s i l y  c o m p u t e d  for  0 < p < 3 / 4 ;  

s e t t i n g  u = l / 2 + ~ f i ~ + p  and  u ' = V ~ - p ,  for  O < a < l o g 2 / l o g 2 u  one h a s  

v~= = 2u  and  ~,~n = 2u ' .  

I n  t a b l e s  I - I I I  w e  quo te ,  for  some  va lues  of  a, t h e  p r e s s u r e  Pn(a) c o m p u t e d  b y  

(4.7) c o m p a r e d  w i t h  a l i n e a r  e x t r a p o l a t i o n  n ~  r162 o b t a i n e d  u s i n g  o n l y  t h e  l a s t  t w o  

t e r m s  of  t h e  s e q u e n c e  Pn,  whi l e  in t a b l e  I V  w e  show t h e  e x t r a p o l a t e d  v a l u e s  

o b t a i n e d  b y  t h e  Th ie le  a l g o r i t h m  app l i ed  to  t h e  whole  s e q u e n c e  up  to  n = 16. 

W e  p o i n t  ou t  t h a t  t h e  t w o  m e t h o d s  a g r e e  v e r y  we l l  b u t  t h e  f i r s t  is  m u c h  m o r e  

r e g u l a r  t h a n  t h e  second;  so w e  a l w a y s  use  for  P (a )  t h e  l i n e a r l y  e x t r a p o l a t e d  

r e s u l t s .  

I n  fig. 1 w e  p lo t ,  for  - 5 < a < 5, t h e  p r e s s u r e  P (a )  for  t he  J u l i a  s e t s  i), ii), iii) 

and ,  fo r  t h e  second  case ,  t h e  b o u n d s  (5.1) j u s t  d e s c r i b e d  a r e  p l o t t e d  as  d a s h e d  

l ines  in fig.  3, whi le  fig. 2 shows  t h e  d i f f e rence  h p ( a )  b e t w e e n  t h e  p r e s s u r e  and  

t h e  R u e l l e  a p p r o x i m a t i o n  (5.4). 

F o r  t h e  m a p s  i), ii), iii), w e  show in fig. 4-6 t h e  g e n e r a l i z e d  d i m e n s i o n s  Dq(~=) 

fo r  - 5 < q < 5  and  ~ = 0 ,  OH, d; in fig. 7-9 w e  g ive  t h e  p lo t s  of  t h e  R e n y i  

e n t r o p i e s  for  t h e  s a m e  m a p s  and  t h e  s a m e  m e a s u r e s .  F i n a l l y  in fig. 10-12 w e  

q u o t e  t h e  sca l ing  func t ions  f ( a ;  ~:) fo l lowing  t h e  s a m e  scheme .  

W e  p o i n t  ou t  t h a t  some  d imens ions  for  comp le x  J u l i a  s e t s  for  p = - 0.32 - 

TABLE I. -- We compare the pressure P(a) computed with 2 ~ preimages (left columns) with the linear 
extrapolations for  n =  ~ obtained from the (n -1 ) - th  and n-th terms (right columns), where 
1<n~<14 .  The map is z' =z  2 + 2 and the quoted values of ~ are - 3 ,  - 1, 1 and 3. 

n - 3  - 1  1 3 

1 3.73537 1.70722 - 0.32093 - 2.34908 
2 3.91959 4.10380 1.76863 1.83003 - 0.38233 - 0.44374 - 2.53329 - 2.71751 
3 3.99980 4.16023 1.79355 1.84341 - 0.40543 - 0.45162 - 2.59715 - 2.72487 
4 4.04424 4.17756 1.80662 1.84582 - 0.41653 - 0.44984 - 2.62413 - 2.70506 
5 4.07171 4.18161 1.81456 1.84632 - 0.42309 - 0.44932 - 2.63933 - 2.70014 
6 4.09022 4.18275 1.81987 1.84641 - 0.42745 - 0.44928 - 2.64953 - 2.70050 
7 4.10348 4.18303 1.82366 1.84643 - 0.43057 - 0.44929 - 2.65687 - 2.70093 
8 4.11343 4.18311 1.82651 1.84644 - 0.43291 - 0.44929 - 2.66238 - 2.70100 
9 4.12118 4.18312 1.82873 1.84644 - 0.43473 - 0.44929 - 2.66667 - 2.70098 

10 4.12737 4.18313 1.83050 1.84644 - 0.43619 - 0.44929 - 2.67010 - 2.70097 
11 4.13244 4.18313 1.83195 1.84644 - 0.43738 - 0.44929 - 2.67291 - 2.70097 
12 4.13666 4.18313 1.83315 1.84644 - 0.43837 - 0.44929 - 2.67525 - 2.70097 
13 4.14024 4.18313 1.83418 1.84644 - 0.43921 - 0.44929 - 2.67723 - 2.70097 
14 4.14330 4.18313 1.83505 1.84644 - 0.43993 - 0.44929 - 2.67892 - 2.70097 



GENERALIZED DYNAMICAL VARIABLES AND MEASURES ETC. 

TABLE II .  - The same as table I for  the map z' = z ~ - 0 . 1 5 .  

2 9 9  

n - 3  - 1  1 3 

1 0.69315 0.69315 0.69315 0.69315 
2 1.22970 1.76625 0.86061 1.02807 0.53761 0.38208 0.26071 
3 1.60583 2.35810 0.98019 1.21936 0.42357 0.19549 - 0.07066 
4 1.85815 2.61511 1.06215 1.30801 0.34347 0.10314 - 0.30835 
5 2.03235 2.72916 1.11991 1.35096 0.28576 0.05491 - 0.48213 
6 2.15700 2.78023 1.16188 1.37173 0.24319 0.03035 - 0.61148 
7 2.24933 2.80329 1.19330 1.38183 0.21099 0.01778 - 0.70996 
8 2.31988 2.81377 1.21748 1.38675 0.18603 0.01137 - 0.78660 
9 2.37529 2.81856 1.23656 1.38915 0.16626 0.00811 - 0.84750 

10 2.41984 2.82075 1.25193 1.39032 0.15028 0.00645 - 0.89683 
11 2.45637 2.82176 1.26457 1.39090 0.13713 0.00560 - 0.93747 
12 2.48686 2.82222 1.27512 1.39118 0.12613 0.00517 - 0.97148 
13 2.51268 2.82244 1.28406 1.39132 0.11681 0.00495 - 1.00032 
14 2.53481 2.82253 1.29172 1.39138 0.10881 0.00484 - 1.02507 

- 0.17173 
- 0.73339 
- 1.02145 
- 1.17726 
- 1.25820 
- 1.30087 
- 1.32308 
- 1.33470 
- 1.34075 
- 1.34390 
- 1.34555 
- 1.34640 
- 1.34685 

TABLE I I I .  - The same as table I f o r  the map z' = z 2 -  3. 

n - 3  - 1  1 3 

1 4.46969 1.95200 - 0.56570 - 3.08340 
2 4.50722 4.54474 1.91880 1.88560 - 0.47694 - 0.38817 - 2.67998 
3 4.53579 4.59294 1.90369 1.87349 - 0.45383 - 0.40761 - 2.64194 
4 4.55420 4.60943 1.89546 1.87075 - 0.44210 - 0.40691 - 2.60199 
5 4.56631 4.61476 1.89039 1.87011 - 0.43504 - 0.40680 - 2.58316 
6 4.57467 4.61646 1.88698 1.86996 - 0.43034 - 0.40683 - 2.56932 
7 4.58072 4.61699 1.88455 1.86992 - 0.42698 - 0.40682 - 2.55976 
8 4.58527 4.61716 1.88272 1.86992 - 0.42446 - 0.40682 - 2.55251 
9 4.58882 4.61722 1.88130 1.86991 - 0 . 4 2 2 5 0  - 0 . 4 0 6 8 2  - 2 . 5 4 6 8 9  

10 4.59166 4.61723 1.88016 1.86991 - 0 . 4 2 0 9 3  - 0 . 4 0 6 8 2  - 2 . 5 4 2 3 9  
11 4.59399 4.61724 1.87923 1.86991 - 0.41965 - 0.40682 - 2.53871 
12 4.59593 4.61724 1.87845 1.86991 - 0.41858 - 0.40682 - 2.53565 
13 4.59757 4.61724 1.87779 1.86991 - 0.41767 - 0 . 4 0 6 8 2  - 2.53305 
14 4.59897 4.61724 1.87723 1.86991 - 0.41690 - 0.40682 - 2.53083 

- 2.27657 
- 2.56586 
- 2.48212 
- 2 . 5 0 7 8 4  
- 2.50011 
- 2.50245 
- 2.50174 
- 2.50195 
- 2.50189 
- 2.50191 
- 2.50190 
- 2.50191 
- 2.50191 

- 0 . 0 4 3 i  h a v e  a l r e a d y  b e e n  c o m p u t e d  in(21) a n d  t h e  s c a l i n g  f u n c t i o n  w a s  

e v a l u a t e d  f o r  a J u l i a  s e t  c l o s e  t o  t h e  u n i t  c i r c l e ,  n a m e l y  p = + 0 .15 ,  i n  (~). 

I t  c a n  b e  o b s e r v e d  t h a t ,  w h i l e  t h e  d i m e n s i o n s  Dq f o r  t h e  u n i f o r m  G i b b s  

m e a s u r e  a r e  o b v i o u s l y  c o n s t a n t ,  f o r  t h e  o t h e r  t w o  m e a s u r e s  t h e  v a r i a t i o n  i s  n o t  

n e g l i g i b l e  a n d  c a n  r e a c h  10% in  t h e  i n t e r v a l  - 5  < q <  5. T h e  e n t r o p i e s  a r e  

(21) D. SAUPE: Physica (Utrecht) D, 28, 358 (1987). 
(22) M. I-I. JENSEN, L. KADANOFF and  I. PR0CACClA: Phys.  Rev. A ,  36, 1409 (1987). 
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8 ~ 

Fig. 1. - The pressure for three different maps is shown: z ' =  z 2 -  3 (continuous line), 
z' = z 2 + 2 (dashed line), z' = z 2 - 0.15 (dotted line). 
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Fig.  2. - The difference AP(a) be tween  the pressure P(a) and its l inear approximation 
(5.4) is shown for the map z ' =  z 2 -  0.15. 
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P 

0 a 0.85 

Fig.  3. - For the map z' = z 2 -  0.15 we  compare the pressure P(=) (continuous line) with 
the  bounds (5.1) (dashed lines). 
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=D H 

q 

Fig .  4. - W e  show t h e  genera l i zed  d imens ions  Dq(~:) for  a)  z = 0, b) ~ = d (d = 1) and  
c) ~ = DR for  t h e  m a p  z ' =  z 2 -  3. 
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oj#~ 

=DH 

0.9~ 
--5 5 q 

Fig.  5. - The  s ame  as  fig. 4 for  t h e  m a p  z ' =  z ~ -  0.15 w i th  d = 2. 
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Fig .  6. - The  s ame  as  fig. 4 for  t h e  m a p  z ' =  z2+  2 w i t h  d = 2. 
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5 q 

F i g .  7. - W e  s h o w  t h e  e n t r o p i e s  hq(~.,) fo r  ~ = 0, ~ = d (d = 1) a n d  ~ = DH for  t h e  m a p  
z , = z ~ - 3 .  
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0.60 
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q 

F i g .  8. - T h e  s a m e  as  fig.  7 fo r  t h e  m a p  z ' =  z 2 -  0.15 w i t h  d = 2. 

0.80 

0-=2 

0.60 =0  

-5  q 

F i g .  9. - T h e  s a m e  a s  fig. 7 fo r  t h e  m a p  z ' =  z 2 + 2 w i t h  d = 2. 
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Fig.  10. - W e  show the scaling function f ( ~ ,  ~=) for ~ = 0 and ~ = d (d = 1) for the  map  
Z r ----Z 2 -  3 .  
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Fig.  11. - The same as fig. 10 for the  map  z'=z2-O.15 with  d=2. 
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constant for ~-- 0 and exhibit variations, for the other two measures, which can 
be as high as 25%. The scaling functionsf(a; ~=) have all a maximum which is D~ 
for all measures; the variation from one measure to another is remarkable. The 
results for ~ = 0 are in agreement with those obtained by Kadanoff and co- 
workers (=). 

A P P E N D I X  A 

We want to show that the Gibbs measures ~ and ~(~) of an atom At~...~ of the 
Markov partition ~A~ (n) of a nonlinear Cantor set are boundedly equivalent for 
large n, so that the two measures become the same in the limit n-+ ~, since they 
are ergodic. 

By the Walter's theory of the Ruelle-Perron-Frobenius operator (~), we can 
bound the t~-measure of an atom A~...z~C): 

(A. 1) C2[At,...t~I ~ exp In [ -  P(~) - ~]] ~< ~=(Az~_.t~) ~< CIIA,I . . . ,J  ~ exp In [ -  P(~) + r 

where C~ and C2 are finite constants which do not depend on n and l, ~ is an 
arbitrarily chosen positive number and ~ is taken positive without loss of 
generality. 

By the uniformity of the limit (4.2), if we choose n sufficiently large 
(depending on D, we can replace P(z) with (1/n)P~(~)  in (A.1). Putting, for the 
sake of simplicity, diam (t2) --- 1 in (4.1) we obtain 

(A.2) C2 t~(~)(Azl...l~) exp [ -  n~] ~< ~(Atl...t~) <~ C1 t~)(Azl...t~) exp [n~]. 

Taking the two limits ~---~0 and hence n--> 0% we obtain the desired result. 

APPENDIX B 

We prove that 

l" r~(n) l m u .  =DH 

for one-dimensional nonlinear 6 ~ 2 maps T defined on the unit interval. We call 
I(k n) an element of T-n([0, 1]) (see sect. 1 and (1.23)). We begin observing that, for 
a well-known distorsion argument, there exists a constant G ~> 1 such that for 
every pair of points x, y in the same/<~) and for every n > 0 we have 

(B.1) G - l l ( T , ) ' ( y ) l  <. I(T~)'(x)l  <~ Gl(Tn) ' (y) l  . 

Then, adapting Theorem 8.8 in ref. (8) to our case, if we have for each n > 1 

qifx - Yl <- tTT~(x) - T ~ ( Y ) I  <~ r~lx - Yt 
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for all x, y e [0, 1] and i = 1,..., s ~, then w <. DH <- t, where w and t are defined by 
s n z n 

Z q ~ = I = Z r ~ .  
i=l i~l 

Actually 

min I ( T n ) ' ( ~ ) l - l l x - y l .  ~maxco,,~ I ( T n ) ' ( ~ ) l - l l x  - Yl <- [T~(x) - T$'(y)I <- ~Ti "n[0,1] 

Since every inverse branch of T" is G 2 on [0, 1], there exists a point 
~'e T~-~[0, 1], i =  1, ..., s ~ such that 

2~,~  = I T i - ' ( 1 )  - T ~ - ' ( O ) I  = I ( T ~ ) ' ( ~ ' ) I  - ~  . 

Using this fact and condition (B.1) we get 

G - l  ~ i ,n lX  - y ]  < I T C h ( x ) -  Tj~(y)l < G~,,[x - Y l  

for all x, y e [0, 1]. Hence 
s n 

~ t  =G- t ,  t > 0 ,  
i ~ l  

s n 
~ , ~  =G w, w > O .  
i = 1  

We consider the first; it can be rewritten as 

8~ 
E )'D'•) ~(t-D~n)) = G - t .  

i = 1  

s n 

We replace each )~i,. in the second factor with the maximum )tM; since ~ Z~,~ 
s n 

N' ~ P:i ~) = 1 is a decreasing function of t e N and recalling that, by (1.21) and (1.23), z, -.~,~ ~, 
we have, for n sufficiently large so that ~ 1 >  G, i=1 

D~ ) log )~M 
t ~  

log G + log)t~ " 

A similar argument applies to the equation in w, thus we get 

D~ ) log AM D~ ) log AM 
log AM -- log G <~ DH ~< log ~M + log G " 

When n--)  ~ ,  AM--* 0 and D~ ") converges to D~. 

One of us (SV) was supported, during the present work, by a CNR-NATO 
fellowship and thanks G. Paladin for useful discussions. 
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O R I A S S U N T O  

Tramite il calcolo diretto della pressione topologiea sono fornite stime rigorose su 
dimensioni generalizzate, entropie, indici di Lyapunov e funzioni di scala di Julia sets 
iperboliei per una rnisura di Gibbs qualsiasi. 

O 6 o 6 m e n n b ~ e  ~HHaMHqecKHe nepeMennbie  H BeJIHqHHbi ]IJL,q CHCTeM ~KyJl l la .  

Pe31oMe (*). --//IcrtoJib3y~ Henocpe~cTBeHHbie BblqHcJIeHrI~ TOIIOJIOFIIqeCKOFO ~aBJieHrtq, 
MbI rlpnBOnaM cTporne ot~eit~m pa3MepoB, 3aTporI~fi, xapagTepnbIx rmKa3aTene~ 
aKr I,I ~yHKIII, IH rloao6rIa ~tsIn rmaep6oan~ecKrxx CI, ICTeM ~Kyana, ~an IIEOM3BOJIbHOI~I 
MepI, I Fn66ca. 3aTeM npe;aao}Kerm~,ff~ MeTOa o6o6maeTca Ha cJ~yna~ aernrmp6onHqecK~ 
CrICTeM ~KyJma. 

(*) Hepe6edeno peOaxt4uefi. 


