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Computing the Pressure for Axiom-A Attractors 
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For the Axiom-A attractors a relation is given between the topological pressure 
and the spectrum of the generalized Lyapunov exponents. As a consequence, a 
simple formula is found to compute the topological entropy of the attractor by 
means of a time series. The results are used to compute the large deviations for 
positive Lyapunov exponents. 
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1. I N T R O D U C T I O N  

The characterization of the ergodic and fractal properties of the invariant 
sets under the iteration of maps relies on two fundamental objects: the 
measurement of the Lyapunov exponents and of (any sort) of fractal 
dimension. There are, however, other quantities, such as the metric 
entropy, the topological entropy, and the Hausdorff  dimension, which 
often give more precise informations about  the degree of chaoticity of the 
system and the shape of its asymptotic limit sets. Recently, several 
authors (1-4) proposed a new technique, based on the computat ion of the 
so-called generalized Lyapunov exponent (see below), which allows one to 
estimate the above quantities by time averaging on the orbit of each point. 
The crucial fact is the identification of the generalized Lyapunov exponent 
with the topological pressure, which, at least for hyperbolic invariant sets, 
contains all the information about  the Lyapunov exponents, the entropies, 
and the Hausdorff  dimension. The first object of this paper is to prove 
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rigorously this identification for Axiom-A attractors. The second step is the 
identification of the generalized Lyapunov exponent with another quantity 
studied in probability theory: the free energy. This leads to the investiga- 
tion of the large deviations for positive Lyapunov exponent through the 
exact computation of the relative deviation function. 

Let T be a C 2 diffeomorphism of a compact connected Riemannian 
manifold M into itself and J an Axiom-A attractor for T. Axiom-A means 
that J is uniformly hyperbolic and it is also the closure of the fixed points 
of T n 0.(5) u I J, n >~ If E x is the expanding subspace at the point x ~ J, we put 
~b(x) = - l o g  A(x), where A(x)= Jac(DTI E~) is the Jacobian of the linear 
map D T: E~ ~ E)x, using inner products given by a Riemannian metric 
adapted to J. By/~ we denote a T-invariant and ergodic Borel probability 
measure with support J. The generalized Lyapunov exponent of order fl 
with respect to the measure kt will be defined for any real fl by the 
formula (6) 

n 1 

Lu(fl) = lim sup _1 log f exp • -fl~(Ttx) dp(x) 
n ~  + ~  /7 J d  1 = 0  

= lim sup I log f Jac(DT'IE~) ~ d#(x) (1.1) 
n--+ + o v  n a j  

The other basic object of consideration is the topological pressure P(fi) of 
the function - f l logA(x).  Since the latter is H61der continuous, (5) there 
exists only one T-invariant and ergodic probability measure p~ on J such 
that P(fl) is given by (5,s) 

P(fl) = h(#t~) + fl f j O(x) dl~a(x) (1.2) 

where h(lt~) is the #~-Kolmogorov metric entropy. We call /~a the Gibbs 
measure (7) corresponding to the function fl~b(x); the function P(fl) is 
convex, nonincreasing and real analytic for fl ~ ~(8): we strongly use these 
properties in Section 2. We recall that the integral in (1.2) equals the sum 
of the positive #~-Lyapunov exponents of Tij. The measure corresponding 
to fi = 1 is particularly important. First of all one has 

h(/l~) = f j  log A(x) d#l(X ) 

with P(1)=0 .  (5"9) Then, for any continuous function g : M ~  and for 
almost all the points x in the basin of attraction of J, with respect to the 
Riemannian measure on M, one has (9) 

1 n 1 

Z g(T'x) fg(x) (1.3) lim 
n ~  + ~  /2 l = 0  
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Finally, #1 has absolutely continuous conditional measures on the unstable 
manifolds: #1 is often called the Sinai-Bowen-Ruelle measure and denoted 
#SBR" In this paper we prove the following theorem conjectured in ref. 2. 

T h e o r e m  1. If we put the #SBR measure on the attractor, then the 
limit (1.1) exists, the convergence is uniform in/? on any compact subset 
of [~, and 

Lm,R(1-- fi)= P(fl ) (1.4) 

Remark 1. If we put f l=0 ,  we get an interesting formula for com- 
puting the topological entropy hTo r, of Ttj [recall that P(0)=  h~o P (5,8~]: 

hwop =,~+~nlim -llog fsJac(DT"lE~) d#SBR(X ) (1.5) 

Using the ergodic average (1.3), it is possible to compute numerically the 
limits (1.1) and (1.5) with respect to the /~SBR measure. In a series of 
papers, (24) we used this procedure to compute the topological entropy, the 
pressure, and some fractal indices connected to it for polynomial maps of 
the plane, such as the H6non and the Lozi ones. Although these maps are 
not Axiom-A, we found results in good agreement with other, different 
kinds of computation. For example, for the H6non map we obtained 
hTop=0.445 and for the Lozi map, which is quasihyperbolic, ~lm 
hTop=0.488. This suggests that the relation (1.5) could be more general 
and we think that it is true for C 2 diffeomorphisms of a smooth, compact, 
Riemannian manifold in the sense that if # is an ergodic measure absolutely 
continuous with respect to the unstable foliation, then the limit on the 
right-hand side of (1.5) exists and gives the topological entropy of the 
support of #. Is the converse also true? 

Romark 2. For one-dimensional expanding maps, a formula like 
(1.4) was rigorously derived in refs. 2 and l l  computing the generalized 
Lyapunov exponents with respect to all the Gibbs measures (see also ref. 12 
for similar rigorous results). During the completion of this work, 
P. Waiters communicated a brief sketch of an (unpublished) proof of (1.5) 
using the theory of the Ruelle-Perron-Frobenius operator on the subshift 
of finite type. Finally, a bound of the type (1.5) involving the Riemannian 
measure on M was proved in all generality by Przytycki. (13) Theorem 1 will 
be proved in Section 3. 

2. LARGE D E V I A T I O N S  FOR T H E  L Y A P U N O V  E X P O N E N T S  

The existence of the limit (1.1) allow us to study the large-deviation 
property for positive Lyapunov exponent. To be more precise and more 
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transparent, let us consider an Axiom-A attractor J in a two-dimensional 
manifold with a one-dimensional unstable subspace E~" at x �9 J. The set J 
equipped with the normalized Borel measure #S~R gives a probability space 
(J, #SBR) and we define on it the discrete random process 

mn(x)=log IlOxZnlEUtl, n � 9  + (2.1) 

where ][DxTntE~[[ is the Riemannian norm of the tangent map of T" 
restricted to E2. The limit of W,(x)/n for n ~ + ~  gives for #sBg-almost all 
x �9 J the positive Lyapunov exponent of the Sinai-Bowen-Ruelle measure: 
)o+(#SBR)=2+(#I). The large-deviation theory (see ref. 14 for all the 
concepts which we are using) studies, in our case, the fluctuations of the 
"finite-time Lyapunov exponent" ( l /n) W,(x)  from the true value 2 + (#sBg) 
[-if the dimension of the manifold M is greater than two, we must replace 
[[Dx T"IE~I[ with Jac(DT"IE~), getting the large deviations of the volumes 
on the unstable subspaces or, which is the same, of the sum of the positive 
Lyapunov exponents].  The finite-time deviation is measured by the 
distribution of the process ( I /n)Wn(x)  on R; this means that for any 
Borel subset B of N we must consider the probability 

{/1 } 
Qn(B) = #sBg x �9 J n W,(x)  �9 B (2.2) 

Then we introduce the functions 

c.(fi) = 1 log ~ IIDx T" [ E;II ~ d#sBR(x) (2.3) 
n Jj 

The hyperbolic properties of Tis guarantee that each function cn(fl) is finite 
and differentiable for fl ~ ~ and Theorem 1 proves the limit of cn(fl) toward 
c(fl) = P ( 1 -  fl): c(fl) is also called the free energy. The central step of the 
theory is now to introduce the Legendre-Fenchel transform of the free 
energy, or deviation function I(x): 

I(x) = sup {fix - c(fl)}, x c  
BeN 

and to prove, under the regularity conditions for c(fl) satisfied in our case, 
the large-deviation bounds: 

1 
l imsup- logQn(K)~<  - inf I(x) when K c ~ i s c l o s e d  (2.4a) 

n ~  + o ~  H x ~ K  

and 

lim inf -1 log Q,,(G) >~ - inf l(x) 
n ~  + c ~  El x ~ G  

when G c N is open (2.4b) 
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For the Axiom-A attractors endowed with the #suR-measure, we are able 
to compute the deviation function I(x). First of all we need some facts 
about the Lyapunov exponents of the Gibbs measures on J. Since the map 
is expanding along the unstable directions and [[Dx TI E~It is continuous on 
the compact set J, there will be two positive constants F1 and F2 (in 
the metric adapted to J) such that I < F ~ <  [ID~TIE~xlt <~F2, VxeJ. This 
implies that the positive Lyaunov exponent 2+(#) of any ergodic measure 
# on J will be bounded as log F1 ~< 2 + (/0 ~< log/72. Now, if 2 + (#8) denotes 
the positive Lyapunov exponent corresponding to the Gibbs measure 
#8 for the function - f l l o g  [IDxTIE"~ll, we have from thermodynamic 
formalism (8) 

dP(6) = -)~ + (#~) (2.5) 
d6 a=8 

Moreover, by Ex. 5.5c and Corollary 7.12 in ref. 8, if d2p(c~)/dc~2la=8=O 
for some /?, then 2+(#8)= -dP(6)/dfla=8=2 + =const  for all /?eN. We 
avoid this trivial case, putting dzP(fl)/dfl2> O. In fact, in that case we have 
P( /~)=--2+/~+hToe and I ( x ) =  + ~ ,  VxeN\{2+} ,  and, since P (1 )=0 ,  
I (x)=(2+-hxoe)=O when x = 2  +. An example of this type is t he  
piecewise linear mapping of the interval generating the ternary Cantor 
set (11) for which P(/?)= -/~ 10g 3 + log 2 (but in this case the invariant set 
is not an attractor). Then it follows that d2+(#8)/dfl < 0, so that )~+(#~) is 
a nonincreasing, strictly monotone, real analytic function of/~. This and the 
bounds on the Lyapunov exponent imply the existence of the two limits 

lim 2+(/t8) = A + ~> log F 1 (2.6a) 
8 ~ + o e  

lim )~+(#8)=Ao~ ~<l~ (2.6b) 
8 ~  oe 

Moreover, since h(#8)=P(/~)+/?2+(#8),  the limits liras_ +co h(#8) exist 
and we put 

lim h(#8) = H + < A ~ + (2.6c) 
8 ~  +ce 

and 

lim h ( # 8 ) = H  L < A  L (2.6d) 

The strict inequalities on the right-hand sides of (2.6c) and (2.6d) are due 
to the fact that putting g(/~)= 2 + ( # 8 ) -  h(#8) , we have 

dg([3) d2p(fl) 
- -dF-  = 1) 
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so that, with d2p(f l ) /d f l  a strictly positive by the above assumptions, g(f l )  is 
always different from zero unless fl = 1 (it is not evident that h(ps) ~ 0 for 

+oo). 
We call AL the open interval (A + A ). o o ~  o o  

T h e o r e m  2. For  x > A ~  and x < A  + the deviation function 
I ( x ) =  +oo. 

For  x E A L  the deviation function is given by 

I ( x )  = 2 + (#1 - 8) - h( l~1-8)  (2.7) 

where fl is the unique real number satisfying 2+(#1_8)=  x. 
For  x = A + we have + + + I ( A ~ ) = A ~ - H ~ .  
Finally, the function I ( x )  is differentiable for x ~ AL  with a minimum 

in x = 2 +  (/2SBR). 

R e m a r k  3. An incomplete version of Theorem 2 was already 
obtained in ref. 3 in a nonrigorous way and without using the 
large-deviation theory. In that paper we computed the deviation function 
for the positive Lyapunov exponent with respect to any Gibbs measure and 
not only for the Sinai-Bowen-Ruelle one (see also Section 4). The results 
quoted in ref. 3 extend also to conformal mixing repellers and they were 
independently discovered in refs. 12 and 15 (see ref. 16 for a review of some 
applications of large-deviation theory to dynamical systems). The 
statements of Theorem 2 allow us to graph the deviation function I ( x )  of 
the positive Lyapunov exponent computed with respect to the 
PSBR-measure: see Fig. 1. This theoretical curve is very similar to the graph 
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Fig. 1. Deviation function for positive Lyapunov exponent for Axiom-A attractors. 
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of the deviation function for the Lozi attractor obtained numerically in 
ref. 3, Fig. lb, just computing the Lyapunov exponent and the entropy of 
many Gibbs measures and then using (2.7). Theorem 2 will be proved in 
Section 3. 

3. PROOF OF THE T H E O R E M S  

3.1. Proof of  Theorem 1 

Let us consider a Markov partition ~(o) {R~O),..., (0) = R,, } of J and con- 
struct the dynamical Markov partition ~{")=V72-0 ~ T i~{o): the elements 
of N(~) are of the form C o C ~ - . - ~ C ,  ~ for C~eT  ~.~{o) and 
#(Co c~ ... c~ C,_  ~)# 0, where # is any Gibbs measure on J. Then let A be 
the transition matrix associated with ~(0), that is, the matrix defined by 

10 if int RI O) ~ T -~ int R(j ~ -r 
Aij = otherwise 

where int R is the interior of R as a subset of J. We put 

~7A= {X= ~X ~+~176 {1 ..... m} ~; Ax~+ = iji=-~ e l 1, VieT/} 

and endow it with the compact open topology. It is well-known result of 
symbolic dynamics applied to Axiom-A diffeomorphisms (5) that there exists 
a map g:~'A---+J associating to any x e X  A the point J ~ z ( x ) =  

- i  (o) 0 ~ z T  Rx~ and satisfying 7coa=Torc, where a is ths shift on Z'~: 
~{x~} = {Xs+~ }. Moreover, rr is onto J and is one-to-one over the residual 
set .7= J\ QJie 77 Ti(Os~ (~ 63u~(~ where 3~N(o) (resp. O"N {~ denotes the 
global stable (resp. unstable) boundary of N(o~. 

We note that Y is T invariant and any Gibbs measure of Y is equal to 
1. It is easy to see that a necessary and sufficient condition for the set R~ ") 
to be an element of ~('~ is that it is of the form 

n- -1  
(n)__ i --(0) R ~ - ~  T R~I 

i = 0  

where x~ ..... x2_ 1 is a word with AxTxT§ i = 0  ..... n - 2 ;  then ~ =  
1 ..... # (~(n)). Now we put P~'BR the Gibbs measure induced on Z'A, that is, 
the measure defined by #sBR(E) = #*BR(~- 1E), where E is a Borel subset of 
J and with P*(fl) the pressure of the function /30"(x) [where 
r  = r  computed with respect to the map To ~ on the shift space 
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We can, without loss of generality and by Smale's decomposition 
theorem (see Section 4 of ref. 5), consider the action of T on J topologically 
mixing: under this condition we have P*( /?)= P(/3). 

Now, since any point x ~ZA with x~=x~, Vie [0, n - 1 ] 0  belongs to 
R(~) we have, splitting the integral 

n 1 

I~(~) = fs exp ~ - (1 - /~)  ~(T%) d/~sBR(x) 
/ = 0  

over the rectangles m.) 

n--1 

I.I,)=z i.oxp Z ~ 

n--I 

-Z;.e'.Zo 

- (1 - /3 )  ~b(T'rtx) d#~BR(X) 

- (1 - f l )  ~ * ( o ' x )  a U * . R ( X )  

where Z~ = rc I(R(")n J). Since 

Z~ c Z A-" = {x E ZA', X~ = XT, Vi 6 [0, n -- 1 ] } 

Ic~ and Z A is compact, we can bound the continuous function in the integral 
from above and below by the function itself computed at two points, say 
x M and x m belonging to X A. Then we use Theorem (1.4) in ref. 5 stating 
that there exist two strictly positive constants Ca and C2 such that 

C2exp - P * ( 1 ) n +  ~ ~*(alx ~ 
l = O  

[ "-~ ] 
~< C1 exp - P * ( 1 ) n +  ~ ~b*(~lx ~) (3.1) 

l = O  

where x ~  Z ]  and for each ~ and n >~ 0. We choose the point x ~ in such a 
way as to maximize the function 27_0 t/3~,b*(a~x) on X~. By Lemma (1.15) 
in ref. 5, there exists a positive finite constant C3 independent of ~ and n 
such that, for each pair of points x and y belonging to Z~, we have 

n I n - - 1  

~b*(a'x)- Z ~b*(a'y) ~< C3 (3.2) 
/ = 0  / = 0  

This allows us to replace the points x~t and x~, with x ~ up to two positive 
factors of the form exp[  ~ (1 - /3 )  C3]: we suppose here without any restric- 
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tion that 1 - f l <  O; for f l=  1, Theorem 1 is trivial, with Lus.~(O)= 0 and 
P ( 1 ) =  0. Using this last fact, we finally get 

n - - I  

e (I '~)c~c 2 ~ exp ~ fl~b*(cdx ~) 
a l - - 0  

n - - I  

<~ I,~(fl) <<. e-(X-e)C3Ca ~,exp ~ flq~*(o"X ~') 
l = 0  

As we have already noted, the sum over c~ is equivalent to the sum over all 
the possible combinations of numbers Xo ..... x . _ l  such that Ax,x,+~= 1; by 
definition, the thermodynamic limit of Z~ exp . - 1  )2l=0 fl~b*(Crlx~) just gives 
the pressure P*(fl) (ref. 5, p. 30). This proves that 

Iim l logI , , ( f i )=P( f i )  (3.3) 
n ~  + o o  F/ 

pointwise for f l e ~ .  Since the functions (1/n)logI,( f l )  are convex (as is 
easy to verify applying H61der's inequality), it follows that the convergence 
(3.3) is uniform on each compact subset of ~. 

3.2. Proof  of Theorem 2 

From now on we put, with abuse of notation, f(~)=df(6)/dc~ [a=~. 
We write O(fl) = fix - P(1 -- fl), x ~ R; we have /}(fl) = x - 2 + (#1 -~) and 
/ '5(fl)=2+(#1 ~)<0;  here we used (2.5). I f x > A  L, we h a v e / ) ( f l ) > 0 ,  so 
that 

I ( x ) =  lim D(f l )=  lim f i [ x - 2 + ( # 1 _ ~ ) ] =  +oo 
f l ~  + ~  / ~  + c o  

In a similar way, when x < A + /}(fi) < 0, and then I(x) = 
l i m ~  _~ D(f l )=  +oo. When x ~ A L ,  since D(fl) is concave, we compute 
the supremum taking the derivative and equting it to zero. Using (2.5) 
again, we get that the supremum in (2.4) will be attained by the unique fl 
satisfying 2 + ( #1 -~ )=  x. This allows us to express the deviation function as 

I (x )= fi2 + ( # 1 _ # ) -  P ( 1 -  fl) 

= &~ + ( # 1 - ~ )  - h(#1 _ ~) + (1 - ~) ;~ + (#1 e) 

= ~ + ( # 1 - e ) -  h ( # ~ _ ~ )  

where we decomposed P ( 1 -  fl) using (1.2). Since the deviation function is 
lower semicontinuous, (~4) by (2.6) we get I (A~)  + + = A Yo - HV~. Now, since 
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the function /3~--~x(/3)=Z+(#~ ~) is strictly monotone and differentiable 
for each /3 ~ ~ with its inverse fl(x), we get that I(x) is continuous and 
differentiable for x ~ AL, too, and, moreover, 

h x )  = ~ ( x ) x  + Z ( x ) -  i '(1 - ; )  p (x )  = ~ ( x ) x  + ~(x )  - ~ ( x ) x  = Z(x)  

This implies that when f l>0 ,  which is equivalent to x>2+(/~1), we get 
I ( x ) > 0  and for f l<0 ,  which is equivalent to x < Z + ( # l ) ,  we get i(x) <0.  
The deviation function has its minimum, as expected, for x equal to the 
Lyapunov exponent of the #SBR-measure: I(2+(#SBR))= 0 (see Fig. 1). It is 
now easy to compute the infimum of I(x) on open or closed subsets B of 
the open intervals (2+(#sBg), AL) and (A +, 2+(#SBR)). In this case the 
sets B are sets of/-continuity, that is, infx~ol B I(x)= infx~i,t n I(x), and the 
limits (2.4) properly exist, giving ~4) 

lim l l o g  Q.(B)= - i n f  ( x )  
n ~  + c O  n x ~ B  

4. E X T E N S I O N  A N D  C O N C L U D I N G  R E M A R K S  

Theorem 1 can be easily extended, comparing the pressure with the 
generalized Lyapunov exponents computed with respect to any Gibbs 
measure #6, 6 e N. The proof is similar to that of Theorem 1: it is only 
necessary to replace the term P*(1) with P*(6) and r ~) with 
6~b*(alx ~) in inequality (3.1). This gives the following formula for each real 
/3 and 6: 

L.~(~) = P(6 - ~ ) - -  P(6)  (4.1) 

The deviation function I6(x ) computed on the probability space (J, #6) for 
x ~ A L now reads 

I6(x)=62+(#6 ~)-h(#~ ~)+P(6)  (4.2) 

where fl is the unique real root of x =  Z+(po_r 
However, the only observable L m will be that corresponding to 6 = 1: 

in fact, in this case the measure can be approximated by an ergodic average 
in an ~iccessible neighborhood of the attractor. We point out that the 
attractive nature of our invariant set J is expressed by the only condition 
P (1 )=0 ;  for other kinds of Axiom-A basic sets (for example, hyperbolic 
horseshoes or repellers) the expressions (4.1) and (4.2) are unchanged 
provided that P(6 = 1) r  0. In this case the quantity P(1) is interpreted as 
the "escape rate" from the basic set. (17) The topological meaning of the 
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condi t ion P ( 1 ) =  0 is that  the unstable manifolds foliate the at t ractor  and 
the PSBR-measure condit ioned on them is absolutely cont inuous with 
respect to the induced Riemannian volume. It is possible to make a p roof  
of Theorem 1 avoiding symbolic dynamics,  but  using only the preceding 
topological  prescriptions. The proof  is particularly easy for Anosov 
diffeomorphisms using the techniques of Theorem (14.1) in ref. 18. 
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