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Abstract. We establish almost sure invariance principles, a strong form of
approximation by Brownian motion, for non-stationary time-series arising as
observations on dynamical systems. Our examples include observations on
sequential expanding maps, perturbed dynamical systems, non-stationary se-
quences of functions on hyperbolic systems as well as applications to the shrink-
ing target problem in expanding systems.
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1. Introduction

A recent breakthrough by Cuny and Merlevède [13] establishes conditions under
which the almost sure invariance principle (ASIP) holds for reverse martingales.
The ASIP is a matching of the trajectories of the dynamical system with a Brownian
motion in such a way that the error is negligible in comparison with the Birkhoff
sum. Limit theorems such as the central limit theorem, the functional central limit
theorem and the law of the iterated logarithm transfer from the Brownian motion
to time-series generated by observations on the dynamical system.

Suppose {Uj} is a sequence of random variables on a probability space (X,μ)
with μ(Uj) = 0 for all j. We will say (Uj) satisfies the ASIP if there is a sequence
of independent centered Gaussian random variables (Zj) such that, enlarging our
probability space if necessary,

n∑
j=1

Uj =

n∑
j=1

Zj +O(σ1−γ
n )
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almost surely for some γ > 0 where
n∑

j=1

E[Z2
j ] = σ2

n

for some 0 < η < 1.
If (Uj) satisfies the ASIP, then (Uj) satisfies the (self-norming) CLT and

1

σn

n∑
j=1

Uj → N(0, 1)

where the convergence is in distribution.
Furthermore if (Uj) satisfies the ASIP, then (Uj) satisfies the law of the iterated

logarithm and

lim sup
n

[

n∑
j=1

Uj ]/
√
σn log log(σn) = 1

while

lim inf
n

[
n∑

j=1

Uj ]/
√
σn log log(σn) = −1.

In fact there is a matching of the Birkhoff sum
∑n

j=1 Uj with a standard Brownian

motion B(t) observed at times tn = σ2
n so that

∑n
j=1 Uj = B(tn) (plus negligible

error) almost surely.
In the Gordin [15] approach to establishing the central limit theorem (CLT),

reverse martingale difference schemes arise naturally.
We recall the definition of a reverse martingale difference scheme. Let Bi, i ≥ 1,

be a decreasing sequence of σ-algebras, Bi+1 ⊂ Bi. A sequence of square-integrable
random variables (Xi) is a (with respect to (Bi)) if:

(1) Xi is Bi measurable.
(2) E[Xi|Bi+1] = 0.

If Xi is a stationary reverse martingale difference scheme, under mild conditions,
1√
n

∑n
j=1Xj satisfies the CLT.

To establish distributional limit theorems for stationary dynamical systems, such
as the central limit theorem, it is possible to reverse time via the natural extension
and use the martingale central limit theorem in backwards time to establish the
CLT for the original system. This approach does not a priori work for the almost
sure invariance principle, nor for other almost sure limit theorems. To circumvent
this problem Melbourne and Nicol [25, 26] used results of Philipp and Stout [31]
based upon the Skorokhod embedding theorem to establish the ASIP for Hölder
functions on a class of non-uniformly hyperbolic systems, for example those modeled
by Young Towers. Gouëzel [17] used spectral methods to give error rates in the
ASIP for a wide class of dynamical systems, and his formulation does not require
the assumption of a Young Tower. Merlevède and Rio [27] established the ASIP
for a broader class of observations, satisfying only mild integrability conditions, on
piecewise expanding maps of [0, 1].

We will need the following theorem of Cuny and Merlevède:

Theorem 1.1 ([13, Theorem 2.3]). Let (Xn) be a sequence of square-integrable
random variables adapted to a non-increasing filtration (Gn)n∈N . Assume that
E(Xn|Gn+1) = 0 a.s., that σ2

n :=
∑n

k=1 E(X2
k) → ∞ and that supn E(X2

n) < ∞.
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Let (an)n∈N be a non-decreasing sequence of positive numbers such that (an/σ
2
n)n∈N

is non-increasing and (an/σn)n∈N is non-decreasing. Assume that

(A)
n∑

k=1

(E(X2
k |Gk+1)− E(X2

k)) = o(an) P -a.s.,

(B)
∑
n≥1

a−v
n E(|Xn|2v) < ∞ for some 1 ≤ v ≤ 2.

Then enlarging our probability space if necessary it is possible to find a sequence
(Zk)k≥1 of independent centered Gaussian variables with E(Z2

k) = E(X2
k) such that

sup
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi −
k∑

i=1

Zi

∣∣∣∣∣ = o
(
(an(| log(σ2

n/an)|+ log log an))
1/2

)
P -a.s.

We use this result to provide sufficient conditions to obtain the ASIP for Hölder
or BV observations on a large class of expanding sequential dynamical systems. We
also obtain the ASIP for some other classes of non-stationary dynamical systems,
including ASIP limit laws for the shrinking target problem on a class of expanding
maps and non-stationary observations on Axiom A dynamical systems.

In some of our examples the variance σ2
n grows linearly σ2

n ∼ nσ2 so that Sn =∑n
j=1 φj ◦ T j is approximated by

∑n
j=1 Zj(= B(σ2n)) where Zj are iid Gaussian

all with variance σ2 and B(t) is standard Brownian motion. We will call this case
a standard ASIP with variance σ2.

In other settings, like the shrinking target problem, σ2
n does not grow linearly.

In fact we don’t know precisely its rate of increase, just that it goes to infinity. In
these cases Sn =

∑n
j=1 Uj is approximated by

∑n
j=1 Zj = B(σ2

n) where the Zj are

independent Gaussian but not with same variance, in fact Zj = B(σ2
j+1)−B(σ2

j ) is
a Brownian motion increment, the time difference (equivalently variance) of which
varies with j.

Part of the motivation for this work is to extend our statistical understanding
of physical processes from the stationary to the non-stationary setting, in order to
better model non-equilibrium or time-varying systems. Non-equilibrium statistical
physics is a very active field of research but ergodic theorists have until recently
focused on the stationary setting. The notion of loss of memory for non-equilibrium
dynamical systems was introduced and studied in the work of Ott, Stenlund and
Young [29], but this notion only concerns the rate of convergence of initial distri-
butions (in a metric on the space of measures) under the time-evolution afforded
by the dynamics. In this paper we consider more refined statistics on a variety of
non-stationary dynamical systems.

The term sequential dynamical systems, introduced by Berend and Bergelson [7],
refers to a (non-stationary) system in which a sequence of concatenation of maps
Tk ◦ Tk−1 ◦ . . . ◦ T1 acts on a space, where the maps Ti are allowed to vary with i.
The seminal paper by Conze and Raugi [12] considers the CLT and dynamical
Borel-Cantelli lemmas for such systems. Our work is based to a large extent upon
their work. In fact we show that the (non-stationary) ASIP holds under the same
conditions as stated in [12, Theorem 5.1] (which implies the non-stationary CLT),
provided a mild condition on the growth of the variance is satisfied.

We consider families F of non-invertible maps Tα defined on compact subsets X
of Rd or on the torus Td (still denoted with X in the following), and non-singular
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with respect to the Lebesgue or the Haar measure, i.e. m(A) 	= 0 =⇒ m(T (A)) 	=
0. Such measures will be defined on the Borel sigma algebra B. We will be mostly
concerned with the case d = 1. We fix a family F and take a countable sequence
of maps {Tk}k≥1 from it: this sequence defines a sequential dynamical system. A
sequential orbit of x ∈ X will be defined by the concatenation

(1.1) Tn(x) := Tn ◦ · · · ◦ T1(x), n ≥ 1.

We denote with Pα the Perron-Frobenius (transfer) operator associated to Tα de-
fined by the duality relation∫

M

Pαf g dm =

∫
M

f g ◦ Tα dm, for all f ∈ L 1
m, g ∈ L ∞

m .

Note that here the transfer operator Pα is defined with respect to the reference
measurem; in later sections we will consider the transfer operator defined by duality
with respect to a natural invariant measure.

Similarly to (1.1), we define the composition of operators as

(1.2) Pn := Pn ◦ · · · ◦ P1, n ≥ 1.

It is easy to check that duality persists under concatenation, namely∫
M

g(Tn) f dm =

∫
M

g(Tn ◦ · · · ◦ T1) f dm

=

∫
M

g( Pn ◦ · · · ◦ P1f) dm =

∫
M

g (Pnf) dm.

(1.3)

To deal with probabilistic features of these systems, the martingale approach is
fruitful. We now introduce the basic concepts and notation.

We define Bn := T −1
n B, the σ-algebra associated to the n-fold pull back of the

Borel σ-algebra B whenever {Tk} is a given sequence in the family F . We set
B∞ =

⋂
n≥1 T −1

n B as the asymptotic σ-algebra; we say that the sequence {Tk}
is exact if B∞ is trivial. We take f either in L 1

m or in L ∞
m whichever makes

sense in the following expressions. It was proven in [12] that for f ∈ L ∞
m the

quotients |Pnf/Pn1| are bounded by ‖f‖∞ on {Pn1 > 0} and Pnf(x) = 0 on the
set {Pn1 = 0}, which allows us to define |Pnf/Pn1| = 0 on {Pn1 = 0}.We therefore
have, the expectation being taken w.r.t. the Lebesgue measure:

(1.4) E(f |Bk) = (
Pkf

Pk1
) ◦ Tk,

(1.5) E(Tlf |Bk) = (
Pk · · ·Pl+1(fPl1)

Pk1
) ◦ Tk, 0 ≤ l ≤ k ≤ n.

Finally the martingale convergence theorem ensures that for f ∈ L 1
m there is

convergence of the conditional expectations (E(f |Bn))n≥1 to E(f |B∞) and therefore

lim
n→∞

||(Pnf

Pn1
) ◦ Tn − E(f |B∞)||1 = 0,

the convergence being m-a.e.
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2. Background and assumptions

In [12] the authors studied extensively a class of β transformations. We consider a
similar class of examples and we will also provide some new examples for the theory
developed in the next section. For each map we will give as well the properties
needed to prove the ASIP; in particular we require two assumptions which we call,
following [12], the (DEC) and (MIN) conditions.

To introduce them we first need to choose a suitable couple of adapted spaces.
Due to the class of maps considered here, we will consider a Banach space V ⊂ L 1

m

(1 ∈ V) of functions over X with norm || · ||α, such that ‖φ‖∞ ≤ C‖φ‖α.
For example we could let V be the Banach space of bounded variation functions

over X with norm || · ||BV given by the sum of the L 1
m norm and the total variation

| · |bv. or we could take V to be the space of Lipschitz or Hölder functions with the
usual norm.

Property (DEC). Given a family F of non-invertible non-singular maps of a

compact Riemannian manifold there exist constants Ĉ > 0, γ̂ ∈ (0, 1), such that
for any n and any sequence of transfer operators Pn, · · · , P1 corresponding to maps
chosen from F and any f ∈ V of zero (Lebesgue) mean,1 we have

(2.1) ‖Pn ◦ · · · ◦ P1f‖α ≤ Ĉγ̂n‖f‖α.

Property (MIN). There exists δ > 0 such that for any sequence Pn, · · · , P1 in F
we have the uniform lower bound

(2.2) inf
x∈M

Pn ◦ · · · ◦ P11(x) ≥ δ, ∀n ≥ 1.

3. ASIP for sequential expanding maps of the interval

In this section we show that with an additional growth rate condition on the
variance the assumptions of [12, Theorem 5.1] imply not just the CLT but the
ASIP as well. We write E[φ] for the expectation of φ with respect to Lebesgue
measure.

Let V be a Banach space with norm ‖.‖α such that ‖φ‖∞ ≤ C‖φ‖α. If (φn) is a

sequence in V define σ2
n = E(

∑n
i=1 φ̃i(Ti · · ·T1))

2 where φ̃n = φn−m(φ(Tn · · ·T1)).

Theorem 3.1. Let (φn) be a sequence in V such that supn ‖φn‖α < ∞. As-
sume (DEC) and (MIN) and σn ≥ n1/4+δ for some 0 < δ < 1

4 . Then (φn ◦ Tn)
satisfies the ASIP, i.e. enlarging our probability space if necessary it is possible to
find a sequence (Zk)k≥1 of independent centered Gaussian variables Zk such that
for any β < δ

sup
1≤k≤n

|
k∑

i=1

φ̃i(Ti · · ·T1)−
k∑

i=1

Zi| = o(σ1−β
n ) m-a.s.

Furthermore
∑n

j=1 E[Z2
i ] = σ2

n +O(σn).

Proof. As above let Pn = PnPn−1 · · ·P1 and define as in [12] the operators Qnφ =
Pn(φPn−11)

Pn1
.

1Actually, the definition of the (DEC) property in [12] is slightly more general since it requires
the above property for functions in a suitable subspace, not necessarily that of functions with zero
expectation.
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It follows by a direct calculation that in particular QnTnφ = φ and E[φ◦Tk|Bk] =
(Qkφ)(Tk), so that Qkφ = 0 implies E[φ ◦ Tk|Bk] = 0.

For convenience, and with a slight abuse of notation, we define the operator
Tn+1hn+1 = hn+1 ◦ Tn+1. With hn defined by

hn = Qnφ̃n−1 +QnQn−1φ̃n−2 + · · ·+QnQn−1 · · ·Q1φ̃0

we then obtain that

ψn = φ̃n + hn − Tn+1hn+1

satisfies Qn+1ψn = 0. For convenience let us put Un = Tnψn, where Tn denotes the
operator Tnψn = ψn ◦ Tn where, as before, Tn = Tn ◦ · · · ◦ T1. Thus, as established
by Conze and Raugi [12], (Un) is a sequence of reversed martingale differences for
the filtration (Bn). Note that

(3.1)

n∑
j=1

Uj =

n∑
j=1

φ̃j(Tj) + h1(T1)− hn(Tn+1)

and ‖hn‖α is uniformly bounded. Hence⎛
⎝ n∑

j=1

Uj

⎞
⎠

2

=

⎛
⎝ n∑

j=1

φ̃j(Tj)

⎞
⎠

2

+ (h1(T1)− hn+1(Tn+1))
2

+2

⎛
⎝ n∑

j=1

φ̃j(Tj)

⎞
⎠ (h1(T1)− hn+1(Tn+1))

and integration yields

E

⎛
⎝ n∑

j=1

Uj

⎞
⎠

2

= σ2
n +O(σn),

where we used that hn is uniformly bounded in L ∞ (and σn → ∞). Since
∫
UjUi =

0 if i 	= j one has
∑n

j=1 E(U2
j ) = E

(∑n
j=1 Uj

)2

= σ2
n +O(σn).

In Theorem 1.1, we will take an to be σ2−ε
n , for some ε > 0 sufficiently small (ε <

2δ will do) so that a2n > n1/2+δ
′
for all large enough n, where δ

′
> 0. Then an/σ

2
n

is non-increasing and an/σn is non-decreasing. Furthermore Conze and Raugi show

that E[U2
k |Bk+1] = Tk+1(

Pk+1(ψ
2
kPk1)

Pk+11
) and in [12, Theorem 4.1] establish that

∫
[

n∑
k=1

E(U2
k |Bk+1)− E(U2

k )]
2 dm ≤ c1

n∑
k=1

E(U2
k ) ≤ c2σ

2
n

for some constants c1, c2 > 0. This implies by the Gal-Koksma theorem (see
e.g. [34]) that

n∑
k=1

E(U2
k |Bk+1)− E(U2

k ) = o(σ1+η
n ) = o(an)

m-a.s. for any η ∈ (0, 2 − ε). Thus with our choice of an we have verified condi-
tion (A) of Theorem 1.1. Taking v = 2 in condition (B) of Theorem 1.1 one then
verifies that

∑
n≥1 a

−v
n E(|Un|2v) < ∞.
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Thus Un satisfies the ASIP with error term o(σ1−β
n ) for any β < δ. This concludes

the proof since in view of (3.1) and the fact that the terms involving hn telescope

and ‖hn‖α is uniformly bounded, the ASIP for Un implies the ASIP for (φ̃j◦Tj). �

4. Improvements of earlier work

We collect here examples for which a self-norming CLT was already proven, but
actually a (self-norming) ASIP holds if the variance grows at the rate required by
Theorem 3.1.

Conze and Raugi [12, Remark 5.2] show that for sequential systems formed by
taking maps near a given β-transformation with β > 1, by which we mean maps
Tβ′ with β′ ∈ (β − δ, β + δ) for sufficiently small δ > 0, the conditions (DEC)
and (MIN) are satisfied and if φ is not a coboundary for Tβ , then the variance for
φ ∈ BV grows as

√
n.

Nándori, Szász and Varjú [28, Theorem 1] give conditions under which sequential
systems satisfy a self-norming CLT. These conditions include (DEC) and (MIN)
(the maps all preserve a fixed measure μ, so one can use the transfer operator with
respect to μ), and their main condition gives the rate of growth for the variance
(see [28, page 1220]). If this rate satisfies the requirement of Theorem 3.1, then
for such systems the ASIP holds as well. Such cases follow from their Examples
1 and 2, where the maps are selected from the family Ta(x) = ax(mod 1), a ≥ 2
integer, and Lebesgue as the invariant measure. Note however that their Example
2 includes sequential systems whose variance growth is slower than any power of n,
but still satisfy the self-norming CLT.

5. ASIP for the shrinking target problem: Expanding maps

We now consider a fixed expanding map (T,X, μ) acting on the unit interval
equipped with a unique ergodic absolutely continuous invariant probability mea-
sure μ. Examples to which our results apply include β-transformations, smooth
expanding maps, the Gauss map, and mixing Rychlik-type maps. We will de-
fine the transfer operator with respect to the natural invariant measure μ, so that∫
(Pf)g dμ =

∫
fg(T ) dμ for all f ∈ L 1(μ), g ∈ L ∞(μ).

We assume that the transfer operator P is quasicompact in the bounded variation
norm so that we have exponential decay of correlations in the bounded variation
norm and ‖Pnφ‖BV ≤ Cθn‖φ‖BV for all φ ∈ BV (X) such that

∫
φdμ = 0 (here

C > 0 and 0 < θ < 1 are constants independent of φ).
We say that (T,X, μ) has exponential decay in the BV norm versus L 1(μ) if

there exist constants C > 0, 0 < θ < 1 so that for all φ ∈ BV , ψ ∈ L 1(μ) such
that

∫
φ dμ =

∫
ψ dμ = 0:∣∣∣∣

∫
φψ ◦ Tn dμ

∣∣∣∣ ≤ Cθn‖φ‖BV ‖ψ‖1

where ‖ψ‖1 =
∫
|ψ| dμ. If the density dμ

dm of μ with respect to Lebesgue measure

m is strictly bounded below, dμ
dm ≥ c > 0 for some constant c, then ‖Pnφ‖BV ≤

Cθn‖φ‖BV implies exponential decay in the BV norm versus L 1(μ); see for in-
stance [9, Proposition 3.1]. Suppose φj = 1Aj

are indicator functions of a sequence
of nested intervals Aj , where μ is the unique invariant measure for the map T .

The variance is given by σ2
n = μ(

∑n
i=1 φ̃i ◦ T i)2, where φ̃ = φ − μ(φ) and

En =
∑n

j=1 μ(φj).
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Theorem 5.1. Suppose (T,X, μ) is a dynamical system with exponential decay in
the BV norm versus L 1(μ) and whose transfer operator P satisfies ‖Pnφ‖BV ≤
Cθn‖φ‖BV for all φ ∈ BV (X) such that

∫
φdμ = 0. Suppose φj = 1Aj

are indicator
functions of a sequence of nested sets Aj such that supn ‖φn‖BV < ∞, μ(An) ≥ n−γ

for some γ > 0 and En :=
∑n

j=1 = μ(An) diverges. Then (φn ◦ Tn)n≥1 satisfies
the ASIP, i.e. enlarging our probability space if necessary it is possible to find a
sequence (Zk)k≥1 of independent centered Gaussian variables Zk such that for all
β < 1

2

sup
1≤k≤n

|
k∑

i=1

φ̃i ◦ T i −
k∑

i=1

Zi| = o(σ1−β
n ) μ-a.s.

Furthermore
∑n

i=1 E[Z2
i ] = σ2

n +O(σn).

Proof. From [22, Lemma 2.4] we see that for sufficiently large n, σ2
n ≥ En (note

that there is a typo in the statement of [22, Lemma 2.4] and lim sup should be
replaced with lim inf). We follow the proof of Theorem 3.1 based on [12, Theorem
5.1] taking Tk = T for all k, m as the invariant measure μ and fn = 1An

. Note that
conditions (DEC) and (MIN) are satisfied automatically under the assumption that
we have exponential decay of correlations in BV norm versus L 1 and the transfer
operator P is defined with respect to the invariant measure μ in the usual way by∫
(Pf)g dμ =

∫
fg(T ) dμ for all f ∈ L 1(μ), g ∈ L ∞(μ). Hence P1 = 1 and in

particular |Pφ|∞ ≤ |φ|∞. We write Pn for the n-fold composition of the linear

operator P . Let φ̃i = φi − μ(φi). As before define hn =
∑n

j=1 P
jφ̃n−j and write

ψn = φ̃n + hn − hn+1 ◦ T.
Again, for convenience we put

Un = ψn ◦ Tn

so that (Un) is a sequence of reversed martingale differences for the filtration (Bn).
As in the case of sequential expanding maps one shows that

∑n
i=1 E[U2

i ] = σ2
n +

O(σn). Condition (A) of Theorem 1.1 holds exactly as before.
In order to estimate μ(|Un|4) observe that by Minkovski’s inequality (p > 1)

‖hn‖p ≤
n−1∑
j=1

‖P jφ̃n−j‖p,

where

‖P j φ̃n−j‖p ≤ ‖P jφ̃n−j‖BV ≤ c1ϑ
j‖φ̃n−1‖BV ≤ c2ϑ

j

for all n and j < n. For small values of j we use the estimate (as |φ̃n−j |∞ ≤ 1)∫ ∣∣∣P j φ̃n−j

∣∣∣p ≤
∫ ∣∣∣P j φ̃n−j

∣∣∣ ≤ ∫
P j(φn−j + μ(An−j))

=

∫
φn−j ◦ T j + μ(An−j) = 2μ(An−j).

If we let qn be the smallest integer so that ϑqn ≤ (μ(An−qn))
1
p , then

‖hn‖p ≤
qn∑
j=1

(2μ(An−j))
1
p +

n∑
j=qn

c2ϑ
j ≤ c3qn (μ(An−qn))

1
p .
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A similar estimate applies to hn+1. Note that qn ≤ c4 log n for some constant c4.
Let us put p = 4; then factoring out yields∫

ψ4
n = O(μ(An)) + ‖hn − hn+1T‖44 = O(μ(An)) +O(q4n+1μ(An−qn)).

Let α < 1 (to be determined below) and put an = Eα
n , where En =

∑n
j=1 μ(Aj).

Then ∑
n

μ(U4
n)

a2n
≤ c5

∑
n

μ(An) + q4n+1μ(An−qn)

E2α
n

≤ c6
∑
n

q4n+1μ(An−qn)

E2α
n−qn

≤ c7
∑
n

∫ En

En−1

log4 x

x2α
dx.

Since

E2α
n

μ(An)
≥

⎛
⎝ n∑

j=1

(μ(Aj)
1
2α

⎞
⎠

2α

≥

⎛
⎝ n∑

j=1

j−
γ
2α

⎞
⎠

2α

≥ c8n
2α−γ

which converge if α > 1
2 . We have thus verified condition (B) of Theorem 1.1 with

the value v = 2. Thus Un satisfies the ASIP with error term o(E
1−β
2

n ) = o(σ1−β
n )

for any β < 1
2 .

Finally
n∑

j=1

Uj =
n∑

j=1

φ̃j(T
j) + h1(T1)− hn(T

n)

and as |hn| is uniformly bounded we conclude that (φj(T
j)) satisfies the ASIP with

error term o(σ1−β
n ) for all β < 1−γ

2 . �

Remark 5.2. The bound μ(An) ≥ n−γ , γ ∈ R, weakens the conditions under which
the CLT has been proven in [12, 22], namely μ(An) ≥ C

n for some n.

6. ASIP for non-stationary observations

on invertible hyperbolic systems

In this section we will suppose that Bα is the Banach space of α-Hölder functions
on a compact metric space X and that (T,X, μ) is an ergodic measure preserving
transformation. Suppose that P is the L 2 adjoint of the Koopman operator U ,
Uφ = φ ◦ T , with respect to μ. First we consider the non-invertible case and
suppose that ‖Pnφ‖α ≤ Cϑn‖φ‖α for all α-Hölder φ such that

∫
φ dμ = 0 where

C > 0 and 0 < ϑ < 1 are uniform constants. Under this assumption we will
establish the ASIP for sequences of uniformly Hölder functions satisfying a certain
variance growth condition. Then we will give a corollary which establishes the ASIP
for sequences of uniformly Hölder functions on an Axiom A system satisfying the
same variance growth condition.

The main difficulty in this setting is establishing a strong law of large numbers
with error (condition (A)) for the squares (U2

j ) of the martingale difference scheme.
We are not able to use the Gal-Koksma lemma in the same way as we did in
the setting of decay in bounded variation norm. Nevertheless our results, while
clearly not optimal, point the way to establishing strong statistical properties for
non-stationary time-series of observations on hyperbolic systems.
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Theorem 6.1. Suppose (T,X, μ) is a non-invertible ergodic measure preserving
transformation of a Riemannian manifold X and ‖Pnφ‖α ≤ Cϑn‖φ‖α for all α-
Hölder φ such that

∫
φ dμ = 0 where C > 0 and 0 < ϑ < 1 are uniform constants.

Suppose {φj} is a sequence of α-Hölder functions such that
∫
φj dμ = 0 and

supj ‖φj‖α ≤ C1 for some constant C1 < ∞.

Let σ2
n =

∫
(
∑n

j=1 φj ◦ T j)2dμ and suppose that σ2
n ≥ C2n

δ for some δ >
√
17−1
4

and a constant C2 < ∞. Then there is a sequence of centered independent Gaussian
random variables (Zj) such that, enlarging our probability space if necessary,

n∑
j=1

φj ◦ T j =
n∑

j=1

Zj +O(σ1−β
n )

μ almost surely for any β <
√
17−1
4δ .

Furthermore
∑n

i=1 E[Z2
i ] = σ2

n +O(σn).

Proof. Define hn = Pφn−1 + P 2φn−2 + · · ·+ Pnφ0 and put

ψn = φn + hn − hn+1 ◦ T.

Note Pψn = 0 and that ‖hn‖ = O(1) for n > 1 by the same argument as in
the proof of Theorem 5.1. The sequence Un = ψn ◦ Tn is a sequence of reversed
martingale differences with respect to the filtration Fn, where Fn = T−nF0. We
will take an = σ2η

n where η > 0 will be determined below. Since ‖ψj‖α = O(1) and
consequently ‖Uj‖α = O(1) we conclude that

∑
n

μ(U4
n)

a2n
≤ c1

∑
n

1

σ4η
n

≤ c2
∑
n

1

n2ηδ
< ∞

provided η > 1
2δ . In this case condition (B) of Theorem 1.1 is satisfied for v = 2.

In order to verify condition (A) of Theorem 1.1 let us observe that E[U2
j |Fj+1] =

E[ψ2
j ◦ T j |Fj+1] = P j+1(ψj ◦ T j) ◦ T j+1 = (P j+1U jψ2

j ) ◦ T j+1 = (Pψ2
j ) ◦ T+1. We

now shall prove a strong law of large numbers with rate for the sequence E[U2
j |Fj+1].

For simplicity of notation we denote E[U2
j |Fj+1] by Ûj

2
.

Let us write Sn =
∑n

j=1[Ûj
2 − μ(U2

j )] for the LHS of condition (A) in The-

orem 1.1. Then ρ2n =
∫
S2
n dμ =

∫
(
∑n

j=1 Ûj
2 − E[U2

j ])
2 dμ satisfies by decay of

correlations the estimate ρ2n = O(n), where we used that ‖Ûj
2‖α = O(1). Hence

by Chebyshev’s inequality

P

(
|Sn| >

σ2η
n

log n

)
≤ ρ2n

σ4η
n

log2 n ≤ c3n
−(2ηδ−1) log2 n

as σ2
n = O(nδ). Since δ is never larger than 2, we have 2ηδ − 1 ≤ 1. Then along a

subsequence f(n) = [nω] for ω > ω0 = 1
2ηδ−1 ≥ 1 we can apply the Borel-Cantelli

lemma since P
(
|Sf(n)| > σ2η

f(n)/ log f(n)
)
is summable as

∑
n n−ω(2ηδ−1) log2 n <

∞. Hence by Borel-Cantelli for μ-a.e. x ∈ X, |Sf(n)(x)| >
σ2η
f(n)

log f(n) only finitely

often.
In order to control the gaps note that [(n + 1)ω] − [nω] = O(nω−1) and let

k ∈ (f(n), f(n + 1)). Since along the subsequence Sf(n) = o(σ2η
f(n)) we conclude
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that Sk = o(σ2η
f(n))+O(nω−1) as there are at most nω−1 terms Ûj

2−E[U2
j ] = O(1)

in the range j ∈ (f(n), k].
Choosing ω > ω0 close enough to ω0 we conclude that

Sk = o
(
σ2η
f(n) + nω−1

)
= o

(
σ2η
n + σ

(ω−1) 2
δ

n

)
= o

(
σ2η
k

)
,

for η > η0 where η0 satisfies 2η0 = (ω0− 1) 2δ = 2−2ηδ
2ηδ−1

2
δ which implies η0 = γ0

δ , with

γ0 =
√
17−1
4 .

This concludes the proof of condition (A) with an = σ2η
n . Also note that η0

is larger than 1
2δ which ensures condition (B). Thus {Uj} satisfies the ASIP with

error O(σ1−β
n ) for 0 < β < β0 = 1 − η0 = 1 − γ0

δ and hence so does {φj ◦ T j}.
In particular we must require δ to be bigger than γ0 (which is slightly larger than
3
4 ). �

We now state a corollary of this theorem for a sequence of non-stationary obser-
vations on Axiom A dynamical systems.

Corollary 6.2. Suppose (T,X, μ) is an Axiom A dynamical system, where μ is
a Gibbs measure. Suppose {φj} is a sequence of α-Hölder functions such that∫
φj dμ=0 and supj ‖φj‖α<∞ for some constant C. Let σ2

n=
∫
(
∑n

j=1 φj ◦ Tn)2dμ

and suppose that σ2
n ≥ Cnδ for some δ >

√
17−1
4 and a constant C < ∞. Then

there is a sequence of centered independent Gaussian random variables (Zj) and a
γ > 0 such that, enlarging our probability space if necessary,

n∑
j=1

φj ◦ T j =
n∑

j=1

Zj +O(σ1−β
n )

μ almost surely for any β <
√
17−1
4δ .

Furthermore
∑n

i=1 E[Z2
i ] = σ2

n +O(σn).

Proof. The assumption σ2
n ≥ Cnδ for some δ >

√
17−1
4 agrees with Theorem 6.1.

The basic strategy is now the standard technique of coding first by a two-sided shift
and then reducing to a non-invertible one-sided shift. There is a good description in
Field, Melbourne and Török [14]. We use a Markov partition to code (T,X, μ) by a
two-sided shift (σ,Ω, ν) in a standard way [8,30]. We lift φj to the system (σ,Ω, ν)
keeping the same notation for φj for simplicity. Using the Sinai trick [14, Appendix
A] we may write

φj = ψj + vj − vj+1 ◦ σ
where ψj depends only on future coordinates and is Hölder of exponent

√
α if φj

is of exponent α. In fact ‖ψj‖√α ≤ K and similarly ‖vj‖√α ≤ K for a uniform
constant K.

There is a slight difference in this setting to the usual construction. Pick a Hölder
map G : X → X that depends only on future coordinates (e.g. a map which locally
substitutes all negative coordinates by a fixed string) and define

vn(x) =
∑
k≥n

φk(σ
k−nx)− φk(σ

k−nGx).

It is easy to see that the sum converges since

|φk(σ
k−nx)− φk(σ

k−nGx)| ≤ Cλk‖φk‖α
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(where 0 < λ < 1) and that ‖vn‖α ≤ C2 for some uniform C2.
Since

φn − vn + vn+1 ◦ σ = φn(Gx) +
∑
k>n

[φk(σ
k−nGx)− φk(σ

k−nGσx)]

defining ψn = φn − vn + vn+1 ◦ σ we see ψn depends only on future coordinates.
We let F0 denote the σ-algebra consisting of events which depend on past coor-

dinates. This is equivalent to conditioning on local stable manifolds defined by the
Markov partition. Symbolically F0 sets are of the form (∗ ∗ ∗ ∗ .ω0ω1 ∗ ∗ ∗ ∗) where
∗ is allowed to be any symbol.

Finally using the transfer operator P associated to the one-sided shift

σ(x0x1 . . . xn . . .) = (x1x2 . . . xn . . .)

we are in the set-up of Theorem 6.1. As before we define hn = Pψn−1 +P 2ψn−2 +
· · ·+ Pnψ0 and put

Vn = ψn + hn − hn+1 ◦ T.
The sequence Un = Vn ◦ Tn is a sequence of reversed martingale differences with
respect to the filtration Fn, where Fn = σ−nF0. In fact (UP )f = E[f |σ−1F0] ◦ σ
while (PU)f = f (this is easily checked; see [14, Remark 3.1.2] or [30]).

Thus Un satisfies the ASIP with error term o(σ1−β
n ) for β ∈ (0, 1 − γ0

δ ). Hence

ψn ◦ Tn satisfies the ASIP with error term o(σ1−β
n ).

Finally
n∑

j=0

φj =
n∑

j=0

ψj(T
j) + [v0 − vn ◦ σn+1]

as the sum telescopes. As |vn| ≤ C we have the ASIP with error term o(σ1−β
n ) for

the sequence {φn ◦ Tn}. This concludes the proof. �

7. Further applications

We consider here maps for which conditions (DEC) and (MIN) are satisfied,
but in order to guarantee the unboundedness of the variance when φ is not a
coboundary, we will see that further assumptions are needed. We follow here again
[12], especially Sect. 5. We begin with looking for a useful sufficient condition to
get the (DEC) condition; we adapt it to the class of maps we are going to introduce.
These maps will be defined on the unit interval or on compact subspaces of Rn.
The adapted spaces will be denoted by V and L1

m being V the space of bounded
variation functions in the case of one-dimensional maps, and the space of quasi-
Hölder functions for maps defined on compact subsets of Rn, n > 1. In both cases
we will denote by ||·||α the norm on V : this norm will be again the sum of a suitable
seminorm and of the L1

m norm.
We say that a transfer operator P acting on V is exact if, acting on functions

f ∈ V of zero Lebesgue mean, it verifies: limn→∞ ||Pnf ||1 = 0.
We now begin to list the assumptions we need: we will see that the maps in F

will be close, in a sense we will describe below, to a given map T0. Call P0 the
transfer operator associated to T0.

Uniform Doeblin-Fortet-Lasota-Yorke inequality (DFLY). Given the fam-
ily F there exist constants A,B < ∞, ρ ∈ (0, 1), such that for any n and any
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sequence of operators Pn, · · · , P1 in F and any f ∈ V we have

(7.1) ‖Pn ◦ · · · ◦ P1f‖α ≤ Aρn‖f‖α +B‖f‖1.

The bound (7.1) will be true in particular when applied to Pn
0 ; we moreover

suppose that:

Exactness property. The operator P0 has a spectral gap, which implies that
there are two constants C1 < ∞ and γ0 ∈ (0, 1) so that

(Exa) ||Pn
0 f ||α ≤ C1γ

n
0 ||f ||α

for all f ∈ V and n ≥ 1. By the very definition of the α norm, we immediately have
that the operator P0 is exact.

Then one considers the following distance between two operators P and Q acting
on V :

d(P,Q) = sup
f∈V,||f ||α≤1

||Pf −Qf ||1.

The useful criterion to verify the (DEC) condition is given in Proposition 2.10
in [12], and in our setting it reads: if P0 is exact, then there exists δ0 > 0, such that
the set {P ∈ F ; d(P, P0) < δ0} satisfies the (DEC) condition (2.1).

By induction on the Doeblin-Fortet-Lasota-Yorke inequality for compositions we
immediately have

(7.2) (DS) d(Pr ◦ · · · ◦ P1, P
r
0 ) ≤ M

r∑
j=1

d(Pj , P0)

with M = 1 +Aρ−1 +B.
According to [12, Lemma 2.13], (DS) and (Exa) imply that there exists a constant

C2 such that

‖Pn ◦ · · · ◦ P1φ− Pn
0 φ‖1 ≤ C2‖φ‖α(

p∑
k=1

d(Pn−k+1, P0) + (1− γ0)
−1γp

0 )

for all integers p ≤ n and all functions φ ∈ V .

Lipschitz. Assume that the maps (and their transfer operators) are parametrized
by a sequence of numbers εk, k ∈ N, such that limk→∞ εk = ε0, (Pε0 = P0). We
assume that there exists a constant C3 so that

(Lip) d(Pεk , Pεj ) ≤ C3|εk − εj |, for all k, j ≥ 0.

We will restrict in the following to the subclass Fexa of maps, and therefore of
operators, for which

Fexa := {Pεk ∈ F ; |εk − ε0| < C−1
3 δ0}.

The maps in Fexa will therefore verify the (DEC) condition; in order to guarantee
the unboundeness of the variance we need something stronger, namely:

Convergence property. We require algebraic convergence of the parameters, that
is, there exist a constant C4 and κ > 0 so that

(Conv) |εn − ε0| ≤
C4

nκ
∀n ≥ 1.
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With these last assumptions, we get a polynomial decay for (7.2) of the type
O(n−κ) and in particular we obtain the same algebraic convergence in L 1 of
Pn◦· · ·◦P1φ to h

∫
φ dm, where h is the density of the absolutely continuous mixing

measure of the map T0. This convergence is necessary to establish the growth of
the variance σ2

n.

Finally, we also require

Positivity property. The density h for the limiting map T0 is strictly positive,
namely

(Pos) inf
x
h(x) > 0.

The relevance of these four properties is summarized by the following result.

Lemma 7.1 ([12, Lemma 5.7]). Assume the assumptions (Exa), (Lip), (Conv)
and (Pos) are satisfied. If φ is not a coboundary for T0, then σ2

n/n converges as
n → ∞ to σ2 which moreover is given by

σ2 =

∫
P̂ [Gφ− P̂Gφ]2(x)h(x) dx,

where P̂ φ = P0(hφ)
h is the normalized transfer operator of T0 and Gφ=

∑
k≥0

Pk
0 (hφ)
h .

Warning. In the next sections we will give several examples of maps satisfying [12,
Lemma 5.7]. The family of maps will be parametrized by a small positive number
ε (or a vector with small positive components). When we write sentences like The
maps in F verify condition (Lip), we will tacitly suppose that we restrict to Fexa

having previously proved that the transfer operator P0 is exact. This will impose
restriction on the choice of ε (less than a constant times δ0; see above), and in
this case we will use the terminology for ε small enough. In particular we could
eventually take the sequences εk with k larger than 1 in the theorems stated below
to get the variance. Particular care will be taken in the verification of the DFLY
condition, which in turn will imply the analogous condition for the unperturbed
operator P0. The exactness of P0 will therefore follow by assuming the existence of
a unique mixing absolutely continuous invariant measure (for instance by adding
further properties to the map T0), or alternatively by restricting to one of the
finitely many mixing components prescribed by the quasicompactness of P0.

7.1. β transformations. Let β > 1 and denote by Tβ(x) = βx mod 1 the β-trans-
formation on the unit circle. Similarly for βk ≥ 1+ c > 1, k = 1, 2, . . . , we have the
transformations Tβk

of the same kind, x �→ βkx mod 1. Then F = {Tβk
: k} is the

family of functions we want to consider here. The functional space V will coincide
with the function of bounded variation with norm || · ||BV . The property (DEC)
was proved in [12, Theorem 3.4 (c)] and condition (MIN) in [12, Proposition 4.3].
Namely, for any β > 1 there exist a > 0, δ > 0 such that whenever βk ∈ [β−a, β+a],
then Pk ◦ · · · ◦ P1 1(x) ≥ δ, where P� is the transfer operator of Tβ�

. The invariant
density of Tβ is bounded below, and continuity (Lip) is precisely the content of
Sect. 5 in [12]. We therefore obtain (see [12, Corollary 5.4]):

Theorem 7.2. Assume that |βn − β| ≤ n−θ, θ > 1/2. Let φ ∈ BV be such that
m(hf) = 0, where m is the Lebesgue measure and φ is not a coboundary for Tβ, so
σ2 	= 0. Then the random variables

Wn = φ+ Tβ1
φ+ · · ·+ Tβ1

Tβ2
. . . Tβn−1

φ

satisfy a standard ASIP with variance σ2.
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7.2. Perturbed expanding maps of the circle. We consider a C2 expanding
map T of the circle T; let us put Ak = [vk, vk+1]; k = 1, · · · ,m, vm+1 = v1 the
closed intervals such that TAk = T and T is injective over [vk, vk+1). The family F
then consists of the perturbed maps Tε which are given by the translations (additive
noise): Tε(x) = T (x) + ε, mod 1, where ε ∈ (−1, 1). The functional space V will
coincide with the function of bounded variation with norm || · ||BV . We observe that
the intervals of local injectivity [vk, vk+1), k = 1, · · · ,m, of Tε are independent of
ε. We call A the partition {Ak : k} into intervals of monotonicity. We assume there
exist constants Λ > 1 and C1 < ∞ so that

(7.3) inf
x∈T

|DT (x)| ≥ Λ; sup
ε∈(−1,1)

sup
x∈T

∣∣∣∣D2Tε(x)

DTε(x)

∣∣∣∣ ≤ C1.

Lemma 7.3. The maps F = {Tε} for ε small enough satisfy the conditions of
Lemma 7.1.

Proof. (I) (DFLY) It is well known that any such map Tε satisfying (7.3) verifies
a Doeblin-Fortet-Lasota-Yorke inequality ||Pεf ||BV ≤ ρ||f ||BV +B||f ||1 where ρ ∈
(0, 1) and B < ∞ are independent of ε (Pε is the associated transfer operator of
Tε). For any concatenation of maps one consequently has

‖Pnf‖BV ≤ ρk‖f‖BV +
B

1− ρ
‖f‖1,

where Pn = Pεk ◦ · · · ◦ Pε1 .
(II) (MIN) In order to obtain the lower bound property (MIN) we have to con-

sider an upper bound for concatenations of operators. Since each Tε has m intervals
of monotonicity we have (where Tn = Tεn ◦ · · · ◦ Tε1 as before)

(7.4) Pn1(x) =

m∑
kn,··· ,k1=1

1

|DTn(T−1
k1,ε1

◦ · · ·T−1
kn,εn

(x))|
× 1TnA

ε1,··· ,εn
k1,··· ,kn

(x),

where T−1
kl,εl

, kl ∈ [1,m], denotes the local inverse of Tεl restricted to Akl
and

(7.5) Aε1,··· ,εn
k1,··· ,kn

= T−1
k1,ε1

◦ · · · ◦ T−1
kn−1,εn−1

Akn
∩ · · · ∩ T−1

k1,ε1
Ak2

∩Ak1

is one of the mn intervals of monotonicity of Tn. Since those images satisfy2

(7.6) TnAε1,··· ,εn
k1,··· ,kn

= Tεn(Akn
∩ Tεn−1

Akn−1
∩ · · · ∩ Tεn−1

◦ · · · ◦ Tε1Ak1
)

and each branch is onto, we have that the inverse image is the full interval. By the
Mean Value Theorem there exists a point ξk1,··· ,kn

in the interior of the connected
interval Aε1,··· ,εn

k1,··· ,kn
such that |DTn(ξk1,··· ,kn

)|−1 = |Aε1,··· ,εn
k1,··· ,kn

|, where |A| denotes the
length of the connected interval A. In order to get distortion estimates, let us take

2This can be proved by induction; for instance for n = 3 we have Tε3Tε2Tε1 (T
−1
k1,ε1

T−1
k2,ε2

Ak3
∩

T−1
k1,ε1

Ak2
∩ Ak1

) = Tε3Tε2Tε1 [T
−1
k1,ε1

(T−1
k2,ε2

Ak3
∩ Ak2

∩ Tε1Ak1
)] = Tε3Tε2 (T

−1
k2,ε2

Ak3
∩ Ak2

∩
Tε1Ak1

) = Tε3Tε2 [T
−1
k2,ε2

(Ak3
∩ Tε2Ak2

∩ Tε2Tε1Ak1
)] = Tε3 (Ak3

∩ Tε2Ak2
∩ Tε2Tε1Ak1

).
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two points u, v in the closure of Aε1,··· ,εn
k1,··· ,kn

. Then (T0 is the identity map)∣∣∣∣DTn(u)
DTn(v)

∣∣∣∣ = exp (log |DTn(u)| − log |DTn(v)|)

= exp
n∑

j=1

(
log

∣∣DTεj ◦ Tj−1(u)
∣∣− log

∣∣DTεj ◦ Tj−1(v)
∣∣)

= exp
n∑

j=1

|D2Tεj (ιk)|
|DTεj (ιj)|

|Tj−1(u)− Tj−1(v)|

for some points ιj in Tj−1A
ε1,··· ,εn
k1,··· ,kn

. Using the second bound in (7.3) and the fact

that |Tj−1(u)− Tj−1(v)| ≤ Λ−(j−1) we finally have

|DTn(u)/DTn(v)| ≤ e
C1
1−Λ

which in turn implies that

Pn1(x) ≥ e−
C1
1−Λ

and this independently of any choice of the εk, k = 1, · · · , n, and of n.
(III) The strict positivity condition (Pos) holds since the map T is Bernoulli and

for such maps it is well known that its invariant densities are uniformly bounded
from below away from zero [1].

(IV) The continuity condition (Lip) follows the same proof as in the next section
and therefore we refer to that. �

We now conclude by Lemma 7.1 the following result:

Theorem 7.4. Let F be a family of functions as described in this section. Then for
any function φ which is not a coboundary for Tβ we have that the random variables

Wn =
n−1∑
j=0

φ ◦ Tj

satisfy a standard ASIP with variance σ2.

7.3. Covering maps: Special cases.

7.3.1. One-dimensional maps. The next example concerns piecewise uniformly ex-
panding maps T on the unit interval. The family F will consist of maps Tε, which
are constructed with local additive noise starting from T , which in turn satisfies:

(i) T is locally injective on the open intervals Ak, k = 1, . . . ,m, that give a
partition A = {Ak : k} of the unit interval [0, 1] = M (up to zero measure
sets).

(ii) T is C2 on each Ak and has a C2 extension to the boundaries. More-
over there exist Λ > 1, C1 < ∞, such that infx∈M |DT (x)| ≥ Λ and

supx∈M

∣∣∣D2T (x)
DT (x)

∣∣∣ ≤ C1.

At this point we give the construction of the family F of maps Tε by defining
them locally on each interval Ak. On each interval Ak we put Tε(x) = T (x) + ε
where |ε| < 1 and we extend by continuity to the boundaries. We restrict to values
of ε so that the image Tε(Ak) stays in the unit interval; this we achieve for a given
ε by choosing the sign of ε so that the image of Ak remains in the unit interval; if
not we do not move the map. The sign will consequently vary with each interval.
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We now add the new assumption. Assume there exists an element Aw ∈ A so
that:

(iii) Aw ⊂ TεAk for all Tε ∈ F and k = 1, . . . ,m.
(iv) The map T send Aw on [0, 1] and therefore it will not be affected there by the

addition of ε. In particular it will exist 1 ≥ L′ > 0 such that ∀k = 1, . . . , q
we have |T (Aw) ∩ Ak| > L′. The functional space V will coincide with the
function of bounded variation with norm || · ||BV .

Lemma 7.5. The maps Tε satsify the conditions (DFLY), (MIN), (Pos) and (Lip).

Proof. (I) The condition (DFLY) follows from assumption (ii).
(II) In order to prove the lower bound condition (MIN) we begin by observing

that, thanks to (iv), the union over the mn images of the intervals of monotonicity
of any concatenation of n maps, still covers M . Assumption (iii) above does not re-
quire that each branch of the maps in F be onto; instead, and thanks again to (7.6),
we see that each image TnAε1,··· ,εn

k1,··· ,kn
will have at least length L = ΛL′, so that the

reciprocal of the derivative of Tn over Aε1,··· ,εn
k1,··· ,kn

will be of order L−1|Aε1,··· ,εn
k1,··· ,kn

| (as
before Tn = Tεn ◦ · · · ◦Tε1). By distortion we make it precise by multiplying by the

same distortion constant e
C1
1−Λ as above. In conclusion we have

Pεn ◦ · · · ◦ Pε11(x) ≥ L−1e−
C1
1−Λ .

(III) To show strict positivity of the invariant density h for the map T we use
Assumption (iv). Since h is of bounded variation, it will be strictly positive on an
open interval J , where infx∈J h(x) ≥ h∗ where h∗ > 0. We now choose a partition

element Rn of the join An =
∨n−1

i=0 T−iA, such that Rn ⊂ J . This is possible by
choosing n large enough since the partition A is generating. By iterating n times
forward we achieve that TnRn covers Aw and therefore after n + 1 iterations the
image of Aw will cover the entire unit interval. Then for any x in the unit interval:

h(x) = Pn+1h(x) ≥ h(T−(n+1)
s (x))‖DTn+1‖−1

∞ ≥ h∗‖DTn+1‖−1
∞ ,

where T
−(n+1)
s is one of the inverse branches of Tn+1 which sends x into Rn.

(IV) To prove the continuity property (Lip) we must estimate the difference
||Pε1f −Pε2f ||1 for all f in BV. We will adapt for that to the one-dimensional case
a similar property proved in the multidimensional setting in Proposition 4.3 in [3].
We have

Pε1f(x)− Pε2f(x)

= E1(x) +

m∑
l=1

(f · 1Uc
n
)(T−1

ε1,l
x)

[
1

|DTε1(T
−1
ε1,l

x)|
− 1

|DTε2(T
−1
ε2,l

x)|

]
+

+

m∑
l=1

1

|DTε2(T
−1
ε2,l

x)|
[(f · 1Uc

n
)(T−1

ε1,l
x)− (f · 1Uc

n
)(T−1

ε2,l
x)]

= E1(x) + E2(x) + E3(x).

The term E1 comes from those points x which we omitted in the sum because
they have only one pre-image in each interval of monotonicity. The total error
E1 =

∫
E1(x) dx is then estimated by |E1| ≤ 4m|ε1 − ε2| · ‖P̂εf‖∞. But ‖P̂εf‖∞ ≤

‖f‖∞
∑m

l=1

|DTε2
(T−1

ε2,lx
′)|

|DTε2
(T−1

ε2,lx)|
1

|DTε2
(T−1

ε2,lx
′)| , where x

′ is the point so that |DTε2(T
−1
ε2,l

x′)|·
|Al| ≥ η, and η is the minimum of the length T (Ak), k = 1, . . . ,m. Due to the
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bounded distortion property, the first ratio inside the summation is bounded by
some constant Dc; therefore

E1 ≤ 4m|ε1 − ε2| · ‖f‖∞
Dc

η

m∑
l=1

|Al| ≤ 4m|ε1 − ε2| · ‖f‖∞
Dc

η
.

We now bound E2. For any l, the term in the square bracket (we drop this index

in the derivatives in the next formulas), will be equal to D2T (ξ)
[DT (ξ)]2 |T−1

ε1 (x)−T−1
ε2 (x)|,

where ξ is an interior point of Al. The first factor is uniformly bounded by C1.
Since x = Tε1(T

−1
ε1 (x)) = T ((T−1

ε1 (x))) + ε1 = T ((T−1
ε2 (x))) + ε2 = Tε2(T

−1
ε2 (x)), we

obtain |T−1
ε1 (x) − T−1

ε2 (x)| = |ε1 − ε2||DT (ξ′)|−1, for some ξ′ ∈ Al. We now use

distortion to replace ξ′ with T−1
ε1,l

x and get∫
|E2(x)| dx ≤ |ε1 − ε2|C1Dc

∫ m∑
l=1

|f(T−1
ε1,l

)| 1

|DTε1(T
−1
ε1,l

x)|
dx

= |ε1 − ε2|C1Dc

∫
Pε1(|f |)(x)dx

= |ε1 − ε2|C1Dc‖f‖1.
To bound the third error term we use formula (3.11) in [12]∫

sup
|y−x|≤t

|f(y)− f(x)|dx ≤ 2tVar(f)

and again use the fact that |T−1
ε1 (x) − T−1

ε2 (x)| = |ε1 − ε2||DT (ξ′)|−1, for some
ξ′ ∈ Al. Integrating E3(x) yields∫

|E3(x)|dx ≤ 2mΛ−1|ε1 − ε2|Var(f1Uc
n
) ≤ 10mΛ−1 |ε1 − ε2|Var(f).

Combining the three error estimates we conclude that there exists a constant C̃
such that

||Pε1f − Pε2f ||1 ≤ C̃|ε1 − ε2|‖f‖BV .

�

Theorem 7.6. Assume T is a map of the unit interval defined above and such
that it has only one absolutely continuous invariant measure, which is also mixing.
Let F be the associated family of maps consisting of the sequence {Tεk}, where the
sequence {εk}k≥1 satisfies |εk| ≤ k−θ, θ > 1/2. If φ is not a coboundary for T ,
then

Wn =
n−1∑
j=0

φ ◦ Tj

satisfies a standard ASIP with variance σ2.

7.3.2. Multidimensional maps. We give here a multidimensional version of the maps
considered in the preceding section; these maps were extensively investigated in
[2,3,21,22,35] and we defer to those papers for more details. Let M be a compact
subset of RN which is the closure of its non-empty interior. We take a map T :
M → M and let A = {Ai}mi=1 be a finite family of disjoint open sets such that the

Lebesgue measure of M \
⋃

i Ai is zero, and there exist open sets Ãi ⊃ Ai and C1+α

maps Ti : Ãi → R
N , for some real number 0 < α ≤ 1 and some sufficiently small
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real number ε1 > 0 such that

(1) Ti(Ãi) ⊃ Bε1(T (Ai)) for each i, where Bε(V ) denotes a neighborhood of

size ε of the set V. The maps Ti are the local extensions of T to the Ãi.
(2) There exists a constant C1 so that for each i and x, y ∈ T (Ai) with dist(x, y)

≤ ε1,

| detDT−1
i (x)− detDT−1

i (y)| ≤ C1| detDT−1
i (x)|dist(x, y)α.

(3) There exists s = s(T ) < 1 such that ∀x, y ∈ T (Ãi) with dist(x, y) ≤ ε1,
and we have

dist(T−1
i x, T−1

i y) ≤ s dist(x, y).

(4) Each ∂Ai is a codimension-one embedded compact piecewise C1 submani-
fold and

(7.7) sα +
4s

1− s
Z(T )

γN−1

γN
< 1,

where Z(T ) = supx
∑

i #{smooth pieces intersecting ∂Ai containing x}
and γN is the volume of the unit ball in R

N .

Given such a map T we define locally on each Ai the map Tε by Tε(x) := T (x)+ε
where now ε is an n-dimensional vector with all the components of absolute value
less than one. As in the previous example the translation by ε is allowed if the image
TεAi remains in M : in this regard, we could play with the sign of the components
of ε or not move the map at all. As in the one-dimensional case, we shall also
make the following assumption on F . We assume that there exists a set Aw ∈ A
satisfying:

(i) Aw ⊂ TεAk for all ∀ Tε ∈ F and for all k = 1, . . . ,m.
(ii) TAw is the whole M , which in turn implies that there exists 1 ≥ L′ > 0

such that ∀k = 1, . . . , q and ∀Tε ∈ F , diameter(Tε(Aw) ∩ Ak) > L′.

As V ⊂ L 1(m) we use the space of quasi-Hölder functions, for which we refer
again to [21, 35].

Theorem 7.7. Assume T : M → M is a map as above such that it has only one
absolutely continuous invariant measure, which is also mixing. If conditions (i) and
(ii) hold, let F be the family of maps consisting of the sequence {Tεk}, where the
sequence {εk}k≥1 satisfies ||εk|| ≤ k−θ, θ > 1/2. If φ is not a coboundary for T ,
then

Wn =

n−1∑
j=0

φ ◦ Tj

satisfies a standard ASIP with variance σ2.

Proof. The transfer operator is suitably defined on the space of quasi-Hölder func-
tions, and on this functional space it satisfies a Doeblin-Fortet-Lasota-Yorke in-
equality. The proof of the lower bound condition (MIN) follows the same path
taken in the one-dimensional case in Section 7.3.1 using the distortion bound on
the determinants and Assumption (ii) which ensures that the images of the domains
of local injectivity of any concatenation have diameter large enough. The positivity
of the density follows by the same argument used for maps of the unit interval since
the space of quasi-Hölder functions has the nice property that a non-identically
zero function in such a space is strictly positive on some ball [35]. Finally, Lips-
chitz continuity has been proved for additive noise in Proposition 4.3 in [3]. �
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7.4. Covering maps: A general class. We now present a more general class
of examples which were introduced in [6] to study metastability for randomly per-
turbed maps. As before the family F will be constructed around a given map T
which is again defined on the unit interval M . The functional space V will coincide
with the function of bounded variation with norm || · ||BV . We therefore begin to
introduce such a map T .

(A1) There exists a partition A = {Ai : i = 1, . . . ,m} of M , which consists
of pairwise disjoint intervals Ai. Let Āi := [ci,0, ci+1,0]. We assume there exists
δ > 0 such that Ti,0 := T |(ci,0,ci+1,0) is C2 and extends to a C2 function T̄i,0 on a

neighbourhood [ci,0 − δ, ci+1,0 + δ] of Āi.

(A2) There exists β0 < 1
2 so that infx∈I\C0

|T ′(x)| ≥ β−1
0 , where C0 = {ci,0}mi=1.

We note that Assumption (A2), more precisely the fact that β−1
0 is strictly

bigger than 2 instead of 1, is sufficient to get the uniform Doeblin-Fortet-Lasota-
Yorke inequality (7.10) below, as explained in Section 4.2 of [18]. We now construct
the family F by choosing maps Tε ∈ F close to Tε=0 := T in the following way:

Each map Tε ∈ F has m branches and there exists a partition of M into intervals
{Ai,ε}mi=1, Ai,ε ∩ Aj,ε = ∅ for i 	= j, Āi,ε := [ci,ε, ci+1,ε] such that

(i) for each i one has that [ci,0+δ, ci+1,0−δ] ⊂ [ci,ε, ci+1,ε] ⊂ [ci,0−δ, ci+1,0+δ];
whenever c1,0 = 0 or cq+1, 0 = 1, we do not move them with δ. In this way
we have established a one-to-one correspondence between the unperturbed
and the perturbed extreme points of Ai and Ai,ε. (The quantity δ is from
Assumption (A1) above.)

(ii) The map Tε is locally injective over the closed intervals Ai,ε, of class C
2 in

their interiors, and expanding with infx |T ′
εx| > 2. Moreover there exists

σ > 0 such that ∀Tε ∈ F , ∀i = 1, · · · ,m and ∀x ∈ [ci,0 − δ, ci+1,0 + δ]∩Ai,ε

where ci,0 and ci,ε are two (left or right) corresponding points we have:

(7.8) |ci,0 − ci,ε| ≤ σ

and

(7.9) |T̄i,0(x)− Ti,ε(x)| ≤ σ.

Under these assumptions and by taking, with obvious notation, a concatenation
of n transfer operators, we have the uniform Doeblin-Fortet-Lasota-Yorke inequal-
ity, namely there exist η ∈ (0, 1) and B < ∞ such that for all f ∈ BV , all n and
all concatenations of n maps of F we have

(7.10) ||Pεn ◦ · · · ◦ Pε1f ||BV ≤ ηn||f ||BV +B||f ||1.
In order to deal with lower bound condition (MIN), we have to restrict the class of
maps just defined. This class was first introduced in an unpublished, but circulat-
ing, version of [6]. A similar class has also been used in the recent paper [4]: both
are based on the adaptation to the sequential setting of the covering conditions
introduced formerly by Collet [11] and then generalized by Liverani [23]. In the lat-
ter, the author studied the Perron-Frobenius operator for a large class of uniformly
piecewise expanding maps of the unit interval M ; two ingredients are needed in this
setting. The first is that such an operator satifies the Doeblin-Fortet-Lasota-Yorke
inequality on the pair of adapted spaces BV ⊂ L 1(m). The second is that the cone
of functions

Ga = {g ∈ BV ; g(x) 	= 0; g(x) ≥ 0, ∀x ∈ M ; Var g ≤ a

∫
M

g dm}
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for a > 0 is invariant under the action of the operator. By using the inequality (7.10)
with the norm ‖ · ‖BV replaced by the total variation Var and using the notation
(1.2) for the arbitrary concatenation of n operators associated to n maps in F we
see immediately that

∀n, PnGa ⊂ Gua

with 0 < u < 1, provided we choose a > B(1 − η)−1. The next result from [23]
is Lemma 3.2 there, which asserts that given a partition, mod-0, P of M , if each
element p ∈ P is a connected interval with Lebesgue measure less than 1/2a, then
for each g ∈ Ga, there exists p0 ∈ P such that g(x) ≥ 1

2

∫
M

g dm, ∀x ∈ p0. Before
continuing we should stress that contrary to the interval maps investigated above,
the domains of injectivity are now (slightly) different from map to map, and in fact
we used the notation Ai,εk to denote the i domain of injectivity of the map Tεk .
Therefore the sets (7.5) will now be denoted as

Aε1,··· ,εn
k1,··· ,kn

= T−1
k1,ε1

◦ · · · ◦ T−1
kn−1,εn−1

Akn,εn ∩ · · · ∩ T−1
k1,ε1

Ak2,ε2 ∩ Ak1ε1 .

Since we have supposed that infTε∈F ,i=1,...,m,x∈Ai,ε
|DTε(x)| ≥ β−1

0 > 2, it follows
that the previous intervals have all lengths bounded by βn

0 independently of the
concatenation we have chosen. We are now ready to strengthen the assumptions
on our maps by requiring the following condition:

Covering property. There exist n0 and N(n0) such that:

(i) The partition into sets A
ε1,··· ,εn0

k1,··· ,kn0
has diameter less than 1

2au .

(ii) For any sequence ε1, . . . , εN(n0) and k1, . . . , kn0
we have

TεN(n0)
◦ · · · ◦ Tεn0+1

A
ε1,··· ,εn0

k1,··· ,kn0
= M.

We now consider g = 1 and note that for any l, P l1 ∈ Gua. Then for any n ≥
N(n0), we have (from now on using the notation (1.2), we mean that the particular

sequence of maps used in the concatenation is irrelevant), P
n
1 = P

N(n0)
P

n−N(n0)
1

:= P
N(n0)

ĝ, where ĝ = P
n−N(n0)

1. By looking at the structure of the sequential
operators (7.4), we see that for any x ∈ M (apart at most finitely many points for
a given concatenation, which is irrelevant since what one really needs is the L ∞

m

norm in the condition (MIN)), there exists a point y in a set of type A
ε1,··· ,εn0

k1,··· ,kn0
,

where ĝ(y) ≥ 1
2

∫
m
ĝ dm, and such that TεN(n0)

◦ · · · ◦ Tε1y = x. This immediately
implies that

P
n
1 ≥ 1

2β
N(n0)
M

, ∀ n ≥ N(n0),

which is the desired result together with the obvious bound P
l
1 ≥ mN(n0)

βM
, for

l < N(n0), and where βM = supTε∈F max |DTε|. The positivity condition (Pos) for
the density will follow again along the line used before, since the covering condi-
tion holds in particular for the map T itself. About the continuity (Lip): looking
carefully at the proof of the continuity for the expanding map of the intervals, one
sees that it extends to the actual case if one gets the following bounds:

(7.11)
|T−1

ε1 (x)− T−1
ε2 (x)|

|DTε1(x)−DTε2(x)|

}
= O((|ε1 − ε2|),

where the point x is in the same domain of injectivity of the maps Tε1 and Tε2 ,
the comparison of the same functions and derivative in two different points being
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controlled by condition (7.8). The bounds (7.11) follow easily by adding to (7.8),
(7.9) the further assumptions that σ = O(ε) and requiring a continuity condition
for derivatives like (7.9) and with σ again being of order ε. With these requirements
we can finally state the following theorem.

Theorem 7.8. Let F be the family of maps constructed above and consisting of
the sequence {Tεk}, where the sequence {εk}k≥1 satisfies |εk| ≤ k−θ, θ > 1/2. If φ
is not a coboundary for T , then

Wn =

n−1∑
j=0

φ ◦ Tj

satisfies a standard ASIP with variance σ2.
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