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Summary. - -  We extend the analytic results recently found by Constantin and 
Fefferman for the scaling exponents of the velocity structure fimctions in fluid tur- 
bulence to the scaling exponents for passive scalar fields such as the temperature. 
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1.  - I n t r o d u c t i o n  

In the recent paper [1], Constantin and Fefferman obtained some rigorous bounds 
for the generalized velocity structure functions by a direct investigation of the 
Navier-Stokes equations. The importance of such a statistical analysis for a real 
understanding of turbulence was pointed out by Kolmogorov in his famous K-41 
paper[2]. The contribution of Kolmogorov was twofold: first, he got an ordinary 
differential equation for the third-order moment of the velocity difference by 
assuming isotropy (local and global) and homogeneity. Then, he generalized the 
theory to higher moments by dimensional arguments, obtaining that the scaling 
exponents depend linearly on the order of the moments. The stated experimental 
deviations from this linear law[3] gave rise to various theories and models, some of 
which are quoted in the (unexhaustive) list [7]. 

The purpose of[l] was to analyse the moments of the velocity difference by taking 
care of the following facts: 

i) A good averaging procedure for the fields, solution of the Navier-Stokes 
equations, is introduced. This step is easily achieved by weighting the volume 
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measure with a smooth cut-off function of compact support, which makes the spatial 
integration limited to a ball of fmite diameter. This allows to use rigorously a series of 
tricks (such as integrating by parts) which have already been invoked in the standard 
statistical calculus of turbulence [4]. 

ii) There is no assumption of statistical nature, in particular, no assumption of 
isotropy and homogeneity. This yields, in general, bounds rather than equalities for 
the moments unlike the previously recalled Kolmogorov's result. 

iii) The analysis is carried out in the so-called inertial range. In [1] this range is 
defined by introducing a scaling law: First an inertial range for each moment is 
defined and the bottom of this range is related to the Reynolds number by an 
exponential law. The exponent of this law is independent of the Reynolds number and 
is characteristic of the moment. As pointed out by the authors, there is actually no 
way ,,to prove that scaling occurs at alN ([1], p. 46). 

iv) One of the key ideas of[l]  is to introduce a local Reynolds number 
corresponding to each structure function and assume it bounded in the limit of a large 
(global) Reynolds number. This point is discussed in sect. 1 of[l]. 

In the present paper we will carry out the same analysis for an advected passive 
scalar in a turbulent flow. In particular, we will consider the conservation equation 
for the temperature with external sources. The structure functions will, therefore, be 
the moments of temperature increments over a small distance r. We shall give 
rigorous bounds for the second moment and some estimates on higher moments, 
following closely the framework developed in[l]. Our development will be simpler 
since we do not have to estimate the pressure term, which presented the most dif- 
ficult technical problem in [1]. The main results of the analysis are the following: 

a) We show that the dissipation rate of the temperature remains bounded if the 
thermal diffusivity becomes small, which is analogous of what was proved in [1] 
concerning the dissipation rate of energy for vanishing viscosity. 

b) The hypothesis stated at point iii) above will be reformulated in terms of the 
Peclet number. In analogy with point iv), we will also introduce a local Peclet number 
based, again, on the value of the velocity structure function at the scale r. In doing so, 
the underlying assumption we use is that the temperature, as a passive scalar, does 
not perturb the velocity field. Differently from of[l] we do not consider the 
boundedness of the local Peclet number as a separate hypothesis. In accordance with 
the usual considerations yielding the Kolmogorov length scale, we rather use a chosen 
value of the local Peclet number (say one) to define the bottom of the inertial 
range. 

As a consequence, we obtain bounds of the scaling exponents of the temperature 
structure functions depending on the scaling exponents of the velocity structure 
functions. We show that these relations are in agreement with some experimental 
facts related to the deviations of the scaling exponents for temperature and velocity 
from the linear law given by the Kolmogorov-Obukhov-Corssin (KOC) theory. 

c) We show that, under a certain number of assumptions similar to those 
invoked in [1], we are able to recover the KOC theory on the linear scaling for the 
moments of the temperature differences. We, moreover, point out a certain number of 
inequalities which, if they become strict, could give anomalous scaling, i.e. a deviation 
from the linear KOC law. These inequalities are rigorously derived from the 
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differential equation for the convection and diffusion of the tempera ture  field without 
any additional statistical (or multifractal) assumptions and should, in principle, be 
verifiable experimentally. 

2. - S e c o n d - o r d e r  s t r u c t u r e  f u n c t i o n  

The partial differential equation governing the temperature  O(x, t), where x �9 R 3 
and t t> 0, is [4] 

(2.1) 
30(x, t) 

~t 
+ u(x, t)" V0(x, t) = x 0 V 20(x, t) + Fo (x, t ) ,  

where Ko is the thermal diffusivity and u(x,  t) is the divergence-free solution of the 
Navier-Stokes equations: 

(2.2) (2t + u . V ) u ( x ,  t) + Vp = vV2u(x, t) + F~ (x, t),  

r being the viscosity. 
As in [1] we will consider two ensembles ~o and ~ of C ~ (R 8 • R§ ) solutions of 

(2.1) and (2.2), respectively, belonging to L ~ (R 3 • R§ ), i.e. admitting finite bounds 
O and U such that  

(2.3) sup [u(x, t) l < U 
ue~u,xeR3, t~R+ 

and 

(2.4) sup ]O(x, t) I <<. O .  
Oe~u,xeRa, teR+ 

Fe and Fu are the external heat source and the external forces, respectively, that  we 
shah also consider bounded: 

(2.5) 

(2.6) sup 
xeR3,teR+ 

sup IFe(x,  t) I <<. F ,  
xeR3,t~R+ 

[ f~(x ,  t)l ~< F .  

Equation (2.3) implies that  the kinetic energy density l ul 2 is bounded, too. 
Finally, we shall assume that also the dissipation rate of the temperature  IV012 is 
bounded for each t I> 0. This last condition will be used in sect. 4. 

The averaging operation Me[ f ]  will be defined for a smooth scalar field f ( x ,  t), 
(x ~ RS,  t >~ O) as 

(2.7) MQ [ f ]  = sup 1 Av lim sup dt f ( x ,  t) dx  

where Av means ensemble average and B e (Xo) denotes the ball of radius Q and centre 
x0, of volume IBQ(xo)l = 4 / 3 z ~ )  8. MQ[.] has the linear propert ies  M Q [ f + g ]  <<. 
~< M e [ f ]  + M e [g] and MQ [cf] = cMQ [ f ] ,  c > 0 and satisfies the translation invariance 

MQ[vg(f)] = M e [ f ]  , where  vv( f ) (x ,  t) = f ( x  + y,  t). 
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We shall be interested in the generalized structure functions of the temperature 
increments defined as 

(2.8) Sm (r r) = M e [ I O(x + r, t) - O(x, t )  l m ]. 

We prefer not to extract the m-th root of M e which yields a slightly different 
notation if compared with[l]. Our notation corresponds, however, to that used 
commonly in physical literature. 

In this section we shall consider the case m---2 in detail. Our first result 
corresponds to eq. (49) of[l]: 

Lemma 1. 

(2.9) Sm(e, r) <<. IrlmMe[IVO(x, t)lm], n ~ > 0 ,  

Proof. The mean-value theorem applied to the temperature difference yields 

(2.10) 

1 

I :  O(x + r ,  t )  - O(x, t) = i~= ri d~. 
= t ~  i z i = x i + ~ r i  

0 

The substitution of eq. (2.10) into (2.7) and (2.8), exchange of the order of 
integration and the use of the Cauchy inequality and the translational invariance of 
the mean value on the r.h.s, of eq. (2.10) give immediately the lemma. [] 

We now estimate the second factor on the r.h.s, of (2.9) for m = 2; a similar proof 
already appeared in [8], we give it here since proposition 4 below will be proved in the 
same manner. 

Proposition 1. 

o2[1 
(2.11) Mo[IVO(x, t)l 2 ] ~< C. [ 02 

where C is a constant of geometric nature. 

U ] OFo - 4 - - -  + - -  
Ko Q KO 

Proof. We multiply eq. (2.1) by O(x, t) getting 

1 [ ~02(x't)  + u ( x , t ) . V O 2 ( x , t ) _ x o V Z O Z ( x , t ) ] =  (2.12) -~ ~t 

= - ro I VO(x, t) I z + Fo (x, t) O(x, t). 

From this it follows that 

1 f (2.13) 
]BQ (xo)l B Q (xo ) 

I VO(x, t) ]z dx <~ 1 f IVO(x, t)lzZ~o,e(x)dx <- 
I B e (Xo) I R 
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where 

9/xo,o(x) = z (  IIx - x~ ) 
2Q ' 

9/being a C ~ cut-off function equal to 1 on the interval [0, 1] and 0 on [2, ~ ]. We 
introduce 

(2.14a) ~ - 
1 !r 802 

2to IB o t R ~ (x, t)9/xo, e(x)dx,  

(2.14b) ~f2 - 1 (u(x ,  t)'VO2(x, t)9/~o,o(x)dx, 
2to IBo R~ 

(2.14c) 1 !r V202 (x, t)9/xo, e (x)dx , 
4 -  21ao I R 

(2.14d) i f  J'4 - Fo(x, t)O(x, t)9/~o o(x)dx ; 
~o IB~ I 

(2.7) yields directly 

(2.15) ~ = O. 

The Gauss theorem applied to the r.h.s, of eq. (2.14b) and the use of the continuity 
equation Vu = 0 yield the estimate 

02U 
(2.16) I~1 ~< C~ - - ,  

Kor 

where Cg is a constant involving the integral of I dg/(r)/dr I on the bounded set [0, 2]. 
In a similar way, by using twice the Gauss theorem, we find 

(2.17) 
0 2 

The inequality 

FO 
(2.18) I ~ l  ~ - -  

/('0 

is straightforward. 
Taking the time and ensemble averages and the supremum over Xo we finally get 

(2.19) Mo[lVO(x,t) 12]<.C02[ ~ U ] OF + + - - ,  
Xo 0 ICo 

where C = max {C~, C~ }. [] 
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Remark 1. Note that the term on the 1.h.s. of eq. (2.11) mutiplied by to0 is nothing 
but the quantity N in Monin-Yaglom[4] and represents the (,dissipation rate of 
temperature inhomogeneitie_s-. The bound (2.19) states that for small K o there exists a 
K0-independent bound of N which is similar to what happens to the dissipation of 
energy for small viscosity v [1]. 

Coming back to S~(O, r), we thus get 

[ 1 U  ] 
(2.20) S2(~,r)<-Cr 20 2 ~ + - -  + 

Ko ~ Ko 
Now, we introduce the Peclet number Pe defined as 

UoLo 
P e -  - -  , 

/~0 

where Lo is the length over which there is an appreciable change in the mean 
temperature and Uo is a typical change in the mean velocity over the distance Lo. In 
accordance with the typical physical situation, we shall identify Uo and Lo with U and 
L, characteristic velocity and distance, defining the Reynolds number 

UL 
R e -  

Y 
(2.21) 

As a result, 

(2.22) 
UL 

P e -  
K0 

In analogy with [1], let us denote 

(2.23) S,~ (~), r, u) = MQ[ I u(x + r) - u(x) l m ] 

the m-th order velocity structure function. We now define the ,,local Peclet number,  
at the length scale r based on the m-th order velocity structure function in the 
following way: 

Definition 1. 

(2.24) Peto~)(r ) = r sup [Sm(Q, r, u)] l/re. 
K 0 JrJ=r 

The local Peclet number will be used to define the ,,bottom length scale, of the 
inertial range much in the same way as the Kolmogorov length does. We, however, 
differentiate the order of the considered structure functions, having, in principle, 
different local Peclet numbers, and thus different limits of the inertial range, for 
different structure function orders. 

Definition 2. rm, the bottom length scale of the inertial range for m-th-order 
passive scalar structure function is defined by the relation 

(2.25) D~(m) (r~) = 1 XWlo e 

Definition 3. The sub-inertial range for the m-th-order passive scalar structure 
function is defined as 

(2.26) rm ~< I rl ~< 2rm < L .  
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Let  us constrain the size of the ball over which we take the spatial average as 

(2.27) 1 ~< ~ ~< 2.  
L 

In this section, we shall limit our consideration to the second-order moments. The 
higher-order moments will be taken up in the next section. I f  we reword our 
definitions on the basis of the velocity structure functions and Reynolds, instead of 
Peclet, numbers we obtain the bottom length scale of inertial range denoted r(~ ~) 
defined by 

(2.28) sup [Sin(0, r, u)] 1/m = 1. 
v Irl =r 

For  this length scale and the corresponding sub-inertial range we can transpose the 
results of[l]. I t  has been shown there that, assuming the Reynolds number to be 
related to the bottom length scale r2 (v) of the inertial range via 

(2.29) Re = , 

where b2 (~) is a positive constant independent of Re and r(2~)/L, any lower bound 
written in the form 

(2.30) S2(Q,r,u) ([~)~(~) 
U 2 /> ~ , 

supposed to hold in the inertial sub-range r2 (') ~< I r[ ~< 2r2 (~) satisfies the inequality 

~?) >I 2 - 5(2 v) . 

Our present task is to show an analogical result for the passive scalar structure 
function $2(0, r). We shall first state the following: 

Assumption 2.1. 

Pe 
(2.31) 0 <  lim - -  < ~ ,  

Re---~ | Re 

which is equivalent to the physical s ta tement  that  the Prandtl  number remains 
bounded and non-zero for high Reynolds numbers. Comparing (2.28) to (2.24), (2.25), 
this assumption means that  there exist constants K1, K2, KI', K~, independent of the 
Reynolds number and m, such that  

(2.32) K1 r(~ v) ~< rm ~< Ke r(~ v) , KI' ru  ~< r(~ v) ~< K~ r ~ .  

Next we assume 

Assumption 2.2. The Peclet number defined by eq. (2.22) can be expressed as 

(2.33) Pe = k2 , 

where k2 and b2 are positive constants independent of Pe and r2/L. 
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This assumption states the physical fact that  the bottom length scale of the 
inertial zone decreases proportionally to some negative power of the Peclet number. 

The results of this paper concern the bounds of scaling exponents for the passive 
scalar structure functions assuming that  there exist scaling laws: 

Assumption 2.3. There exist positive constants c2 and ~2, independent of Pe, such 
that 

(2.34) Vr, r2 ~< Irl ~< 2r2: 02 /> c2 �9 

The proposition 1 can now be shown to yield 

Proposition 2. Under assumptions 2.1, 2.2 and 2.3, 

(2.35) 

(2.36) 

i) 

ii) 

and, combining (2.35) with (2.36), 

~)  

(2.37) 

~ 2 ~ > 2 - b 2 ,  

~(e ") I> 2(b2 - 1) 

f:(v) 
~2~>1_  ~_L_2 

2 

Proof. Assumption 2.3 and the inequalities (2.26), (2.27) and (2.20) yield 

C 2 ~ C 2 ~< 02 ~< r 2 C + - -  § - -  . 
roL Oro 

Introducing the Peclet number (2.22) and using, once more, the inequality (2.26), 
the last expression can be estimated by 

4(L)2[C(i+Pe)+peFL]<<-C*Pe(L) 2 
OU 

where 

FL 
(2.38) C* = 8C + - -  

OU 
As a result, by assumption 2.2: 
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The constants being independent of Pe(1), the last inequality necessarily implies 
(2.25) for re /L  --+ O. 

The definition of r(2 v) (2.28) and the estimate (2.30) for the second-order velocity 
structure function can be rewritten as 

1 = +  r 
V Irl=r Y 

=cRe(r(2V))l+f~)12pe(~) , r2 I> ~Pe (7)1+0. 
where ~ is a Pe-independent constant resulting from assumption 2.1 (inequalities 
(2.31), (2.32)). Using again assumption 2.2 (eq. (2.33)), we arrive at the inequality 

supposed to hold for all r2/L. For r21L--+ 0 we thus obtain (2.36). [ ]  

Remark 2. The estimate on ~(2 v) obtained in [1] was ~(2 v)/> 2/3, 2/3  being the value 
of the scaling exponent predicted by the Kolmogorov theory under the assumption 
that the local Reynolds number at the length scale r(2 v) remains bounded as Re--* ~ .  
Equation (2.37) implies that, whenever ~(2 ~) is larger than 2/3, ~2 is allowed to have 
smaller values than 2/3; this reciprocal behaviour has, indeed, been detected 
experimentally and predicted by the shell model [5]. 

3. - H i g h e r - o r d e r  s t r u c t u r e  f u n c t i o n s  

In order to estimate the higher-order structure functions we can follow the 
analysis carried out in sect. 5 of[l]. The starting point is again lemma 1, this time with 
an arbitrary m > 0. In the same way as in [1] we assume that 

Assumption 3.1. 

(3.1) 
M [IV01 m] 

(Me [I VOl e])m/e 
~< Cm Pe mz~ , 

where Cm and tim are Pe-independent constants. 

(1) The analogous result of ref.[1] (Theorem 1.3) involves a Reynolds-number--dependent 
<<constant>> originating in the estimate of the pressure term. The estimate of the pressure term 
necessitates to postulate an additional assumption on its asymptotic (Re ---> ~ ) behaviour. As can 
be seen, the present situation is much simpler. 
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By (2.19), (2.33) and (2.26) we have (see the first part of the proof of proposition 
2.2): 

(3.2) 0 m ~< Pe m(~m + 1/2), 

where C is a positive Pe-independent constant. 
We now generalize the assumptions of the previous section in the following way: 

Assumption 3.2. The Peclet number can be related to rm, for arbitrary m, via 

(3.2) P e  = k m - -  , 

where km and bm are positive constants independent of Pe and rm/L. 

Assumption 3.3. There exist positive constants Cm and ~ ,  independent of Pe, 
such that 

(3.3) Vr, r~ ~< Irl ~< 2r~: 0 m /> cm . 

Using these assumptions and repeating the considerations of the proof of 
proposition 2, we arrive at the following 

Proposition 3. Under assumptions 3.1, 3.2 and 3.3, 

i) 

(3.4) 
[ ( 1)] 

~ > m  1 - b ~  tim+ ~ , 

ii) 

(3.5) ~ )  >I m(bm - 1) 

and 
~)  

(3.6) 

If the ratio defined in (3.1) is bounded independently of Pe (i.e. tim = 0) and the 
same happens for the corresponding ratio of velocity gradients (see eq. (52) in [1]), and 
also the local Reynolds numbers at the bottom of the scaling ranges are bounded, it 
was argued in [1] that ~ ) =  m/3 for all m t> 3 and (3.6) thus yields 

m 
(3.7) ~m I> - - ,  Vm I> 2. 

3 
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R e m a r k  2. We call the set of requirements leading to (3.7) K-L hypothesis, since 
they gave, for the velocity field, the Kolmogorov linear scaling just combining, 
through the HSlder inequality, the bound ~ )  I> m / 3  proved in sect. 6 of[l]  with the 
old Kolmogorov statistical result ~(3 ~) = 1 [4]. At this point we have two important 
observations to do: 

i) If the K-L hypotheses are not satisfied, one could expect a non-Kolmogorov 
picture of turbulence, i.e. the anomalous scaling, as pointed out in sect. 1 of[l]  for the 
velocity field. 

ii) Even under the K-L hypotheses our bound (3.7) does not imply a linear 
scaling since we have not a statistical result for the temperature field for m = 3. 
However, we shall show in sect. 4 that a new statistical analysis based on a theory 
recently developed by us [6] allows to show that 

8 
( 3 . 8 )  - - v )  

3 

which, combined with (3.7) and for ~(4 v) = 4/3, gives a Kolmogorov linear scaling for 
m~>4. 

R e m a r k  3. It is interesting to note that if we define, in analogy with (3.2), 

(_~__)  ~(v) r2) \-urn 
(3.9) Re = , 

the exponents b,(• ) related to the velocity (cf. [1] p. 55) satisfy 

(3.10) 1 + ~ )  - b~ v) I> 0. 

Our inequality (3.5) gives another bound involving ~ ) ,  this being expressed in terms 
of the exponent bm for the temperature field. 

4. - Upper bound  es t imate  of  the  four th  sca l ing  exponent  

In this section we prove the bound (3.8) anticipated in remark 2 of the preceding 
section. 

The following analysis will be performed assuming the forcing term F to be zero. 
This will allow us to use the statistical theory developed in[6] and will give 
immediately a crucial statistical relation, the validity, of which was only assumed on 
the basis of physical arguments in [1]. 

The starting point is the equation [6] 

a 
(4.1) - z : ( A O ) 2 + u ' V ( A O ) 2 - x o V 2 ( A O )  2 + Ko IV(A0)[ e - - 2 A O A u . V O ( x  + r, t ) ,  

0t  

where AO = O(x + r, t) - O(x, t) and A u  = u ( x  + r, t) - u ( x ,  t). 
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Averaging according to (2.7) and using, repeatedly, the HSlder inequality, trans- 
lational invariance and considerations analogous to those leading to proposition 1 
we get: 

Proposition 4. 

(4.2) MQ [ I V(AO) 12] < 

<~ C 0 2 U  + + M1/2[lVO12]'M1/4[(AO)4] + "M~/a[[Aula] 
ICo Q Q -  

where C is a positive constant of geometric nature in the same way as that  of the 
inequality (2.11). 

We now bound M~/z [ I VOI 2 ] using (2.19): 

M1/z [ IVOI2] .< constPea/2 0__ 
L 

and we assume that 

Assumption 4.1. 

(4.3) MJ/4 [(A0) 4 ] ~< const O 

(4.4) M~/4 [ ]Au]4 ] <~ const U ( ~-~ ) ~) /4 , 

where 54 and ~(4 v) are scaling exponents, in general different from (3.3) through (3.6) 
with m = 4, and ,,const, stands for ]r I /L  independent constants. We shall consider 
the r.h.s, of (4.3) and (4.4) with [r[ equal to the Kolmogorov scales (bottoms of the 
inertial zones) defined above. As far as the 1.h.s. of (4.2) is concerned, we found in [6] 
(eq. (2.9) of[6]) that 

(4.5) ([V(A0)I 2 ) = _  1 ( A O A u . V 0 ( x + r ) ) .  
/(o 

Though the mean of ref. [6] was defined slightly differently, the manipulations used 
in [6] can be transposed to the average (2.7) in a straightforward manner(2). Local 
isotropy and homogeneity can then be used to project eq. (4.5) along the direction of r 

(2) Note that (4.5) is deduced with boundary conditions, which amounts to neglect the first two 
terms in the square bracket on the r.h.s, of (4.2). This, of course, does not affect the final result of 
this section. 
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and to obtain (see [6], the 1.h.s. of eq. (2.12) therein(3)): 

1(2 
- + - -  ( ( A O ) 2 A U L > ,  (4.6) (AOAu.V0(x + r)> = ~ r Dr 

where r = I rl and AUL is the projection of Au along the direction of r. The well-known 
Yaglom formula ([4], Vol. II, p. 400) valid in the inertial range 

(4.7) <(A0) 2 AUL > = -- 4 7~ , 
3 

where 

N = ~o<lVOl~> 

can be applied to the r.h.s, of eq. (4.6). As a result, 

(4.8) 
[ - r~  02U(r ) f f 4+~T) /4  ~< C 02 U + + pel/2 

Q L 

We now take r at the bottom of the inertial ranges of the fourth-order moments of 
the temperature and velocity increments v4 and r4 (v), respectively, knowing that  both 
values are related via (2.32). Moreover, we suppose that the exponents bm and b(m v) 
defined in (3.2) and (3.9), respectively, are the same and equal to 4/3,  as argued in [1] 
(p. 57). We thus set 

L )  -4/3 
(4.9) Pe = Re = . 

We then rewrite (4.8) as (remember that  1 ~< ~/L <~ 2): 

(4.10) 
- -  O2JC0 [ 1 
N <~ C. L- - -~Pe[ l+ - -pe  

+ pel/2 - (3/16)(~4 + ~(v))] , 

Next we assume that  the dissipation rate  N bounds (uniformly for Pe-- )  ~ )  the 
quantity 

0 2 U  
(4.11) N I> const - -  

L 

(a) For even moments, eq. (2.12) of[6] reads (see also[9]): 

1 (2 + ~ )([AO(r,x)]2nAuL(r,x)> = 
N 2 n ( 2 n -  1) r 

2Xo ( 2  
= -2<[A0(r, x)l 2n-2 IV0(x)l 2) + N2n(2n - 1) 
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which is equivalent to the bound (63) of[l]. Formula (4.10) can thus be rewritten as 

-- 02U[ 1 (~/16)(~4 + ~))] (4.12) const 02 U ~< N ~< C 1 + + Pe 1/2- 
L L Pe 

In the limit of large Pe (4.12) implies 

8 
(4.13) 54 • ~" -- ~(4 v)" 

which, in the K-L hypothesis for the velocity field (~(t v) = 4/3), allows us to recover a 
linear scaling for the temperature field for m I> 4, as explained in remark 2 of 
sect. 3. 

5. - Conclusion 

In a recent paper Kraichnan [10] presented a model for scaling exponents of a 
passive scalar using the assumption of a rapidly varying velocity field and the theory 
developed in ref. [11] yielding a sub-linear behaviour for the scaling exponents. It is 
natural to expect that a large variety of models can be obtained depending on 
assumptions on the velocity field behaviour. The phenomenon of internal 
intermittency of the velocity field being, so far, still poorly understood and even the 
most promising models[12,13] being only weakly related to the Navier-Stokes 
equations, it is important to seek bounds, imposed by the equations of motions, such 
models have necessarily to satisfy. This approach has been chosen by Constantin and 
Fefferman [1] to obtain bounds for the scaling exponents of the velocity field and is 
applied, in the present paper, to the advected scalar field. Naturally, a relation 
between the scaling exponents of the velocity structure functions and those for the 
passive scalar structure functions results. The general lower bound pertinent for 
anomalous scaling is given in (3.6). It shows that, in addition to assumptions on the 
velocity field scaling exponents, an additional parameter originating in the high- 
Peclet-number estimate of the powers of the scalar field gradients is needed. 

It has been shown, as an example, that the classical linear Kolmogorov scaling of 
both the passive scalar field and the velocity field is compatible with the theory 
presented above provided the additional assumption of a Peclet-number-independent 
bound of the mean values of the powers of the scalar field gradients is adopted. 

Given the fact that the velocity field determines the solution of the underlying 
transport equation (2.1), it is not surprising that the velocity and advected passive 
scalar turbulent characteristics are inter-linked. Our analysis shows that, to be 
complete, models of anomalous scaling for a passive scalar field should predict both 
the velocity and the scalar-field scaling exponents. 
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