Combinaisons d'Observables en Cosmologie

Jean-Marc Virey

Centre de Physique Théorique & Université de Provence, Marseille

Strasbourg, 4 Juillet 2008

Plan de l'exposé

I : Cadre Cosmologique : Le Modèle Standard de «Big Bang Chaud» (expansion, nucléosynthèse, CMB, oscillations baryoniques, formation des structures)

II : Cadre Mathématique : Les équations

(cinématique, dynamique, tests géométriques, perturbations, tests dynamiques, tests statistiques)

III : Cadre observationnel : Les Sondes Cosmiques (SNIa, CMB, BAO, Amas, Lentilles gravitationnelles, galaxies)

IV : Extraction des paramètres cosmologiques
 IV-1 : Méthode statistique (maximum de vraissemblance)
 IV-2 : Résultats à partir de l'analyse des données

V : Modèles d'énergie noire

VI : Dégénérescences et analyses combinées (puissance, problèmes, prospective)

I: Cadre Cosmologique :

Le Modèle Standard

dit de

«Big Bang Chaud»

S'appuie sur :

- → Le Principe Cosmologique : pas de centre absolu
- → Le Principe de Relativité : invariance des lois
- → Le Principe d'Universalité de c : vitesse finie
- Une Théorie de la Gravitation : la Relativité Générale
- → La Physique (microscopique et macroscopique)

COSMOLOGIE (global) PHYSIQUE (local)

Repose sur 4 piliers observationels:

- → L'expansion de l'Univers (fuite des galaxies)
- L'abondance des premiers éléments
- \rightarrow Le rayonnement cosmologique fossile (T_{CMB} = 3 °K)

Les oscillations baryoniques (anisotropies CMB, formation des structures)

COPERNIC 1473-1543

GALILEE 1564-1642

EINSTEIN 1879-1955

OBSERVATION DE LA FUITE DES GALAXIES : LA LOI DE HUBBLE

EXPANSION DE L'UNIVERS !

Nucléosynthèse Primordiale

Cadre : expansion + physique nucléaire

Prédictions :

Abondance élts légers : H(80%), ⁴He(20%), D(10⁻⁴), ³He(10⁻⁵), ⁷Li(10⁻⁹)

→ rapport photon/baryon : $\Omega_{\gamma} / \Omega_{b} \approx 10^{10}$

→ peu de baryons :

 $\Omega_{\rm h} \cong 4 - 5 \%$

OBSERVATION DU RAYONNEMENT A T = 3 K FOSSILE DES PHASES TRES CHAUDES DE L'UNIVERS

Les ondes acoustiques (baryoniques) primordiales

Etape 1 : condition initiale : une (des) perturbation(s) de densité

* plasma primordial homogène sauf un léger excès de matière à l'origine

 $c_{\rm s} \approx c/\sqrt{3}$

* forte pression pousse γ +b+e+ υ loin de l'origine à

Etape 2 : propagation avant découplage

* Propagation initiale : $gaz(=b+e) + \gamma$ se déplacent simultanément

- * DM et υ ne couplent pas (peu) au gaz ou au γ
- * Les υ sont relativistes => propagation à vitesse c
- * DM sans pression => reste au centre (ou presque ...)

Etape 3 : propagation avant découplage dure 4 10⁵ ans !

$$l_{dec} \approx c_s t_{dec} = c / \sqrt{3} \ 410^5 t_{1an} \approx 310^5 AL$$
$$l_0 \approx \frac{a_0}{a_{dec}} l_{dec} \approx 10^3 l_{dec} \approx 100 \ Mpc$$

(Horizon sonore)

Le découplage n'est pas instantané =>

$$l_0 \approx 150 Mpc$$

Etape 4 : Découplage ! !

Le CMB est né !!

- * Découplage : les baryons capturent les e : phase neutre
- * Les photons γ se découplent des baryons => propagation libre
- * Les baryons (atomes) ont une pression nulle => déplacement s'arrête

Etape 5 : Propagation libre des photons + croissance perturbation densité

* Les photons diffusent dans le milieu : homogénéisation

* Les baryons forment un pic de densité à «150 Mpc» de la densité initiale de matière noire

Etape 6 : Action de la gravité pendant 500 millions d'années

Etape 7 : Aujourd'hui après 14 milliards d'années

Baryons et DM ont atteint leurs densités d'équilibre dans le rapport Ω_b / Ω_M

Configuration finale : pic initial + écho à 150 Mpc

Formation des galaxies : phénomène local (<10 Mpc)

=> les évolutions ultérieures des deux pics sont découplées

La formation des structures : Observations

Conditions initiales

Filaments cosmiques (1 milliard AL)

Corona-Borealis Capricornus 100 million ly Supercluster Supercluster Hercules Superclusters Bootes Suberclusters Pavo-Indus Boote Supercluster Void Centaurus Supercluster Shapley Supercluster Sculptor Superclusters : Void Virao Coma Superclüster Ursa Major Supercluster Pisces-Cetus Perseus-Pisces Supercluster Superclusters Leo Superclusters

Horologium. Supercluster Columba Supercluster Supercluster

rpowell

La formation des structures : Simulations

Etonnante composition...La matiere dans l'Univers est essentiellement non baryonique

Matière noire 25%

L'ENERGIE NOIRE DOMINE LA DYNAMIQUE !

Gaz chaud 4%

Energie noire 70%

BILAN COSMIQUE

Etoiles & planètes 0.5%

Neutrinos 0,5% Lumière 0,05%

LA MATIERE NOIRE DOMINE LA MATIERE !

II: Cadre Mathématique :

Les Equations

Etape 1: Description des inhomogénéités/Dyn. Perturbations (depuis 1970-85)

Observations : « 3 » types de tests

→ Tests «Géométriques» : mesures de distances

Tests «Dynamiques» : mesures croissance perturbations de densités

Tests «Statistiques» : distributions statistiques des observations

Cinématique : Homogénéité, Isotropie, syst. coord. comobile

métrique de Friedmann - Lemaitre - Robertson - Walker

$$ds^{2} = c^{2}dt^{2} - a(t)^{2}\left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})\right]$$

$$k = 0, +1, -1$$

$$1 + z = a_{0}/a = \lambda_{0}/\lambda$$

$$z = \Delta\lambda/\lambda$$

$$a_{0} = 1 \qquad (k = 0 \equiv \Omega_{T} = 1)$$

p. Hubble H = a / a $H_0 = 100 \text{ h km.s}^{-1}.\text{Mpc}^{-1}$ E(z) = H(z)/H0

p. décélération

Mesures actuelles :

$$q = -a/a H^{2}$$

$$H(z) = H_{0} e^{\int_{0}^{z} (1+q(z'))d\ln(1+z')}$$

$$H_{0} \approx 72 \pm 2 - 8 \pm ? \quad (h \approx 0.72)$$

$$q_{0} < 0 \quad 95\% CL$$

$$k \approx 0$$

Dynamique :

Dyn. métrique (espace-temps)

Dyn. matière-énergie

Equation d'Einstein :

$$G_{\mu\nu} = 8\pi G_N T_{\mu\nu}$$

Relativité Générale

Tenseur d'Einstein :

$$G_{\mu\nu} = R_{\mu\nu} - \frac{R}{2} g_{\mu\nu} \left(-\Lambda g_{\mu\nu}\right)$$

tenseur de Ricci : $R_{\mu\nu} = \partial_{\alpha}\Gamma^{\alpha}_{\ \mu\nu} - \partial_{\nu}\Gamma^{\alpha}_{\ \mu\alpha} + \Gamma^{\alpha}_{\ \beta\alpha}\Gamma^{\beta}_{\ \mu\nu} - \Gamma^{\alpha}_{\ \beta\nu}\Gamma^{\beta}_{\ \mu\alpha}$ symboles de Christoffel : $\Gamma^{\alpha}_{\ \mu\nu} = \frac{1}{2}g^{\alpha\beta}\left[\frac{\partial g_{\beta\mu}}{\partial x^{\nu}} + \frac{\partial g_{\beta\nu}}{\partial x^{\mu}} - \frac{\partial g_{\mu\nu}}{\partial x^{\beta}}\right]$ scalaire de Ricci : $R = g^{\mu\nu}R_{\mu\nu}$

Métrique FLRW (plate, non perturbée) : $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$

Tenseur énergie-impulsion : Fluide parfait :

$$g_{00} = 1 \qquad g_{ij} = -a^2 \delta_{ij}$$

$$T_{00} = \rho \qquad T_{ij} = P \delta_{ij}$$

Equations à la base de la cosmologie :

$$H^{2}(z) = (a/a)^{2} = \frac{8\pi G}{3}\rho_{T} - \frac{k}{a^{2}}$$

$$\Omega_T + \Omega_k = 1$$
 ρ_c

 $\Omega_k = -k/a^2 H^2$

Friedmann 1

Conservation énergie :

$$\rho_c(z) = 3H^2(z)/8\pi G$$

$$\Omega_i(z) = \rho_i(z) / \rho_c(z)$$

Principe Cosmologique

$$\rho_T = \sum_{i=M,R,X} \rho_i$$

$$\Omega_T = \Omega_M + \Omega_R + \Omega_X$$
$$W_i = P_i / \rho_i$$

$$\rho_i(z) = \rho_i^0 (1+z)^3 e^{3\int_0^z w_i(z')d\ln(1+z')}$$

$$\stackrel{\bullet}{\rho_i} + 3H\rho_i(1+w_i) = 0$$

 $E(z)^{2} = (H(z)/H_{0})^{2} = \Omega_{M}^{0}(1+z)^{3} + \Omega_{R}^{0}(1+z)^{4} + \Omega_{k}^{0}(1+z)^{2} + \Omega_{X}^{0}(1+z)^{3}e^{3\int_{0}^{z} w_{X}(z')d\ln(1+z')}$

$$a/a = -\frac{4\pi G}{3}(\rho_T + 3P_T)$$

 $P_T \sim P_X$

$$q(z) = -\frac{a}{a} aH^2 = \frac{\Omega_T}{2} (1 + 3w_T) = \frac{\Omega_T}{2} + \frac{3}{2} w_X \Omega_X \qquad \rho_T \sim \rho_M + \rho_T$$

Tests Géométriques :

 \rightarrow mesure de H(z) directement

 \rightarrow mesure de distances Distances en cosmologie :

$$d(z) = a_0 \{1_{\sinh}^{\sin}\} \frac{1}{a_0} \int_0^z \frac{dz}{H(z)} \quad k = \{0_{-1}^1\}$$

$$E(z)^{2} = (H(z)/H_{0})^{2} = \Omega_{M}^{0}(1+z)^{3} + \Omega_{R}^{0}(1+z)^{4} + \Omega_{k}^{0}(1+z)^{2} + \Omega_{X}^{0}(1+z)^{3}e^{3\int_{0}^{z}w_{X}(z')d\ln(1+z')}$$

distances lumineuse :	$d_L = (1+z)d$
(eg SNIa)	

angulaire :
$$d_A = d/(1+z)$$

(eg BAO/diamètre-galaxies)
 $\Phi_{obs} = \frac{L_e}{4\pi d_L^2}$ et $\theta_{obs} \cong \frac{D}{d_A}$

 a_A

connexions observations - théorie :

- Observables : «chandelles standards » L=cste, «règles étalons» D=cste
- Paramètres de normalisation (~ mesures locales de L et D)
- Paramètres cosmologiques : ceux de H(z) (Ω 's,w's) + normalisation

Perturbations (scalaires) :

 $\delta = \frac{(\rho - \overline{\rho})}{\overline{\rho}}$

 $\nabla^2 \Phi = 4\pi G \rho \delta$

 $g_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$

Perturbation de densité :

Perturbation de la métrique :

 $g_{00} = 1$

Equation de Poisson :

Fluide parfait :

$$\Phi = \Psi$$

 $\delta <<1$ Théorie linéaire (grande échelle) $\delta \ge 1$ non-linéaire (petite échelle)

 $h_{\mu\nu} = 2\Psi c^2 dt^2 + 2\Phi a^2 h_{ij} dx^i dx^j$

$$+2\Psi(t,\vec{r})$$
 $g_{ij} = -a^2(t)\delta_{ij}(1+2\Phi(t,\vec{r}))$

(connexion métrique-densité)

$$(\Delta(\Phi - \Psi) \neq 0: stress anisotrope)$$

Evolution des perturbations de densité :

$$\dot{\delta} + 2H\dot{\delta} - 4\pi G\rho \delta = 0$$

en régime linéaire :
$$\vec{\delta(t,r)} \approx D(t)\vec{\delta(r)}$$

$$D(z) = \frac{5}{2} \Omega_M E(z) \int_{z}^{\infty} \frac{1+z}{E(z)^3} dz$$

Tests Dynamiques :

Dynamique des perturbations :

- → besoin d'un spectre de fluctuations primordiales (cond. init. eg: Inflation)
- -> compétition entre gravitation et pression (Relativité Gén. & Physique) :
- dépend des échelles de temps et de distances (signatures observ.) :
- dépend de la quantité de matière (Matière Noire)
- \rightarrow dépend du taux d'expansion (H₀, Energie noire)
- dépend de la composition de la matière (CDM,H/WDM, baryons, neutrinos)

Champ de surdensité : $\delta(t, \vec{r}) = \frac{\rho(t, \vec{r}) - \rho(t)}{\overline{\rho}(t)} \approx D(t)\delta(\vec{r}) \quad \text{régime linéaire}$ $\delta + 2H\delta - 4\pi G_N \rho_m \delta = 0$

Cas général (non linéaire) : * codes de boltzmann * simulations N-corps

Evolution spatiale (spatio-temporelle) : tests « statistiques » Evolution temporelle (ère de la matière) : tests « dynamiques »

Evolution temporelle (ère de la matière+approximation linéaire) :

$$\delta + 2H \delta - 4\pi G_N \rho_m \delta = 0 \qquad \qquad \delta(t, \vec{r}) \approx D(t) \delta(\vec{r})$$
Définition du taux de croissance f :
$$f(a) = \frac{d \ln(D(a))}{d \ln a}$$
Définition de l'index de croissance γ :
$$f(z) \approx \Omega_0 (z)^{\gamma}$$

 $(z) \approx \Omega_m(z)^r$

f dépend de l'expansion et de la théorie de la gravitation.

 γ est très sensible à la théorie de la gravitation sous-jacente mais peu au fond :

 $\gamma \approx 0.55 + 0.02(1 + w(z = 1))$ Relativité Générale OK Ex DGP (extra-dimensions)

Tests Statistiques :

Champ de surdensité :

Observable de base 1 : La fonction de corrélation (à 2 points):

$$\xi(\vec{r_1}, \vec{r_2}) \equiv <\delta(\vec{r_1})\delta(\vec{r_2}) > = \xi(r)$$

 $\delta(t, \vec{r}) = \frac{\rho(t, \vec{r}) - \rho(t)}{\overline{\rho}(t)} \approx D(t)\delta(\vec{r}) \quad (\overline{\delta} = 0)$

Excès de probabilité # distribution aléatoire de trouver 2 fluctuations séparées de r :

$$dP_r = \overline{\rho}^2 (1 + \xi(r)) dV_1 dV_2$$

 $1 + \xi(r) = \frac{\langle DD \rangle_r}{\langle RR \rangle_r}$ R=random

D=Data

dist. Poisson

directement reliée à la variance de la distribution δ à l'échelle r " $\xi(r) = \langle \delta^2 \rangle = \sigma_{\delta}^2(r)$ "

Mesures/Observations (eg galaxies) : Comptage de paires à séparation r

Transformée de Fourier

$$\tilde{\delta}(\vec{k}) = \frac{1}{(2\pi)^{3/2}} \int d\vec{r} \delta(\vec{r}) e^{i\vec{k}\vec{r}}$$

Observable de base 2 : Le spectre de puissance :

$$P(k) \equiv \langle \tilde{\delta}(\vec{k_1}) \tilde{\delta}(\vec{k_2}) \rangle = \frac{1}{(2\pi)^2} \int d^3r \,\xi(r) e^{ikr}$$

- Importance de la statistique à 2 points :
- distribution densité résulte de bcp processus indépendants
- + Th. Limite centrale => distribution densité ~ gaussienne
- or distribution gaussienne complètement déterminée par sa moyenne
- $(\overline{\delta} = 0)$ et sa variance σ_{δ} (ou $\xi(\mathbf{r})$ ou P(k))
- Re : stat. à 3 points : tests de la non-gaussianité
- ξ(r) ou P(k) ?: * même informations
 * les deux peuvent être mesurés
 * P(k) tel que les différents modes sont non-corrélés
 * Modèles th. donnent P(k) => observations aussi
- Caractéristiques de base du spectre de puissance :

→ indice spectral n :
$$P_{ini}(k) \approx A k^n$$

→ normalisation σ_8 :
W : fonction fenètre
(en g^{al} «top-hat sphérique») $\sigma_R(z) = \sigma_R(0)D(z)$
 $\sigma_R(z) = \sigma_R(0)D(z)$
 $\sigma_R(z) = \sigma_R(0)D(z)$
 $\sigma_R(z) = \sigma_R(0)D(z)$

Spectre de puissance primordial $P_{ini}(k)$:

Spectre invariant d'échelle de Harrison - Zeldovich (~1970) :

n=1

Evolution des perturbations :

* compétition entre gravitation et pression
* => dépend des échelles de temps et distances
* => de la composition de la matière (CDM,H/WDM, b, υ)

→ égalité des termes (gravit. vs pression) pour l'échelle de Jeans

Comportement des modes selon l'ère cosmique : $\lambda_J = c_s / \sqrt{G_N \rho_M}$

 → Ere de la radiation : λ<λ_H modes supprimés (pression R) λ_H ≈ c/H(z) λ>λ_H croissance rapide
 → A z_{eq} λ_J=λ_H puis λ_J décroît rapidement
 → Ere de la matière : tous les modes croissent linéairement k_{eq} ≈ 0.075 Ω_M h²
 → A z_{dec} : CMB + BAO (horizon sonore se fixe)
 Z_{dec} = 1089±3±?...
 → Ere de l'énergie noire (Λ ?) : la croissance est finie

Ces évolutions vont avoir des conséquences observationnelles mesurables. Ex: Formation hiérarchique des structures : petites structures se forment en premier puis s'amassent (+Modèles de collapse sphérique+évol. NL)

Formation hiérarchique des structures

Paramètres cosmologiques contraints par l'étude de l'évolution du spectre de puissance :

→ spectre de puissance primordial : indice (n), normalisation (A/ σ_8) ... (conditions initiales : fin inflation, z>10⁵)

→ composition de la matière : $\Omega_{\rm M}$, $\Omega_{\rm b}$, $\Omega_{\rm v}$ (BAO: entre $z_{\rm eq} \sim 10^4 z_{\rm dec} \sim 10^3$)

→ nature de la matière noire : $w_M(z)$ (passage relat.- non relat. : z_{eq})

→ courbure, énergie noire, évolution : $Ω_k$, $Ω_{DE}$, $w_{DE}(z)$, γ, $σ_8$ (évolution du taux de croissance de z_{dec} à aujourd'hui)

Normalisation : σ_8 observable sensible a de très nombreux paramètres cosmologiques

Warren et al., Los Alamos

Evolution temporelle : très sensible à l'expansion + RG

III: Cadre Observationnel :

Les sondes cosmiques

Les SNIa

Les SNIa comme chandelles standardisables

days

Identification des SNIa

The progenitor of a Type Ia supernova

Le CMB

Les fluctuations de température $\Delta T/T$ sont calculées théoriquement :

$$\frac{\Delta T(\mathbf{n})}{T} = \begin{bmatrix} \frac{1}{4}\delta^{(r)} + \mathbf{v}^{(m)} \cdot \mathbf{n} + \Psi \end{bmatrix} \Big|_{(\eta_0, \mathbf{x}_0)}^{(\eta_{\text{dec}}, x_{\text{dec}})} + \int_{\eta_{\text{dec}}}^{\eta_0} (\dot{\Psi} + \dot{\Phi})(\eta, \mathbf{x}(\eta)) d\eta$$

BAO Doppler Gravit.
$$\nabla^2 \Phi = 4\pi G \overline{\rho} \delta$$

Les $\Delta T/T$ peuvent être décomposées sur une sphère :

$$\frac{\Delta T}{T} = \sum_{l,m} a_{lm} Y_{lm}(\vec{n})$$

Définition des C₁'s : moyenne observée :

Acoustic oscillations seen!

Acoustic scale is set by the *sound horizon* at last scattering: $s = c_s t_{ls}$ $z_{CMB} = z_{dec} = 1089 \pm 3$ est très bien mesuré ! $s_0 \sim 150$ Mpc

Les BAO :

Oscillations baryoniques acoustiques

dans la distribution des galaxies

Simule 10x + de points aléatoires pour le même volume/surface

idem pour P(k) avec transformation de Fourier en plus

SDSS 2005 : $\xi_{gal}(r)$ pour les galaxies rouges lumineuses «proches»

contraintes cosmologiques :
 → direction transverse : d_A(z_{bao})
 → direction radiale : H(z_{bao})
 → aujourd'hui : mélange : A

$$z_{BAO} = 0.35$$

$$A = 0.469 \pm 0.017$$

Le Comptage d'Amas

Le nombre d'amas peut se calculer théoriquement (bcp approximations) :

$$\frac{\mathrm{d}n}{\mathrm{d}M} \,\mathrm{d}M = \sqrt{\frac{2}{\pi}} \frac{\rho_{\mathrm{M}}}{M^2} \frac{\delta_{\mathrm{c}}}{\sigma} \left| \frac{\mathrm{d}\ln\sigma}{\mathrm{d}\ln M} \right| \exp\left(-\frac{\delta_{\mathrm{c}}^2}{2\sigma^2}\right) \,\mathrm{d}M$$

Les simulations N-corps complètent les prédictions : Définition de la fonction de masse des halos : $f(\sigma)$

$$f(\sigma, z; X) = \frac{M}{\overline{\rho}} \frac{dn_X(M, z)}{d \ln \sigma^{-1}}$$

$$\frac{dn}{d\ln M} = \frac{\bar{\rho}}{M} f(\sigma) \frac{d\ln \sigma^{-1}}{d\ln M}$$

X=cosmo+collapse non linéaire+algorithme recherche d'amas simulations : $f(\sigma) = 0.315e^{-\left|\ln\sigma^{-1}+0.61\right|^{0.38}}$

Cette fonction de masse est très sensible à la cosmologie (Volume+croissance):

Les lentilles gravitationnelles

(fortes et faibles)

General relativity:

curvature of space time locally modified by mass condensation

to Earth

Deflection of light, magnification, image multiplication distortion of objects : directly **depend on the amount of matter** Gravitational lensing effect is **achromatic** (photons follow geodesics regardless their energy)

Les lentilles fortes

Observables cosmologiques : rapports de distances

4 images of the same quasar

D

A

С

Les lentilles faibles : le cisaillement gravitationnel

Cosmic shear : propagation of light through the cosmic web

2 quantités importantes :

* La convergence κ : magnification isotrope (cercle => cercle +/- gros) * Le cisaillement γ : magnification anisotrope (cercle => ellipse)

Si on compare les mesures à \neq z (tomographie) : cartographie 3d de la DM

Les vitesses de chute des galaxies

Les vitesses de chutes des galaxies vers le maximum de densité introduisent une distorsion dans l'espace des redshifts (direction radiale)

Le taux de compression/distorsion dans la direction π est proportionnelle à f/b

où $b = \delta_g / \delta$ biais matière - galaxies Taux de croissance : $f(z) \approx \Omega_m(z)^{\gamma}$

Avec une connaissance (extèrieure) de $\Omega_m(z)$ on en déduit des contraintes sur l'index de croissance

Contraintes futures: Test RG !!

Les autres sondes cosmiques

Géométriques :

propriétés intrinsèques des galaxies :
spirales : «diamètre étalon» : dA(z)
elliptiques : «horloge cosmique» : H(z)

 \rightarrow Sursauts gamma : chandelle standard : dL(z)

Dynamiques :

Forêt Lyman-α : nuage HII asborbants : P(k,z) (haut z, non-linéaire)
 Effet Sachs-Wolf Intégré

IV: Extraction des

paramètres cosmologiques

IV.1 : Méthode statistique

Approche fréquentiste

Méthode du maximum de vraissemblance

Application à l'étude des SNIa

Problème général(1)

•Supposons avoir mesuré N Supernovae à différent redshift

 $(m_i, z_i, \sigma_{m_i})_{i=1,N}$ et un modèle: m_{th}

$$m_{th} = m(\Omega_k, z)$$

Comment trouver la meilleur courbe ?

 On cherche la courbe qui passe au plus près de chacun des points:

$$D_{\min}^2 = \sum_i (m(\Omega_k, z_i) - m_i)^2$$

Mais les points les plus mal mesurés doivent avoir moins de poids

$$\chi^2_{\min} = \sum_{i} \left(\frac{m(\Omega_k, z_i) - m_i}{\sigma_{m_i}} \right)^2$$

Problème général(2)

- 2. Le problème ce ramène à:
 - Trouver les valeurs des Ω_k tels que χ^2 soit minimum

$$\frac{\partial \chi^2}{\partial \Omega_k} = 0$$

• Déterminer les erreurs sur les Ω_k a partir des erreurs sur m_i

$$\sigma_{\Omega_k} = f(\sigma_{m_i}, m_i, \Omega_k)$$

$$\chi^{2} = \sum_{i} \left(\frac{m(\Omega_{k}, z_{i}) - m_{i}}{\sigma_{m_{i}}} \right)^{2}$$

Statistique nécessaire

Probabilité Gaussienne

•Dans toute la suite nous supposerons que les erreurs de mesure sont Gaussiennes, i.e si l'on répète N fois la même mesure alors la distribution des mesures suit la distribution en probabilité:

$$p(m, m_{0}, \sigma_{m}) = \frac{1}{\sqrt{2\pi\sigma_{m}}} e^{-\frac{(m-m_{0})^{2}}{2\sigma_{m}^{2}}}$$
Avec valeur moyenne:

$$m_{0} = \int_{-\infty}^{+\infty} m.p(m, m_{0}, \sigma_{m})dm$$
Variance ou erreur:

$$\sigma_{m}^{2} = \int_{-\infty}^{+\infty} (m-m_{0})^{2} \cdot p(m, m_{0}, \sigma_{m})dm$$
Movemer

$$\sigma_{m}^{2} = \int_{-\infty}^{+\infty} (m-m_{0})^{2} \cdot p(m, m_{0}, \sigma_{m})dm$$

Cas de N variables (corrélation)

•Supposons « n » mesures Gaussiennes :

•Cas à 2 variables:

$$p(m_i, m_j) = \frac{1}{2\pi\sigma_{m_i}\sigma_{m_j}\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left\{\frac{(m_i-m_0)^2}{\sigma_{m_i}^2} + \frac{(m_j-m_0)^2}{\sigma_{m_j}^2} - \frac{2\rho(m_i-m_0)(m_j-m_0)}{\sigma_{m_i}\sigma_{m_j}}\right\}}$$
Si $\rho=0$ $p(m_i, m_j) = p(m_i)p(m_j)$
Si $\rho=1$ V est singulière $\Rightarrow m_j = f(m_i)$

Maximum de vraisemblance($\rho=0$).

Quelle est la courbe la plus vraisemblable ?

Réponse : La courbe la plus probable !

La probabilité de la courbe est définie comme le produit des probabilités de chaque point d'être autour de cette courbe:

$$L = \prod_{i=1}^{n} p(m_i, m(\Omega_k, z_i)) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{m_i}}} e^{-\frac{(m_i - m(\Omega_k, z_i))}{2\sigma_{m_i}^2}}$$

Il faut maximiser L par rapport au Ω_k Comme il est plus simple de travailler avec des sommes

$$Ln(L) = -\sum_{i=1}^{n} Ln(\sqrt{2\pi}\sigma_{m_i}) - \frac{1}{2} \sum_{i=1}^{n} \frac{(m_i - m(\Omega_k, z_i))^2}{\sigma_{m_i}^2}$$

Il faut minimiser χ^2 par rapport au Ω_k

$$\frac{\partial L}{\partial \Omega_k} = 0$$

$$\frac{\partial \chi^2}{\partial \Omega_k} = 0$$

Quelques propriétés du χ^2

Probabilité et χ^2 : Par définition

$$Ln(L \equiv p) = Ln(L_0) - 1/2\chi^2 \Longrightarrow L(\chi^2) = L_0 e^{-\frac{1}{2}\chi^2}$$

Définition matricielle:

Si
$$\overline{m} \equiv \begin{bmatrix} m_1 \\ . \\ m_n \end{bmatrix}$$
 alors $\chi^2 = (\overline{m} - \overline{m}_0)^{\mathrm{T}} V^{-1} (\overline{m} - \overline{m}_0)$

Dérivée seconde:

$$\chi^{2} = \frac{(x - x_{0})^{2}}{\sigma_{x}^{2}} \Longrightarrow \frac{\partial \chi^{2}}{\partial x} = 2 \frac{(x - x_{0})}{\sigma_{x}^{2}} \Longrightarrow \frac{\partial^{2} \chi^{2}}{\partial x^{2}} = \frac{2}{\sigma_{x}^{2}}$$

$$V_{ij}^{-1} = \frac{1}{2} \left[\frac{\partial^2 \chi^2}{\partial m_i \partial m_j} \right]$$

•La dérivée première du χ^2 donne le minimum

•La dérivée seconde du χ^2 donne l'inverse de la matrice d'erreur indépendante des points de mesures.

Densité de probabilité du χ^2

•Densité de probabilité du χ^2 :Supposons que l'on mesure N fois une variable x. Pour chaque mesure on a : $\chi_k^2 = \frac{(x_k - x_0)^2}{\sigma_x^2}$

$$p(\chi^2)d\chi^2 = g(x)dx \Longrightarrow p(\chi^2) = \frac{g(x)}{\frac{d\chi^2}{dx}} \sqrt{\frac{\sqrt{2\pi\sigma_x}e^{-2}}{\sigma_x^2}} \Longrightarrow p(\chi^2) = \frac{1}{2\sqrt{2\pi}}(\chi^2)^{-1/2}e^{-\frac{\chi^2}{2}}$$

Dans le cas de n degré de liberté $\chi_k^2 = \sum_{i=1}^n \frac{(x_i^{(k)} - x_i^{(0)})^2}{\sigma_{x_i}^2} \implies p(\chi^2, n) = \frac{1}{2^{n/2} \Gamma(n/2)} (\chi^2)^{n/2-1} e^{-\frac{\chi^2}{2}}$

- On montre que:
 - 1. La valeur moyenne du χ^2 est n
 - 2. La variance est 2n

Donc, la premier test de compatibilité entre des mesures et un modèle est de vérifier que

 $\chi^2 \approx n \pm 2n$

Attention au fait que la variance est 2n
Niveau de confiance

•On définit le niveau de confiance (ou confidence level) comme la probabilité que toute nouvelle expérience donne un χ^2 supérieur:

$$\varepsilon = CL(\chi^2) = \int_{\chi^2}^{+\infty} p(\chi^2, n) d\chi^2$$

10% des expériences donneront $\chi^2 > 16$

Définition de l'écart standard:

 $\begin{array}{c} 0.3 \\ 0.4 \\ 0.35 \\ 0.3 \\ 0.25 \\ 0.2 \\ 0.15 \\ 0.15 \\ 0.5 \\ 0$

Le résultat d'une mesure avec une erreur à « s » sigma.

$$\Omega_m = \Omega_m^{(0)} \pm s \sigma_{\Omega_m} \Leftrightarrow \chi^2 = \frac{(\Omega_m - \Omega_m^{(0)})^2}{\sigma_{\Omega_m}^2} \le \chi_{\min}^2 + s^2$$

•Pour 2 (ou plus) variables mesurées simultanément un résultat à « s » écart est défini avec le χ^2 , mais les probabilités dépendent du nombre de variables.

0.15

0.125

0.025

CL=10%

Pour plusieurs mesures simultanées on parle plutôt de la probabilité !!!

Changement de variables

Une fois le χ^2 défini sur les variables mesurées (i.e magnitude), comment trouver les erreurs sur les paramètres physiques, Ω_k ?

$$\longrightarrow \chi^2 = \left(\overline{m} - \overline{m}_{th}(\Omega_{\kappa})\right)^{\mathrm{T}} V^{-1} \left((\overline{m} - \overline{m}_{th}(\Omega_{\kappa})) \right)$$

On développe le χ^2 autour du minimum:

Si la transformation $m(\Omega_k)$ est linéaire, alors:

La dérivée seconde du χ^2 est une matrice symétrique positive Les erreurs sur Ω_k sont Gaussiennes $\chi^2 = \left(\overline{\Omega}_k - \overline{\Omega}_k^0\right)^T U^{-1} \left(\overline{\Omega}_k - \overline{\Omega}_k^0\right)$

Changement de variables(2)

Dans le cas simple:
$$\chi^2 = \sum_{i=1}^n \frac{(m_i - m(\Omega_k, z_i))^2}{\sigma_{m_i}^2}$$

 $\frac{\partial \chi^2}{\partial \Omega_k} = -2\sum_{i=1}^n \frac{(m_i - m(\Omega_k, z_i))}{\sigma_{m_i}^2} \frac{\partial m(\Omega_k)}{\partial \Omega_k}$
 $\frac{1}{2} \frac{\partial^2 \chi^2}{\partial \Omega_k \partial \Omega_l} = \sum_{i=1}^n \frac{\partial m(\Omega_k, z_i)}{\partial \Omega_k} \frac{1}{\sigma_{m_i}^2} \frac{\partial m(\Omega_k, z_i)}{\partial \Omega_l} \frac{(m_i - m(\Omega_k, z_i))}{\sigma_{m_i}^2} \frac{\partial^2 m(\Omega_k)}{\partial \Omega_k \partial \Omega_l}$
Si $m(\Omega_k, \Omega_l)$ est linéaire V_{ii}^{-1} Jacobien $= 0$

L'erreur sur les paramètres physiques se déduit d'une simple projection sur l'espace des Ω_k (approximation linéaire) nommée analyse de Fisher

$$U^{-1} = \left[\frac{\partial m(\Omega_k, z_i)}{\partial \Omega_k}\right]_{i,k}^{T} V^{-1} \left[\frac{\partial m(\Omega_k, z_i)}{\partial \Omega_k}\right]_{i,k}$$
 Indépendant
des points de mesures

Contour de probabilité

Comme dans le cas précèdent on peut calculer le contour: Soit à partir de $\chi_2^2(\Omega_k) = \chi_{\min}^2 + 1 \Rightarrow$ Ellipsoïde Soit à partir de $\chi_1^2(m^{\text{th}}(\Omega_k)) = \chi_{\min}^2 + 1 \Rightarrow$ Courbe rigoureuse

Question: Que faire des variables que l'on ne regarde pas ?

 $C(\Omega_{m},\Omega_{X}) \Leftrightarrow \chi^{2}(\Omega_{m},\Omega_{X},m_{s},w_{0},w_{1}) = \chi_{\min}^{2}(\Omega_{m},\Omega_{X},m_{s},w_{0},w_{1}) + 1$

1. Intégration sur les variables sans intérêts: par exemple m_s

 $p(\Omega_k) = \int p(\Omega_k, m_s) dm_s = L_0 \int e^{-\frac{1}{2}\chi^2(\Omega_k, m_s)} dm_s \Rightarrow \chi^2(\Omega_k) = -2Ln \left(A \int e^{-\frac{1}{2}\chi^2(\Omega_k, m_s)} dm_s \right)$ Contour moyen ou contour espéré : simulations

2. Minimiser en chaque point les variables sans intérêts:

$$\chi^2(\Omega_k) = \min(\chi^2(\Omega_k, m_s), m_s)$$

Contour le plus probable : données réelles

On peut vérifier que (2) donne (1) si les points de mesures (m_i) sont sur la courbe i.e $m_i=m(\Omega_k, z_i)$

Expériences Gedanken

Vérification statistique des contours (normalisation): Monte-Carlo Une fois le minimum déterminé (Ω_k^{0}) on répète N fois:

- 1. On tire dans les erreurs et suivant une distribution gaussienne les m_i autour de mth(Ω_k^{0} , z_i). On fait de même pour les contraintes externes.
- 2. On détermine le nouveau minimum par un fit et on verifie si le nouveau point et dans ou hors le contour.

IV.2 : Résultats à partir de l'analyse des données The Universe is accelerating (seemingly) :

- * Many Observations : SNIa, CMB, LSS (P(k), N(z), BAO, WL, ...)
- * Many Theoretical Interpretations :
- **7** Cosmological constant / Vacuum energy : $w_x = w_A = P/\rho = -1$ $\rho_A(z) = \rho_A^0$
- Scalar fields : $w^{eff} = \frac{1/2 \varphi^2 V(\varphi)}{2}$
 - **O** Quintessence : $\phi \rightarrow V(\phi), \phi_{in}, \phi_{in}$

$$v^{eff} = \frac{\frac{1}{2} \varphi - V(\varphi)}{\frac{\bullet^2}{1}}$$

 \bigcirc More exotic : k-essence, phantom, quintom, φ -Matter couplings

Modifications Friedmann eq. / General Relativity :

$$w^{eff} = -1 - \frac{1}{3} \frac{d \ln \delta H^2}{d \ln a} \qquad \delta H^2 = (H/H_0)^2 - \Omega_M a^{-3}$$

Too many possibilities =>

* Assume DE= Λ $\Omega_M \approx 0.23 - 0.27 \pm 0.03$ $\Omega_\Lambda \approx 0.7 - 0.8 \pm 0.03$

Davis et al. 07 (ESSENCE)

- * Try a «model independent» approach:
- **7** Perfect fluid : $\rho_X(z)$, $w_X(z) = P_X / \rho_X$
- Assume $w_X(z)$ =cste

$$w_{X} \approx -0.97 \leftrightarrow -0.9 \pm 0.1$$

→ Use a parameterization : eg CPL : $w(z)=w_0+w_a(1-a)=w_0+w_az/(1+z)$

Riess et al. 07

+++ : model «independent» , simplicity, fast calculations
----- : intrinsic limitations, analysis bias, «theoretical bias»

Re: \exists other «model independent» approaches (with own pb's): other parameterizations, other basic observables (H(z), q(z) (kinematic), $\rho_X(z)/\rho_X(0)$ (dynamic)) or non-parametric tests

Whatever the method is : * the Universe is accelerating * Λ is OK at 68%CL (at the boundary) * DE dynamics are almost unconstrained

Riess et al. 07

Zhao et al. 06

"Cosmology is an attempt to draw very large conclusions from exceedingly limited data ..."

Astro-ph/0311435

J. Peebles ...

V: Modèles d'énergie noire

Is ACDM a nice candidate ?

The Astronomer point of view : Λ is the cosmological constant $H^{2}(z) = (a/a)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3}$ ($\Omega_{T}=1, \Omega_{R}=0$)

Data : $\Omega_{\Lambda} \approx 0.7$ implying : $\rho_{\Lambda}^{1/4} \cong (0.7 \rho_c)^{1/4} \cong 10^{-2} - 10^{-3} \text{ eV}$

Problem : Cosmic Coincidence i.e. why $\Omega_{M} \sim \Omega_{\Lambda}$?

The Physicist point of view : Λ is vacuum energy $T^{\mu\nu}(vacuum) = k \, diag(1,-1,-1,-1)$ $T^{\mu\nu}(perf.fluid.) = diag(\rho, p, p, p)$

vacuum = ground state : Lorentz inv. = perfect fluid with w_{Λ} =-1

Problem : UV Divergencies : $\rho_{vac} \approx E_{max}^4$

 $\Lambda =$

 $8\pi G\rho_{vac}$

 $\text{ & Estimations } \text{ : } \rho_{\text{vac}} \stackrel{1/4}{\sim} E_{\text{max}} = M_{\text{pl}} \approx 10^{19} \text{GeV} = 10^{28} \text{ eV}$ $= M_{\text{LHC}} \approx 1 \text{ TeV} = 10^{12} \text{ eV}$

In fact, ρ_{vac} has multiple contributions (fluct.+pot. from all the fields + Λ + ??) : all are larger than what is measured

Need for a microscopic theory valid at very high energy to get a relevant estimation of ρ_{vac}

Very high energy Physics (early universe physics) play a fundamental role in cosmology !!!!

However:

* This Physics is unknown (eg Supergravity, String/Branes Theories (extradimensions) . Loop Quantum Gravity)

* Coïncidence problem is unsolved ...

From all these motivations, numerous physicists consider several alternatives for the Dark Energy : origin of the dynamical DE models

Dark Energy Models and Alternatives :

 $G_{\mu\nu} = 8\pi G_N T_{\mu\nu}$

Present framework: G.R. + Homo./Iso. + Expansion

$$H^2 = \frac{8\pi G_N}{3} \sum_{i=R,M,X} \rho_i$$

→Geometrical tests (d_L/d_A : eg SNIa) : Friedmann eq.

$$D_{L}(z) = c(1+z)\int_{0}^{z} du \left[(1+u)^{3} \Omega_{M} + \Omega_{X} e^{3\int_{0}^{u} [1+w(x)] dLn(1+x)} \right]^{-1/2}$$

$$< \mathsf{Kinetic}: q_0 < 0$$

Dynam.: w₀<-0.5, $\rho_X \approx cste$

 $m(z) = 5\log D_L(z) + M_s$

→ Dynamical tests (struct. growth: eg CMB/LSS) : (DE) perturbations $\longrightarrow \Lambda \text{ OK } ! ...$

$$\overset{\bullet}{\delta} + 2H \overset{\bullet}{\delta} - 4\pi G_N \rho_m \delta = 0 \quad G(a) = \frac{d \ln(\delta/a)}{d \ln a} = \Omega_M(a)^{\gamma} - 1 \quad \begin{array}{l} \gamma \approx 0.55 + 0.02(1 + w(z = 1)) \\ (in \ GR) \end{array}$$

2 options :

- * Right assumptions \Rightarrow add a new dynamical component : DE
- * Wrong assumptions is modify the Fried./Einstein equations (noDE)
- Distinguishing these various interpretations is very ambitious !!

DE indispensable ? : Models without **DE**

* modify Friedmann Eq. :

- backreactions from inhomogeneities (acceleration \leftrightarrow structure formation) (Ellis, Wetterich, Kolb, Matarese, Alimi, Buchert, Räsänen ...)

- Polytropic/Cardassian models (Freese, Wang, Linder ...) (eg string, DM self interactions, k-essence) $(\supset Chaplygin gas, \ll Unified DM \gg)$ pb: in general, no prediction for the growth of structures

* modify GR :

$$S_{BD} = \int d^4x \sqrt{-g} \left[\varphi R - \frac{\omega}{\varphi} \partial^{\mu} \varphi \partial_{\mu} \varphi - 2V(\varphi) \right] + \int d^4x \sqrt{-g} L_M(\psi_i, g)$$

 $H^2 = g(\rho)$

- Scalar-Tensor theories

- modify Einstein/Hilbert action (Carroll ...)

- String theories/extradimensions (cosmo+submm) H^2 = (Dvali, Deffayet ...)

$$\left(\frac{\bullet}{a_D}\right)^2 = \frac{8\pi G}{3} \left\langle \rho \right\rangle_D - \frac{\left\langle R \right\rangle_D + Q_D}{6}$$

$$g(\rho) = \frac{8\pi G}{3}\rho + B\rho^n$$
$$g(\rho) = \frac{8\pi G}{3}\rho \left[1 + \left(\frac{\rho}{\rho_*}\right)^{-\alpha}\right]^{\beta}$$

$$S = \int d^4x \sqrt{-g} \left[R - \frac{\mu^4}{R} \right] + \int d^4x \sqrt{-g} L_M(\psi_i, g)$$

$$\int_{-\infty}^{\infty} r_{c} = \frac{M_{Pl}^{2}}{M_{(5D)}^{3}}$$

Remarks :

Some alternatives are degenerate :

Scalar-Tensor theories \longleftrightarrow Theories with additional curvature terms « back-reactions » models \longleftrightarrow quintessence models ...

One can define w^{eff} for these alternatives (Linder03) :

$$w^{eff} = -1 - \frac{1}{3} \frac{d \ln \delta H^2}{d \ln a}$$
 $\delta H^2 = (H/H_0)^2 - \Omega_M a^{-3}$

see Linder 0601052 for the correspondance between w^{eff} and the GR alternatives

Dark Energy Models :

Phénomenological models

Perfect Fluid : $ρ_X(z)$, $W_X(z) = P_X/ρ_X$ need for parameterizations ...

* Quintessence (Peebles, Wetterich, Steinhardt ...):
$$\varphi \rightarrow V(\varphi), \varphi_{in}, \dot{\varphi}_{in}$$

$$L = \frac{1}{2} \partial^{\mu} \varphi \partial_{\mu} \varphi - V(\varphi) \qquad w^{eff} = \frac{1/2}{\varphi^{2} - V(\varphi)} \qquad -1 < w^{eff} < 1 \qquad \textcircled{s} \text{ few predictions}$$

$$In g^{al}: \qquad dw^{eff} / dz > 0 \qquad \textcircled{s} \text{ tracker solutions}$$

* k-essence (Mukhanov, Damour ...): non-minimal kinetic term

 $L = K(\partial_{\mu}\varphi) \times V(\varphi) \qquad \text{In } g^{\text{al}}: \quad -1 < w^{\text{eff}} < 1 \quad \text{and} \quad \frac{dw^{\text{eff}}}{dz} < 0$

* Phantom (Caldwell ...):

$$L = -\frac{1}{2} \partial^{\mu} \varphi \partial_{\mu} \varphi - V(\varphi)$$

 $w^{eff} < -1$ \exists large number of mod.

* Quintom (Zhang): 2 scalar fields : Quintessence+Phantom Avoid the « phantom divide » problem (Zhang, Hu, Caldwell ...)

VI: Dégénérescences

et

Analyses combinées

Problèmes avec la modélisation

de l'énergie noire

Are we able to distinguish the various DE interpretations?

- Question : \exists a common approach to all these models ? (ie model independent)
- The w^{eff} approach is relatively general eq Linder 0402503

- Re : Some models are degenerate (ie same w^{eff}) but an important selection can be done
- Theoretical models are natural in (w(z), w'(z)=dw/dlna)
- Problem 1: w(z) and w'(z) are not constrained directly by observations
- One need to define a parameterization for W(Z) (or $\rho(Z)$ or perform non-parametric test)
- Problem 2: Theoretical degeneracy :
- In fact, for a particular $w^{eff}(z)$ one can find a corresponding model in each class (new fluid, new gravitation th., inhomogeneous models)

Problem 3: ad hoc choice for the parameterization introduce degeneracies and bias !

Are we able to do something else ??????

Parameterization examples :

• Taylor : $w(z) = w_0 + w_1 z$ valid at small $z : \rho_x(z) \sim e^{3w_1 z}$

• Linder/Polarski : $w(z)=w_0+w_a (1-a) = w_0+w_a z/(1+z)$

$$w'(z) = -w_a / (1+z)$$

$$\Rightarrow w(z) = w'(z) + w_0 + w_a$$

$$w_a = \frac{dw}{dz} \Big|_{z=0} (= -2w' \Big|_{z=1})$$

Linder-Huterer 0505330

• Gerke/Efsthatiou : $w(z)=w_0+w' \ln a = w_0-w' \ln(1+z)$

Problem 4 : ∃ many other parameterization, but 2 parameters only may be constrained !! (voir prochaine partie ...)

Theoretical Problem / Bias : mapping (w(z),w'(z)) (w_0,w_a) is a crude approximation

© Some models are disconnected in this plane : distinction is possible !!!! ⊗ Λ is the crossing point of all the classes of models : Fid $\approx \Lambda = ???????$

Problems with the extraction of the cosmological parameters

Consequences :

 \rightarrow Reduce the number of parameters => source of bias

→ Perform analysis combining several cosmological probes but

Examples of Analysis Bias

with SNIa studies

Bias due to the temporal evolution of w_x

Non-Converging Zone (NCZ) : fit problems are detectable

Visualisation : Fiducial plane (w₀^F, w₁^F)

Results :

SNAP stat.

no/weak prior

- \circ Ω_{M} biased very quickly
- w₀ biased if strong variations or if w₀ is closed to 0
- With a strong prior, the bias is reported on w_0 which is now biased quickly if we are not on the $w_1^F=0$ line

strong prior (1%)

Conclusions :

Neglecting w_1 in the fitting procedure gives erroneous results on Ω_M and w_0

Re: assuming $w_0 = -1$ (DE= Λ) is even more restrictive !

Bias from a strong prior on Ω_M

Framework : fitting procedure where we assume $\Omega_{M} = \Omega_{M}^{prior} \pm \sigma(\Omega_{M}^{prior})$ whereas reality may be different $(\Omega_{M}^{F} \neq \Omega_{M}^{prior})$

Illustration :

accelerating (~best fit) : $\Omega_{M}^{F}=0.5 w_{0}^{F}=-2.2 w_{1}^{F}=1.6$ decelerating ($q_{0}^{F}>0$) : $\Omega_{M}^{F}=0.5 w_{0}^{F}=-0.6 w_{1}^{F}=-10$

but fitted with the false prior $\Omega_{\rm M} = 0.27 \pm 0.04$ Results :

 \circ correct prior : $w_0 = w_0^F$ and $w_1 = w_1^F$ but large σ

C (false) prior Ω_M = 0.27±0.04 : w₀ and w₁ erroneous but close to ΛCDM Indetectable with χ^2 ! (σ(w₀) and σ(w₁) small)

⇒ Gold data don't have enough stat. to distinguish both models ... but the false prior may induce wrong conclusions on the w_0 and w_1 values and their errors !!!

Results

- This type of biases are very general and many models can be confused with ΛCDM
- The values for w_0 and w_1 are brought artificially in the quadrant $w_0 > -1.8$ and $w_1 > 0$ by the strong prior $\Omega_M = 0.27 \pm 0.04$.
- In this quadrant the errors are always small
- Q: Can we believe blindly this prior ? What is the best strategy to extract correctly the cosmological parameters ?

Re: Origin of $\Omega_{\rm M} = 0.27 \pm 0.04$? From "combined" analysis of CMB+LSS data, which assume DE= Λ Relaxing some assumptions allows $0.1 < \Omega_{\rm M} < 0.5$

Briddle et al. 04, Conversi et al. 04 First conclusions :

For a \ll pure SN \gg approach

- Be carreful with assumptions on functional form : e.g. w=cste

Wrong estimations of the central values and under-estimation of the errors ! (undetectable !!)

- Be carreful with « strong priors » : e.g. on Ω_{M}
 - This choice may introduce some bias
 - The origin of the prior should be controlled carefully : hypothesis should be identical for both analysis

See eg Steinhardt et al. Astro-ph/0411803

Perform combined analysis :

- * Avoid too many assumptions
- * reduce degeneracies among cosmological parameters

The power of Combined Analysis

An example of the power of combined analysis : C. Yèche et al. 0507170

•Mid-term scenario :

- \Rightarrow 2008-2010 (before Planck)
- \Rightarrow CMB: WMAP + Olimpo (balloon experiment with good resolution and a small field)
- \Rightarrow **SNIa:** SNLS+SNFactory+HST

 \Rightarrow WL: CFHT-LS.

- No assumption on Ω_{M} and dynamical w(z)
 - \Rightarrow reduce prior assumptions
 - \Rightarrow reduce degeneracies
 - ⇒ but coherence test necessary
 - \Rightarrow many open questions

Another example : Constraining curvature and DE EoS simultaneously

Background : * Studies done very recently only (difficult+time consuming) * Not done by observational collaboration

* Problems due to the «geometrical degeneracy» :

Ω V

same CMB anisotropy spectrum if identical (Efstathiou-Bond 99, Huey et al .99) $\omega_{\rm b}$ and $\omega_{\rm M}$

primordial fluctuation spectra shift parameter R

$$R = \sqrt{\frac{\omega_M}{\omega_K}} \sinh\left(\sqrt{\omega_K}\right) \int_{ar}^{1} \frac{da}{\sqrt{\omega_M a + \omega_K a^2 + \omega_\Lambda a^4 + \omega_Q a^{(1-3w_Q)}}} = \sqrt{\omega_M} d_A(a_r)$$

=> without priors, whatever CMB precision $\Omega_{\rm T}$ known to 10% and Ω_{Λ} undetermined

=> CMB analysis need priors or combined analysis

=> problem reinforced if we enlarge the DE parameter space (ie w=cste, (w0,wa))

Consequence => vicious circle : assume DE= Λ and get Ω_T or assume Ω_T =1 and get (w₀,w_a)

However, geometrical degeneracy very important in the (w0,wa) plane and is strongly dependent on the density parameters Ω 's

WMAP3 : $R=1.70\pm0.03$ (Wang-Mukherjee 06)

It is argued that combined analysis will break these degeneracies :

This is true only partially !

Preliminary Question : Are we able to detect the «wrong» hypothesis $DE=\Lambda$ or $\Omega_T=1$, when performing a combined analysis ?

Answer : Not always, so the vicious circle is dangerous for the interpretation, even with future high precision measurements !

Illustrations of the problems with SN + CMB(R) + BAO(A)

Illustrations with long term scenarios

Assume DE= Λ and get Ω_T $\Omega_M^F = 0.2$ $\Omega_X^F = 0.7$ ($\Omega_T^F = 0.9$) $w_0^F = -0.9$ $w_a^F = 0.9$

- The $\chi 2$ is low : pb undetectable !
- We confuse a dynamical non-flat DE model with flat ΛCDM !!!

Assume Ω_T =1 and get (w0,wa) $\Omega_M^F = 0.3 \qquad \Omega_X^F = 0.72 (\Omega_T^F = 1.02)$ $w_0^F = -1 \qquad w_a^F = 0 \quad (DE = \Lambda)$

The $\chi 2$ is low : pb undetectable !

We confuse a non-flat Λ CDM model with a flat dynamical DE model !!!

Even with combined analysis at high precision, relax assumptions to avoid bias !

Combined analysis: present data & relaxed priors constraints on curvature and DE EoS

Data : CMB(WMAP3)+LSS(P(k):SDSS+2dF)+SNIa(SNLS,Gold)

Cosmological parameters: $\Omega_b h^2, \Omega_c h^2, \tau, \Theta_s, n_s,$ $w_0, w_a, \Omega_k, \log(10^{10} A_s)$

We use priors:

 $(h = 0.72^+_0.08)$ $\Omega_b h^2 = 0.022^+_0.002$ $10Gyr < t_0 < 20Gyr$

Present CMB+LSS+SN data give almost no constraints on DE EoS when priors are relaxed

Problems to

distinguish Dark Energy models

(sequel)

Knowledge of (w_0, w_a) is sufficient to distinguish the various DE models ?

Unfortunately the answer is NO !

Separation of some classes, but models of very different nature stay degenerate :

eg back-reactions Quintessence

In fact, for a particular $w^{eff}(z)$ one can find a corresponding model in each class (new fluid, new gravitation th., inhomogeneous models)

First tentative of solution :

compare constraints on (w_0, w_a) from different tests :

Geometrical tests (distances, background)

VS

Tests of the growth of structures (perturbations)

Manifestation of the DGP model (extra-dimensions) when General Relativity is assumed (+ classical assumptions on primordial fluctuations)

Problem :

other sources of bias (analysis, astrophysical and theoretical) may produce similar inconsistencies ... Other interesting approaches :

parameterize the growth function : Linder-Cahn 07

mix various tests : Uzan 04, Bean-Carroll-Trodden 06

Ex : scalar-tensor theories,

Modification of Einstein equations Possibility of the variation of constants.

Standard \widetilde{g}^{0}_{μ} Matter

Ex ; brane induced gravity, multigravity

Test of Poisson equation

CONCLUSION

On est au début de l'interprétation cohérente des données

On espère que les futurs grands sondages :

* sol : LSST, DES

* espace : JDEM/SNAP (NASA/DOE), EUCLID (ESA/CNES)

permettront de séparer la véritable origine de l'accélération cosmique des 3 grandes classes d'interprétation :

* nouveau fluide * modification gravité * effets des inhomogénéités

Les différentes méthodes statistiques sont au cœur des analyses permettant de réaliser cette distinction !

Les méthodes Bayesiennes sont de plus en plus courantes en cosmologie

L'exploration de l'espace des paramètres se fait par des chaînes de Markov (MCMC=Markov Chain Monte Carlo)

Les intervalles «de confiance» et de «crédibilité» diffèrent peu selon la technique utilisée

La sélection de modèles reste très débattue : forte dépendance sur les a priori