Accueil > Séminaires > Séminaires Dynamique Quantique et Classique
Séminaires Dynamique Quantique et Classique
Séminaire organisé par les deux équipes du groupe Systèmes dynamiques classiques et quantiques .
Responsables :
Annalisa PANATI
et
Benjamin ALVAREZ
Jour dédié :
le mercredi à 14h00
Lieu :
CPT, amphithéâtre du 5ème étage
Abonnement iCal
,
Séminaires passés
Prochain Séminaires Dynamique Quantique et Classique
Mercredi 19 Février 2025 –
Hiroshi Isozaki, Ritsumeikan University
Titre : Uniqueness of scattering solutions to partial differential equations
Résumé : In the study of wave scattering, a crucial role is played by the Sommerfeld radiation condition and the Rellich type uniqueness theorem. The former describes the asymptotic form of scattering solutions to the Helmholz type equation, and the latter determines its sharp decay rate. They ensure the non-existence of eigenvalues embedded in the continuous spectrum, what is more, they turn out to be a key step toward the inverse scattering. We will discuss these theorems in two problems. The first issue, a joint work with Matti Lassas, is concerned with a class of general Riemannian manifolds, for which we prove the Rellich type theorem in an abstract setting and solve the inverse scattering problem. The second issue, a joint work with Mitsuteru Kadowaki and Michiyuki Watanabe, deals with the elastic equation in a perturbed 3-dim. half space, for which we introduce the radiation condition and prove the uniqueness of scatteirng solutions.
Séminaires à venir
Mercredi 12 Février –
RACHID ZAROUF, Université de Aix Marseille
Titre : CONTRE-EXEMPLES RÉFUTANT LA CONJECTURE DE SCHÄFFER,
PUISSANCES D’UN AUTOMORPHISME DU DISQUE ET
ASYMPTOTIQUE DES POLYNÔMES DE JACOBI
Résumé : Le résumé est disponible en pdf via ce lien.
Location et horaire : CPT, AMPHI 5 à 14H
Mercredi 19 Février 2025 –
Hiroshi Isozaki, Ritsumeikan University
Titre : Uniqueness of scattering solutions to partial differential equations
Résumé : In the study of wave scattering, a crucial role is played by the Sommerfeld radiation condition and the Rellich type uniqueness theorem. The former describes the asymptotic form of scattering solutions to the Helmholz type equation, and the latter determines its sharp decay rate. They ensure the non-existence of eigenvalues embedded in the continuous spectrum, what is more, they turn out to be a key step toward the inverse scattering. We will discuss these theorems in two problems. The first issue, a joint work with Matti Lassas, is concerned with a class of general Riemannian manifolds, for which we prove the Rellich type theorem in an abstract setting and solve the inverse scattering problem. The second issue, a joint work with Mitsuteru Kadowaki and Michiyuki Watanabe, deals with the elastic equation in a perturbed 3-dim. half space, for which we introduce the radiation condition and prove the uniqueness of scatteirng solutions.
Location et horaire : CPT, AMPHI 5, 14H00
Mercredi 26 Février 2025-
Nicolas Clozeau, IMATH Toulon
Title :
TBA
Abstract: TBA
Location et horaire : Toulon, Bâtiment Z1, salle Z1.018, 13h30.
Liste des séminaires