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We consider a self-adjoint, purely absolutely continuous operator M. Let P be a
rank one operator Pu= �� ,u�� such that for �0 H�0

ªM +�0P has a simple eigen-
value E0 embedded in its absolutely continuous spectrum, with corresponding ei-
genvector �. Let H� be a rank one perturbation of the operator H�0

, namely, H�

=M + ��0+��P. Under suitable conditions, the operator H� has no point spectrum
in a neighborhood of E0, for � small. Here, we study the evolution of the state �
under the Hamiltonian H�, in particular, we obtain explicit estimates for its sojourn
time �����=�−�

� ��� ,e−iH�t���2 dt. By perturbation theory, we prove that ����� is
finite for ��0, and that for � small it is of order �−2. Finally, by using an analytic
deformation technique, we estimate the sojourn time for the Friedrichs model in
Rn. © 2006 American Institute of Physics. �DOI: 10.1063/1.2174236�

. INTRODUCTION

A rank one perturbation of an operator H0 may drastically change the nature of its spectrum.
ee for instance Refs. 2 and 16. Here we study a class of perturbations for a self-adjoint operator

0 having a simple eigenvalue E0 embedded in its absolutely continuous spectrum. We impose
eneral conditions on the rank one perturbation P, Pu= �� ,u��, which guarantee that the operator

�=H0+�P is purely absolutely continuous. Moreover if H0 has a normalized eigenvector �0

ith corresponding eigenvalue E0 then we explicitly estimate the sojourn time ����0�, precisely,
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����0� 	
1

�

1

�2

1

��P�0,�0��2��0
� �E0�

nder conditions which guarantee in particular suitable regularity of the spectral measure ��0
of

M.
In the case where M is the multiplication operator by x and � is analytic �in the sense of Sec.

� we can use the analytic translation technique to prove that

����0� =
1

2�	�
+ O
 1

���� ,

here 1/2	 is the Fermi golden rule term,

1

2
	 = �2 Im�P�0,S�E0 + i0�P�0� .

Here, S�E0+ i0� is the reduced resolvent of H�0
at E0 �Ref. 8, Chap. III, Sec. 6.5, for the

efinition of the reduced resolvent�.
There are numerous works which describe resonances by analyzing the behavior of the sur-

ival amplitude, i.e., the function R� t� �e−itH�0 ,�0�, which, in many cases, include explicit
xponential decay laws for this quantity. We mention, Refs. 1, 3, 4, 6, 10, 11, 17, 19, 18, and 20,
or example. On the other hand, as it was suggested in Ref. 10, the study of the sojourn time seems
o be an approach to resonances more general than analytic continuation techniques. �See Refs. 7,
3, and 15.�

The present work is also an attempt to give a dynamical characterization of quantum reso-
ances, by estimating directly the sojourn time, that is, the L2 norm of this survival amplitude,
hich measures the total amount of time that well chosen states remain on itself. We expect that

his direct approach of the sojourn time will allow less regular Hamiltonian than the ones consid-
red with the survival amplitude method. For example, in the concrete Friedrichs model, see Sec.
V A, we need only that our perturbation P is twice differentiable with respect to the x variable,
hich seems to be a rather weak condition in view of the above quoted papers. This hope must be

ested with a genuine potential perturbation. Also, contrary to what is usually done, we have not
ocalized �0 within an ad hoc spectral subspace of H�, i.e., g�H���0, where g is a function
ocalized around the embedded eigenvalue E0; this is mainly because our assumptions on M do not
llow neither thresholds nor other eigenvalues than E0.

This paper has the following structure: in the first two sections we establish some technical
acts. The following section contains our main result, the asymptotics of the sojourn time. In the
ast section we use the analytic translation technique to establish the connection with resonance
heory.

I. RANK ONE PERTURBATIONS OF SELF-ADJOINT OPERATORS

Although the content of this section is classical, we include it for the reader’s convenience.
et M be a self-adjoint operator on a Hilbert space H. We consider rank one perturbations of M,

H� = M + �P , �2.1�

here ��R and P= ������ denotes the orthogonal projection Pu= �� ,u�� and ���=1.
Let Ex

M be the resolution of the identity associated to M, that is M =�−�
� x dEx

M and let ���x�
�� ,Ex

M��. For z�C with Im z
0 we consider the Borel transform of the measure ��, that is

F��z� = ��,�M − z�−1�� . �2.2�

emma 2.1: Assume E0 is not an eigenvalue of M. Given ��0, the real number E0 is an eigen-
−1
alue of H� if and only if lim�→0�M −E0− i�� � exists in H and F��E0+ i0�=−1/�.
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Proof: If H��0=E0�0, �0 normalized, then,

M�0 + ���,�0�� = E0�0. �2.3�

ince E0 is not an eigenvalue of M, we have that ��0 ,���0 and � belongs to the range of M
E0.

On the other hand,

�M − E0��M − E0 − i��−1�0 = − ���,�0��M − E0 − i��−1� .

ut �M −E0��M −E0− i��−1 is a bounded operator which is strongly convergent to the identity as �
pproaches 0. By computing such limit we have that �ª lim�→0�M −E0− i��−1� exists and it
atisfies �0+��� ,�0��=0. It follows that,

F��E0 + i0� = ��,�� = −
1

�
.

onversely, if both conditions hold, then �ª lim�→0�M −E0− i��−1� satisfies �� ,��=−1/�. Con-
ider ����= �M −E0− i��−1�. Then,

�M − E0����� = �M − E0��M − E0 − i��−1� ,

onverges to �, when � approaches 0. Since M is a closed operator, we obtain that � belongs to the
omain of M and �M −E0��=�.

Hence, M�−�=E0�. The eigenvalue equation �2.3� follows from the identity −1=��� ,��.
�

Corollary 2.1: Let E0 be an eigenvalue of H�. Then E0 is simple with eigenvector �
lim�→0�M −E0− i��−1�. Also,

���2 = 

−�

� d��

�x − E0�2 and ��,�� = 

−�

� d��

x − E0
. �2.4�

Proof: The first part of the corollary follows from the proof of the Lemma 2.1. To prove
ormula �2.4�, we note that since ���2=lim�→0��M −E0− i��−1��2 exists, by the monotone conver-
ence theorem,



R

d��

�x − E0�2 = lim
�→0



R

d��

�x − E0�2 + �2 = ���2.

o the integrals �R�d�� / �x−E0�2� and �R�d�� / �x−E0�� are finite. The Lebesgue theorem then
mplies

��,�� = lim
�→0



R

d��

�x − E0� + i�
+ 


R

d��

x − E0
.

�

We now consider a family of rank one perturbations of the operator H�0
=M +�0P on H,

xplicitly,

H� = M + ������� , �2.5�

here ��H is a fixed unit vector. We are mainly interested on studying the time behavior of
ossible bound states of H�0

, under the Hamiltonian H�, for � near �0.
Let us assume that H�0

=M +�0������ has an eigenvalue E0 with corresponding eigenvector �.

ecause of Lemma 2.1 and Corollary 2.1, this means that 1+�0 lim�→0 F��E0+ i��=0 and
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−�

� d��

�x − E0�2 � � .

Our goal is to study the time evolution of � under the perturbed Hamiltonian H� for the
arameter � close to zero.

For this purpose, we study the function

R � t � ���,e−iH�t���2

hich represents the probability of finding at time t the system in its initial state �, and

����� = 

−�

�

���,e−iH�t���2 dt, � = � − �0 �2.6�

hich measures the total amount of time the state remains in its initial subspace �s� :s�C�. We
bserve that ��� ,e−iH�0

t���2=1 for all t and so �0��� is infinite.
We shall prove that for ��0 and small, the sojourn time ����� is finite and of order �−2,

hen the operator H� has no bound states �see assumption �H3��.

II. FINITENESS OF THE SOJOURN TIME OF �

Let H be a self-adjoint operator on a complex Hilbert space H. For any vector 
 in the
bsolutely continuous subspace Hac�H� associated to H, we know that

�
,e−iHt
� =� 2

�



−�

�

e−i�t Im�
,�H − � − i0�−1
�d� .

his allows us to express the sojourn time in terms of resolvent operators, explicitly,

���� =
1

2�



−�

�

�Im��,�H − � − i0�−1���2 d� . �3.1�

t is known that �2.6� and �3.1� are both valid expressions for the sojourn time, as soon as the
urvival amplitude R� t� �e−itH� ,�� is in L2�R�, see Ref. 12.

In all what follows, we assume the following hypothesis.
�H0�: M is a purely absolutely continuous operator acting on the Hilbert space H, ��0 a

ormalized element of H, Pª ������ and H�ªM +�P.
�H1�: There exists �0�0, such that H�0

has a unique eigenvalue E0, H�0
�=E0�. Notice that,

y Lemma 2.1, this implies in particular that �ª �M −E0± i0�−1� exists in H and �� ,��=−�0
−1.

�H2�: The function ��R� �� , �M −�− i0�−1���C is continuous. We assume moreover that

lim
���→�

��,�M − � − i0�−1�� = 0.

Notice that, by the first resolvent equation, this implies in particular that

R \ �E0� � � � ��,�M − � − i0�−1�� � C

xists as a continuous function.
�H3�: There exists �0
0 such that for all 0� �����0, the function

D��,�� ª 1 + ��0 + ����,�M − � − i0�−1��

oes not vanish, for any ����M�. Clearly, for such �, the operator H�0+�
has no eigenvalues.

�H4�: The function �� �� , �M −�− i0�−1���C is of class C1 in a neighborhood of E0, that is,

−1
g��� ª Re��,�M − � − i0� �� ,
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������ ª
1

�
Im��,�M − � − i0�−1��

exist and they are C1 functions in a neighborhood of E0.
�H5�: The function ��� belongs to L2�R�.
�H6�: ����E0�
0.
Concerning the resolvent operators, we use the following notation:

R��z� = �H� − z�−1, R0�z� = �H�0
− z�−1, R�z� = �M − z�−1,

here �=�−�0. The Aronszjan-Krein formula9,16 expresses the resolvent R��z� in terms of R0�z�
or any z=�+ i��C, with ��0. This formula gives

R� = R0 −
�

1 + ���,R0��
R0PR0. �3.2�

imilarly,

R0 = R −
�0

1 + �0��,R��
RPR . �3.3�

gain, we use the Borel transform F��z�= �� , �M −z�−1��, which, because of �3.3� gives

��,R0�z��� =
F��z�

1 + �0F��z�
.

hus, by replacing in �3.2�,

R� = R0 − �
1 + �0F�

1 + ��0 + ��F�

R0������R0. �3.4�

ince, �����= �� ,E�
M��, for any positive � we have that

F��z� = 

−�

� x − �

�x − ��2 + �2d���x� + i

−�

� �

�x − ��2 + �2d���x� . �3.5�

y our hypothesis, we have that d�����=������d�= �1/��Im F���+ i0�d�, where ��� denotes the
adon-Nikodym derivative of the measure �� relative to the Lebesgue measure. So the limit when
→0 in �3.5� exists thanks to �H6� and gives

F��� + i0� = PV

−�

� ����x�
x − �

dx + i������� , �3.6�

here the first term on the right-hand side of �3.6� is the Cauchy principal value.
Lemma 3.1: Suppose that (H0), (H1), (H2), (H3), and (H5) hold. Then, for all 0� �����0 is

nite and

����� =
2��4

�0
4 


R

��������2

�D��,���4
d� , �3.7�

here

D��,�� ª 1 + ��0 + ��F��� + i0� . �3.8�

Proof: From the formula �3.1�, we only need to compute Im�� ,R���+ i0��� for ��E0.
Since H�0

�=E0� and �= �M −E0− i0�−1�, we have that �0�� ,��=−1. Hence, the identity

3.4� gives
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��,R��z��� =
1

E0 − z
���2 − �

1 + �0F��z�
1 + ��0 + ��F��z�

1

�0
2�E0 − z�2 .

Consider z=�+ i� with �
0. Hypothesis �H2� allows us to compute the limit as �→0 to
btain that

��,R��� + i0��� =
1

�E0 − ��
���2 −

�

�0
2�E0 − ��2 lim

�→0

1 + �0F��� + i��
1 + ��0 + ��F��� + i��

.

By taking the imaginary part, it follows immediately that

Im��,R��� + i0��� = −
�

�0
2�E0 − ��2 lim

�→0
Im

1 + �0F��z�
1 + ��0 + ��F��z�

.

Now,

Im
1 + �0F��z�

1 + ��0 + ��F��z�
=

� Im F��z�
�1 + ��0 + ��F��z��2

.

Hence, by using that �1/ �E0−��2�������=������ we conclude that

Im��,R��� + i0��� = −
�2

�0
2�E0 − ��2 lim

�→0

Im F��� + i��
�1 + ��0 + ��F��� + i���2

=
�2

�0
2

�������
�D��,���2

or any ��E0, thus ending the proof. The integral of �3.7� makes sense, i.e., is finite, thanks to
H2�, �H3�, and �H5�. �

V. EXACT ASYMPTOTICS FOR ��

In this section we prove the explicit asymptotics for the sojourn time in a general context and
e will apply it to some concrete examples.

Theorem 4.1: Assume that �H0�–�H6� holds. Then the sojourn time ����� has the following
ehavior:

lim
�→0

�2����� =
1

�

�0
2���10

����E0�
.

Proof: By using the first resolvent equation and �H1�, we can rewrite D�� ,�� as

D��,�� = 1 + ���,R�� + i0��� = 1 −
�

�0
+ ��� − E0���,R�� + i0��� .

y �H4� and applying the resolvent equation twice, we obtain that

D��,�� = −
�

�0
+ ��� − E0�q��� + i���� − E0�2������

ith

q��� ª ���2 + �� − E0�g��� .

y Lemma 3.1 we known that ����� is finite and it is represented by �3.7�.
Consider the interval I�ª ���R , ��−E0���� for some �
0. Let us split the integral in two
arts,

 Mar 2006 to 139.124.7.126. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



W
L

a

T
f

i

B
c
v
W

L
c

w

a

w

T
o

w

033501-7 Sojourn time for rank perturbations J. Math. Phys. 47, 033501 �2006�

Downloaded 13
A� ª
2��6

�0
4 


I�

��������2

�D��,���4
d�, B� ª

2��6

�0
4 


R\I�

��������2

�D��,���4
d� .

e will prove first that B�→0 as �→0 and second that A� tends to the desired limit using the
ebesgue dominated convergence theorem.

We get at once that B�=O��6� since �D�� ,����c�
0 on R \ I�, and ��� belongs to L2�R� by
ssumption �H5�.

For ��0 one defines

s���� ª �−2�− ��0
−1 + ��� − E0�q���� .

hanks to �H4� we know that g��� is a C1 function in a neighborhood I�g
of E0. Then s is a C1

unction with derivative

s�� ��� =
��q��� + �� − E0�q�����

�2

n I�g
and s�� �E0�=�−2����2.

We choose �0� ��0� /2 so that � does not vanish and therefore E0 is not a critical point of s�.
y the inverse mapping theorem we know that s� is locally in E0 a C1 diffeomorphism, i.e., we
an choose �s
0 small enough so that the restriction of s� to I�s

is such a C1-diffeomorphism. In
iew of the explicit dependence of s� with respect to � one can choose this �s independently of �.
e continue to denote �s by �. We note that

s � Ĩ� Û �s +
1

��0
� � �

��q���s���
�2 .

et Ĩ��s����s�� I� be the inverse of the previous change of variable. The quantities D and A�

an now be written as

D����s�,�� = �2s +
i�

�

�2s + ��0

−1

q����s��
�2

�������s�� ¬ �2D̃�s,��

ith

D̃�s,�� = s +
i�

�

�s + �0

−1

q����s��
�2

�������s��

nd

A� =
2��6

�0
4 


Ĩ�

��������s���2

�8�D̃�s,���4
�2

��q����s�� + ����s� − E0�q�����s���
ds

=
2�

��0
4


R
1Ĩ�

��������s���2

�D̃�s,���4
1

q����s�� + ����s� − E0�q�����s��
ds ,

here 1Ĩ�
denotes the characteristic function of I�.

We know that q���= ���2+ ��−E0�g��� and g is assumed to be C1 on I�g
so g is bounded there.

herefore we can choose 0��q�min��g ,�s� small enough such that q����
1
2 ���2 on I�q

. In view
f

"s � I�s
, �2s + ��0

−1 = ����s� − E0�q���s��
e see at once that lim�→0���s�=E0. Then, by assumption �H4�,
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lim
�→0

����s� = ����E0�, lim
�→0

D̃�s,�� = s +
i�

�0
3���4����E0�

nd

lim
�→0

1

�q����s�� + ����s� − E0�q�����s���
=

1

���2 .

herefore,

lim
�→0

�integrand� =
2�

�0
5

�����E0��2

�s2 +
�2�����E0��2

�0
6���8 �2 =

1

���2 .

y formal integration one arrives at

2�

�0
5

�����E0��2

���2 

R

1

�s2 +
������E0��2

�0
6���8 �2ds =

2�

�0
5

�����E0��2

���2

�

2
������E0��
�0

3���4 �3 =
�0

4

�

���10

�����E0��
.

hen, it remains to justify the interchange of the limit with the integral.
First we have

�D̃�s,���2 = s2 +
�2

�2
�s + �0
−1

q����s��
�4

��������s���2.

ue to assumptions �H4�, �H6� we know that there exists a neighborhood of E0 on which ���
0. Let K be a compact interval which contains 0 in its interior, the image of K in the � variable

s a compact interval which contains E0 and shrinks as �→0. So for ��� small enough we are sure
hat �������s��2�c
0 with c independent of �. Since we can also easily make that the quantity
1 /�2���s+�0

−1 /q����s���4 is also bounded below uniformly with respect to � we get that

$�0 
 0, " s � K, " ��� � �0, �D̃�s,���2 � c 
 0.

t follows that

"s � Ĩ�, �D̃�s,���2 � max�s2,c� .

hen since g is C1 on I�g
one has that ��q���− ��−E0�q���� is C0 on I�g

and since q�E0�
���2
0 one can choose �ª�g small enough so that

"s � Ĩ�, q����s�� + ����s� − E0�q�����s�� � c 
 0.

inally thanks to �H4� we can choose � small enough so that ���� ��c1 on I�. In conclusion we
ave obtained

$� 
 0, $ �0 
 0, " s � Ĩ�, " ��� � �0, 0 � integrand �
4�

�0
5

c1
2

max�s4,c2�c

˜
nd since outside I� the integrand vanishes this bound is valid on R. �
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. The Friedrichs model

The Friedrichs model corresponds to a very simple choice of the operator M, namely, the
ultiplication operator M��x�=x��x� acting in HªL2�R�. The operator M with domain D�M�
�� :x��L2�R�� is purely absolutely continuous with spectrum ��M�=R. Moreover, its spectral
easure is given by ����x�= �� ,Ex

M��= ���x��2.
We consider the rank one perturbation H�=M +�������. In order to verify our hypothesis, we

mpose on the vector � the following conditions.
�F0�: � is normalized in H.
�F1�: � belongs to the Sobolev space H2�R�.
�F2�: � has a unique zero at x=E0.
�F3�: �0�0 and � satisfy the relation

1 + �0

−�

� ���x��2

x − E0
dx = 0.

�F4�: ���E0��0, and ��C2 in a neighborhood of E0.
Clearly �H0� holds. On the other hand, conditions �F1�–�F3� imply hypothesis �H1�–H�5�.

lso, �F4� guarantees condition �H6�. By Theorem 4.1 we deduce the following result.
Theorem 4.2 (Friedrichs model): Assume that �F1�–�F4� holds. Then the sojourn time �����

as the following behavior:

lim
�→0

�2����� =
1

�

�0
4���10

���E0��2
,

r else if �0ª����−1 denotes the normalized eigenvector then

����0� 	
�→0 1

�

1

�2

1

��P�0,�0��0�E0��2
.

Actually conditions �F1�–�F4� can be relaxed by asking local properties, around E0, for the
ector �.

. Model M=X2

Another choice of the operator M is the multiplication by x2 in HªL2�R�, which it is purely
bsolutely continuous with spectrum ��M�= �0,��. Its spectral measure is just

�
� ��� = �0 if � � 0,

�
�����2 + ��
�− ����2�

2��
if � 
 0. �

gain, we consider rank one perturbations H�=M +�������. As we mentioned in the Introduction,
n order to apply our results we must choose � as g�M� times an adequate function, where g is a
uitable cutoff function. It is easy to verify that if we just take g�x�=x2 and �0 satisfies

1� �0 is in the Schwartz’ class and �0�x�
0, for all x�R,
2� �−�

� �x2−E0�x4��0�2=−1/�0,
3� �−�

� �x2−E0�x4��0�2��−�
� �x2−E0�2x2��0�2, and

4� �−�
� �x2−E0�2x4��0�2=1.

hen, with E0 positive and ��x�=g�M��x2−E0��0�x�=x2�x2−E0��0�x� all the hypothesis �H0�–�H6�

re satisfied.
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. SOJOURN TIME AND RESONANCES DEFINED BY ANALYTIC TRANSLATION

This section is concerned with the connection between the sojourn time and the resonance
idth which can be shown for the Friedrichs model in L2�Rn�, n�1. We first recall its definition.

Let e= �e1 ,e2 , . . . ,en� be a unit vector in Rn and consider the multiplication operator by the
unction e ·x=�i=1

n eixi, i.e., the operator

�M
��x� = e · x
�x� . �5.1�

e denote by D its natural domain. Let now ��L2�Rn�, ���=1 and denote by P the projector on
he vector �. Then the Friedrichs operators,

H��� = M + �P, � � R �5.2�

ith domain D are well defined in L2�Rn� as self-adjoint operators. We are interested in the study
f the sojourn time associated to the dynamics defined from the family of Hamiltonians �H� ,�
R� for a dense subset of vectors of L2�Rn� �Ref. 12, p. 88�. We shall estimate the time evolution

nder H��� and the sojourn time, following a method developed by Herbst in the context of Stark
ffect see, e.g., Refs. 3 and 4. From now we use the notation HªH���.

For ��R, define the following family of unitary transformations:

"
 � L2�Rn�, �U�
��x� ª 
�x − �e� . �5.3�

hen, U�; ��R is a strongly continuous one-parameter unitary group and

H� ª U�HU�
−1 = M� + �P�, M� = e · x − � , �5.4�

here P� is the projector on the span generated by the vector ��ªU��.
Our general assumption is the following.
�HA�: There exists some a
0 such that the vector valued function, R��→���L2�Rn� has

n analytic extension in the strip Saª �z�C , �Im z��a�.
We denote by Da the set of vectors satisfying the assumption �HA�. This set is a dense subset

f L2�Rn�.5

We extend P�, for ��Sa by

"
 � L2�Rn�, P�
 ª ���̄,
���

hich is an analytic family of rank one operators. Then �H� ;��Sa� is a self-adjoint analytic
amily of type A operators.8 Moreover, due to the Weyl theorem,14 we have that �ess�H��
�ess�H0,��=R− i Im �. Our first technical result is the following.

Lemma 5.1: Suppose that �HA� is satisfied. Then for a
 Im �
0 and 0���1, there exists a
ositive energy e such that

sup���H� − z�−1�; z � C, �Re z� � e, Im z � − Im ��1 − ��� � � . �5.5�

emma 5.1, together with the discreteness of the spectrum in �z�C , Im z
−Im �� imply that for

 Im ��0, the operators H� have only a finite number of eigenvalues localized in the compact
et �z�C ,0� Im z�−Im ��1−�� , �Re z��e�, 0���1. Some of them can be real, in that case
hey correspond to embedded eigenvalues for the self-adjoint operator H while the nonreal eigen-
alues correspond to resonances for the pair �M ,H� �see, e.g., Refs. 14 and 4�. Notice that the
pper bound on the number of eigenvalues given by the proof below diverges when a tends to 0.

Proof: Because of the unitary property for real �, it is sufficient to choose �= i�, a
�
0.
hen for z�C, Im z
−� we have

��Mi� − z�−1� � �� + Im z�−1. �5.6�
ecall that by the Aronszjan-Krein formula we get
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�Hi� − z�−1 = �Mi� − z�−1 − �
�Mi� − z�−1Pi��Mi� − z�−1

1 + ���−i�,�Mi� − z�−1�i��
. �5.7�

ence the lemma is proven if we show that the denominator on the right-handside �rhs� of �5.7� is
niformly bounded below by a strictly positive constant. Then consider the following integral:

I = 

Rn

dx
��i��x��2

��e · x − Re z�2 + �� + Im z�2�1/2 . �5.8�

or �
0 let ��ª �x�Rn , �e ·x−Re z���� and ��
c its complement, accordingly let

I� = 

��

dx
��i��x��2

��e · x − Re z�2 + �� + Im z�2�1/2

nd I�
c = I− I�. Since obviously

I� �
��i��2

�

e can choose �
0 such that I��1/4. On the other hand,

I�
c �

1

�� + Im z�
��
c

��i��x��2 dx

ut the rhs of this last inequality goes to zero as �Re z� goes to infinity, uniformly in Im z�
��1−��. Hence there exists a positive energy e such that for z�C, �Re z��e, Im z�−��1−��,

�
c �1/4 and then 1+ ���−i� , �Mi�−z�−1�i����1/2 which finishes to prove the lemma. �

We turn now on the dynamics defined by the operators �5.2�. Let �Ej� j=1,. . .,N be the real
igenvalues of H and �� j� j=1,. . .,N the associated orthogonal eigenprojectors. We know from Refs.
4 and 4 that for j=1, . . . ,N , �� j��� ,��Sa� are analytic families of projectors and that for
m ��0 they coincide with

� j��� = −
1

2�i



�z−Ej�=�

�H� − z�−1 dz, � 
 0 and small enough. �5.9�

ix Re �=0, Im �=�, 0���a and denote by �Zj� j=1,. . .,M the set of complex eigenvalues of Hi�

nd by ��̃ j�i��� j=1,. . .,M, the associated eigenprojectors defined through the Cauchy integral for-
ula as in �5.9�. We have the following.

Theorem 5.1: Assume �HA�. Let 0���a as above and 
�Da, then there exist 0���1
uch that for all t�0,

�
,e−itH
� =
t→�

�
j=1..N

e−itEj�
,� j
� + �
j=1..M

e−itZj�
̃−i�,�̃ j�i��
̃i�� + O
,��e−���1−���t� .

�5.10�

ere 
̃±i�ª �1−��i���
±i� and �ª� j=1. . .N� j. If H has no eigenvalue take �=0 on the rhs of
5.10) and similarly for the complex eigenvalues Zj of Hi�.

It is worth to notice, in particular to well understand �5.18�, that due to the analyticity and

nitary properties, the coefficients ��
̃−i� ,�̃ j�i��
̃i��� j=1,. . .,M are � independent.
Proof: By using the spectral theorem and since H has no singular continuous spectrum �H is
rank one perturbation of the purely ac operator M, see Ref. 8�, for every 
�Da, we have
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�
,e−itH
� = �
j=1..N

e−itEj�
,� j
� + 

R

d� Q
���e−it�. �5.11�

ere

Q
��� =
1

2i�
�G
̃�� + i0� − G
̃�� − i0�� , �5.12�

here

G
�z� ª �
,�H − z�−1
� . �5.13�

rom our previous discussion, it is clear that �G
̃�z� , Im z
0� has a meromorphic extension in
Im z
−�� given by

G
̃�z� = �
̃−i�,�Hi� − z�−1
̃i�� .

imilarly �G
̃�z� , Im z�0� has a meromorphic extension in Im z�� with the expression

G
̃�z� = �
̃i�,�H−i� − z�−1
̃−i�� .

oreover by using the formula

�H − z�−1 = −
1

z
−

1

z2H +
1

z2H�H − z�−1H

nd the analyticity properties evoked above, we have for 0
 Im z
−�, �Re z��e,

Q
�z� =
1

2i�z2 ��H−i�
̃−i�,�Hi� − z�−1Hi�
̃i�� − �H
̃,�H − z�−1H
̃�� �5.14�

hich together with Lemma 5.1 immediately implies

�Q
�z�� = Q
,�
 1

�z�2� �5.15�

f 0
 Im z
−��1−��, 0���1, and �Re z� large enough. Then the integral on the rhs of �5.11�
an be computed by using the Cauchy theorem,



R

d� Q
���e−it� = �
j=1..M

e−itZj �Res G
̃�z��z=Zj
+ e−���1−���t


R
d� Q
�� − i���1 − ����e−it�.

�5.16�

he parameter �, 0���1 is chosen such that the operator Hi� has no complex eigenvalues on the
ine ��− i��−�� ;��R�. Standard arguments show that the first term of the rhs of �5.16� gives the
econd term of the rhs of �5.10�. By using the estimate �5.15� we get that the second term of the
hs of �5.16� is O
,��e−��1−��t� so that �5.16� implies the theorem. �

Theorem 5.1 provides a general framework to study sojourn times associated to the family of
perators �H��� ,�
0� given in �5.2�, for the dense set of analytic vectors associated to the one
arameter unitary group �U� ,��R�.

According to the general context of this paper we consider the following situation. Suppose
hat H��0� has only one real eigenvalue E0 for some �0. Lemma 2.1 gives a necessary and
ufficient condition for this property to take place and Corollary 2.1 asserts that E0 is simple. Let
ª ��0���0� be the orthogonal projector onto the corresponding eigenvector. We know that E0

emains a simple eigenvalue of Hi���0� for a
�
0. Denote by �Zj� j=1,. . .,M the �eventual� com-

lex eigenvalues of Hi���0�.
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We also assume that, for � near �0 and ���0, the operator H��� has only continuous
pectrum. Then, Hi���� has no real eigenvalues and therefore, by the usual perturbation theory, the
perator Hi���� has an eigenvalue E��� near E0 with Im E����0 and eigenvalues �Zj���� j=1,. . .,M

ear �Zj� j=1,. . .,M.
Using the classical formulas of regular perturbation theory, see Ref. 8, Chap. 2, one gets with

ª�−�0,

E��� =
�→0

E0 + ���0,−i�,Pi��0,i�� − �2��0,−i�,Pi�Si��E0�Pi��0,i�� + O���3�

=
�→0

E0 + ���0,P�0� − �2�P�0,S�E0 + i0�P�0� + O���3� ,

here Si��E0� denotes the reduced resolvent of Hi���0� at E0, see Ref. 8, Chap. III, Sec. 6.5 for the
efinition of the reduced resolvent. Let

	 ª 2�2 Im�P�0,S�E0 + i0�P�0� , �5.17�

e the resonance width of E���; one has Im E���=− 1
2	+O��3�. One also obtains that �Zj���

Zj�=O��� and therefore �Im Zj���� remains uniformly away from zero for � small enough.
inally the perturbation theory gives the expansion of the eigenprojector associated to E���,

��i�,�� =
�→0

��i�,�0� + O���� with ��i�,�0� = ��0,i����0,−i�� .

efine now ��
± �the sojourn time in the future, respectively, in the past�

��
±�
� ª 


R±

��
,e−itH��0+��
��2 dt .

y using Theorem 5.1 one gets integrating �5.10� over R+ �notice that here 
̃=
�,

��
+�
� =

�→0 ��
−�,��i�,��
i���2

− 2 Im E���
+ O
,��1� =

�→0 ��
,�0��4

	
+ O
,���−1� .

ince clearly ��
− =��

+ we have proven the following.
Theorem 5.2: In the conditions stated above let 
�Da and assume in addition that 	 defined

n (5.17) does not vanish. Then for �=�0+�,

���
� =
�→0 ��
−i�,��i�,��
i���2

− Im E���
+ O
,��1� �5.18�

=2
��
,�0��4

	
+ O
��−1� , �5.19�

here �0 denotes the normalized eigenvector associated to the eigenvalue E0 of H��0�.
Remark 5.1: (a) Let us illustrate this result in the one dimensional case. Again with the

ronszjan-Krein formula

S�E0 + i0� = R0�E0 + i0� + �R0�E0 + i0��0,�0�� − �R0�E0 + i0�� + �R0�E0 + i0��

o that

1

2
	 = �2 Im�P�0,S�E0 + i0�P�0� = �2���,�0��4 Im�R�E0 + i0��0,�0� = ��2���0,P�0��2��0�E0��2

=
��2���E0��2

�4���6 =
��2����E0��2

�4���6 .

0 0
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irst we see that the assumption ���E0��0 guarantees that 	�0. Then �2����0�
���0 , P�0��−2��0�E0��−2+O��� which indeed is what we found in Theorem 4.1 with a more precise
stimate here on the rate of decay of the remainder.

(b) Instead of requiring that H��� has no real eigenvalue for � near �0 we could equivalently
emand that the resonance width 	 is not zero since as we have seen above E��0+��=E0

���0 , P�0�− 1
2	+O��3�.
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