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We study the dynamics of a classical particle moving in a punctured plane under
the influence of a homogeneous magnetic field, an electric background, and driven
by a time-dependent singular flux tube through the hole. We exhibit a striking
�de�localization effect: when the electric background is absent we prove that a
linearly time-dependent flux tube opposite to the homogeneous flux eventually
leads to the usual classical Hall motion: the particle follows a cycloid whose center
is drifting orthogonal to the electric field; if the fluxes are additive, the drifting
center eventually gets pinned by the flux tube whereas the kinetic energy is grow-
ing with the additional flux. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2723550�

I. INTRODUCTION

The motivation to study the dynamics of this classical system is to sharpen our intuition on its
quantum counterpart which is, following Laughlin’s13 and Halperin’s11 proposals, widely used for
an explanation of the integer quantum Hall effect. Of special interest is how the topology influ-
ences on the dynamics. In the mathematical physics literature Bellissard et al.5 and Avron et al.3,4

used an adiabatic limit of the model to introduce indices. The indices explain the quantization of
charge transport observed in the experiments.12 See Refs. 6, 9, 7, 8, and 10 for recent develop-
ments. We discussed aspects of the adiabatics of the quantum system in Ref. 2, its quantum and
semiclassical dynamics will be treated elsewhere. The dynamics of the classical system without
magnetic field were discussed in Ref. 1. We state the model and our main results.

Consider a classical point particle of mass m�0 and charge e�0 moving in the punctured
plane R2 \ �0�. Suppose that a magnetic flux line with time varying strength � pierces the origin
and further the presence of a homogeneous magnetic field of strength B orthogonal to the plane
and an interior electric field with smooth bounded potential V.

Let

�:R → R and V:R � R2 → R be smooth functions.

Denote q�
ª �−q2 ,q1�. The force on the particle at q�R2 \ �0� with velocity q̇ is

− e�Bq̇� −
�t�

2�

q�

�q�2
+ �qV� = e�q̇ ∧ rot�A� − �tA� ,

with

a�Electronic mail: asch@cpt.univ-mrs.fr

JOURNAL OF MATHEMATICAL PHYSICS 48, 052901 �2007�

48, 052901-10022-2488/2007/48�5�/052901/14/$23.00 © 2007 American Institute of Physics

Downloaded 11 May 2007 to 139.124.7.126. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp

http://dx.doi.org/10.1063/1.2723550
http://dx.doi.org/10.1063/1.2723550
http://dx.doi.org/10.1063/1.2723550


A���t�,q� ª �B

2
−

��t�
2��q�2�q� + t�qV�q� .

Remark that the electromotive force induced by the flux line has circulation e�t�, constant
torque e�t� /2�, vanishing rotation, and is long range with a 1/r singularity at the origin, we call
it the circular part. V is smooth on the entire plane so the circulation of the corresponding field is
zero. The total magnetic flux through a circle of radius R is �BR2−� if it encircles the flux line,
else �BR2. So the two fluxes are “opposite” if B and � have the same sign.

The equations of motions are Hamiltonian. For a point �q , p�= ��q1 ,q2� , �p1 , p2�� in phase
space

P = R2 \ �0� � R2,

the time-dependent Hamiltonian is

H�t,B;q,p� =
1

2m
�p − eA���t�,q��2.

Suppose

��− t� = − ��t� ,

then there is the time reversal symmetry

H�− t,− B;q,− p� = H�t,B;q,p� .

So in order to fix the ideas we convene that growing time means growing flux opposite to the
homogeneous flux and suppose furthermore

B � 0, �t��t� � �0 � 0.

Recall that when only the constant magnetic field is present, the particle follows the Landau
orbits: circles around a fixed center with the cyclotron frequency

� =
eB

m

and radius R such that the magnetic flux through the Landau circle satisfies e� /2���BR2�=H.
With the above convention this motion is clockwise.

If V=0 then intuitively the physics is the following: the additional field makes the center q
− �q̇� /�� drift orthogonal to the electric field. The constant torque exerced by the circular part
accelerates orbits which encircle the origin, the orbit shrinks with growing flux and grows with
decreasing flux; orbits not encircling the flux line should have constant radius.

We have the following results for the case �=�0t, V=0 �see Corollary 7.2�.

a. The above intuition is asymptotically correct. Furthermore

H�t,B����t�→−�

e�

2�
���t��

H�t,B�→��t�→+�const.

b. In the accelerating regime the center c is eventually trapped by the flux line, the particle is
spiraling outward

c�t�→��t�→−�const,
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	 �B

���t��
q�t����t�→−��cos�− �t�,sin�− �t�� .

c. In the decelerating regime the orbit ends up drifting diffusively orthogonal to the field

	 �B

��t�
q�t�→��t�→�const.

In addition we expand the solution up to an error O�1/ t3/2� �see Theorem �5.1��. We further
compute the adiabatic limit �i.e., the solution of the equations of motions averaged over the
Landau orbits� in the perspective to obtain information on the transition between the two dynam-
ics. We find �see Theorem �6.2�� that in the adiabatic limit the transition between the two dynam-
ics is sharp and that the center gets stuck after a finite time if there is no electric background; it is
a challenging problem to study if the adiabatic limit provides an approximation of the true dy-
namics.

For a general increasing flux and a background field whose torque is controlled by the con-
stant torque of the circular part we show �see Corrollary �7.1��

lim inf
��t�→−�

2�

e�

H�t,B�
���t��

� 0, lim inf
��t�→�

�Bc2�t�
��t�

� 0.

We may state our observation as follows: States if submitted to an accelerating flux line will
eventually become energy conducting; if no electric background is present they get trapped by the
flux tube.

We give two numerical illustrations in Figs. 1 and 2.

II. DYNAMICS OF THE FROZEN SYSTEM

Upon scaling q, p, t to dimensionless coordinates, which we call q, p, s, we work with the
Hamilitonian, H��s� where

H�s;q,p� =
1

2
�p − a�s,q��2,

with

FIG. 1. Typical trajectory of the Hamiltonian 1/2�p− ��1/2�q�−s�q� /q2���2.
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and N, Ṽ smooth functions,

N�− s� = − N�s�, �sN � 1,

and � a dimensionless parameter. We discuss the scaling in Sec. VII.
The function aE is smooth on R2 \ �0� with rot�aE�=0. Define E�s� :R2 \ �0�→R2 by

E�s� ª − �saE��s� = ����sN���s�
q�

q2 − �qṼ�q�� . �1�

We discuss first the solution of the equation of motions for a frozen time 	�R. As
�saE�	 ;q�=0, the solution of the frozen equations generated by the Hamiltonian H�	� goes along
the lines of the classical Landau problem �which means the case �=0, V�q�=0�.

For 	�R define

1. the velocity field: v�	� :P→R2, v�	 ;q , p�ªp−a�	 ;q�;
2. the center: c�	� :P→R2, c�	 ;q , p�ªq−v��	 ;q , p�;
3. the angular momentum: L :P→R, L�q , p�ªq∧ p.

Denote the Poisson bracket: 
f ,g�=�qf�pg−�pf�qg.

We list some useful formulas.
Proposition 2.1: The following identities hold as functions on phase space P for all 	�R:

1. 
v1 ,v2�=1, 
c1 ,c2�=−1, 
c ,c2 /2�=c�, 
ci ,v j�=0;
2. H= 1

2v2, 
v ,H�=−v�, 
c ,H�=0;
3.

1

2
c2�	� = H�	� + L − q ∧ aE�	� = H + L + �N�	� − 	q ∧ �qṼ�; �2�

4. the frozen flow �q�	 ;s� , p�	 ;s�� defined by �sq�	 ;s�=�pH�	�, �sp�	 ;s�=−�qH�	�,

FIG. 2. Typical trajectory of the Hamiltonian 1/2�p− ��1/2�q�−s�q� /q2�+s�qV��2 with the background potential V chosen
to be V�x ,y�=1/10�sin x+sin y� on a region �−10,10�2. The background shows the potential lines of V�x ,y�−arg�x ,y�.
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�q�	 ;0� , p�	 ;0��= �q , p� is

q�	;s� = c�	� + cos�s�v��	� + sin�s�v�	�

p�	;s� =
1

2
�c��	� + cos�s�v�	� − sin�s�v��	�� + aE�	;q�	;s�� .

Proof:

a. 1, 2, 3: 
v1 ,v2�= 
p1−a1�	 ,q� , p2−a2�	 ,q��=rot�a�	��=1, 
qi ,v j�=
ij. H= 1
2v2 so 
q ,H�

=v , 
v ,H�=−v�. c2=q2+v2+2q∧v; on the other hand, L=q∧v+ 1
2q2+q∧aE�	 ;q�.

b. 4: The force is −q̇� independently of 	; Newton’s equation q̈=−q̇� is readily verified. On
the other hand, p=v+a=a+c�−q�=c�− 1

2q�+aE�	 ;q�. So p�s� follows from q�s�. �

Remark 2.1:

1. Since the energy H�	�= 1
2v�	�2 is conserved under the frozen flow, the projections of the

trajectories to q space are circles around c�	� with radius 	2H�	�. An orbit encircles the
origin (has nontrivial homotopy) in R2 \ �0� if and only if

c2 � 2H ⇔ L − q ∧ aE�	;q� � 0;

2. 1
2c2= 1

2 �c��2 is the Hamiltonian for the reversed magnetic field.

III. GENERAL FEATURES

Set �=1 and denote by abuse of notation O�s�ªO�s ;q�s� , p�s�� for an observable O.
We have the following general qualitative behavior.
Proposition 3.1: Suppose that there exists a� �0,1� such that for all s ,q:

�q ∧ �qṼ�q�� � �sN�s�a ,

then for any initial condition there exists a unique “hitting” time s0 such that

±c2�s� � ± 2H�s�, ± s � ± s0.

Furthermore,

lim inf
N�s�→−�

2H�s�
�N�s��

� �1 − a� � 0,

lim inf
N�s�→�

c2�s�
2N�s�

� �1 − a� � 0.

For radially symmetric potentials it holds

�q ∧ �qṼ�q�� = 0 ⇒
c2�s�

2
− H�s� = s − s0. �3�

Proof: By Eq. �2� and as 
c2 ,H�=0,

d

ds
� c2

2
− H� = �s� c2

2
− H� = ��sN − q ∧ �qṼ� � �sN�1 − a� � �1 − a� ,

this gives the first claim. The second follows from positivity,
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c2�s�
2

� H�s� + � c2

2
− H��0� + �1 − a�N�s� � � c2

2
− H��0� + �1 − a�N�s� ,

which implies

lim inf
s→�

c2�s�
2N�s�

= lim inf
N�s�→�

c2�s�
2N�s�

� �1 − a� .

Analogously,

lim inf
s→−�

H�s�
− N�s�

= lim inf
N�s�→−�

H�s�
�N�s��

� �1 − a� .

IV. ACTION ANGLE COORDINATES

In order to discuss the dynamics we introduce action angle coordinates. The frozen dynamics
as discussed in Proposition 2.1 suggests to take as coordinates the angles and absolute values of c
and v�, i.e., with the notation,

e�
� ª �cos 
,sin 
� ,

q = c + v� = �c�
c

�c�
+ �v�

v�

�v�
¬ �c�e��1� + �v�e�− �2� ,

p =
1

2
�c� + v� + aE�	;q� =

1

2
��c�e���1� − �v�e��− �2�� + aE�	;q� .

Motivated by this we define for 	�R,

q�	;�,I� ª 	2I1e��1� + 	2I2e�− �2� ¬ q��,I� ,

p�	;�,I� ª
1

2
�	2I1e���1� − 	2I2e��− �2�� + aE�	;q�	;�,I�� ,

and denote by C the nullset 
�� , I� ;�1+�2=� , I1= I2� where q�	 ;� , I�=0, by D the nullset

�q , p� ;v2=0 or c2=0�. Thus for each frozen time 	�R the transformation to action angle coor-
dinates T�	� is defined by

T�	�:S1 � S1 � 
�I1,I2�;I1 � 0,I2 � 0� \ C → P \ D ,

T�	;�,I� = T�	;�1,�2,I1,I2� ª �q�	;�,I�,p�	;�,I�� .

We have the following.
Lemma 4.1:

1. T�	� is a canonical diffeomorphism.
2. T−1�	� is determined by

I1�	� =
c2�	�

2
=

1

2
�p − �−

1

2
q� + aE�	;q���2

,

I2�	� = H�	� =
1

2
�p − �1

2
q� + aE�	;q���2

,
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e��1�	�� =
c

�c�
�	� =

�1/2�q − p� + aE
��	;q�

	2�H�	� + L − q ∧ aE�	;q��
,

e�− �2�	�� =
v�

�v�
�	� =

�1/2�q + p� − aE
��	;q�

	2H�	�
.

Proof: These identities follow immediately from Proposition 2.1:


I1,I2� = 0, 
e��1�,e��2�� = 0, 
I1,e��2�� = 0 = 
I2,e��1�� ,


e��1�,I1� =
1

�c��c,
c2

2

 =

c�

�c�
= e���1� .

On the other hand, 
e��1� , I1�=e���1�
�1 , I1�, so 
�1 , I1�=1. Similarly, 
�2 , I2�=1. �

We now write the equations of motion for time-dependent flux in these action angle coordi-
nates. As rot�E�=0 there exists a �possibly multivalued� function which we denote by m
=m�s ;q� such that

�qm�s� = E�s� = − �saE��s� .

Then T�s� is generated by m:

�sT�s;�,I� = �0,�saE��s,q��,I��� = ��pm,− �qm� � T�s;�,I� .

Denote by U�s� :P→P the Hamiltonian flow of H��s� defined by U�s�ª �q�s� , p�s��,

q̇�s� = �pH, ṗ�s� = − �qH, �q�0�,p�0�� = �q,p� ,

then for the flow Û�s�= ���s� , I�s�� in action angle coordinates defined by

T�s� � Û�s� = U�s� � T�s = 0� ,

it holds

�̇�s� = �IK � Û�s�, İ�s� = − ��K � Û�s�, ���0�,I�0�� = ��,I� ,

where the Hamiltonian in action angle coordinates, K=H �T−m �T, is

K�s;�,I� = I2 − m�s;q��,I��

and the equations of motion are �with the notation �·,·� for the scalar product�

�̇�s� = �IK = �0

1
� − �E�s,q��,I��,�Iq� , �4�

İ�s� = − ��K = �E�s;q��,I��,��q� . �5�

Remark 4.1: Another way to derive these equations is to start from Newton’s equation,

q̈ = − q̇� + E�s;q� .

From the very definition of c and v one gets

ċ = − E��c + v��, v̇ = − v� + E�c + v�� ,

which in action angle coordinates gives Eqs. (4) and (5).
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V. LARGE TIME ASYMPTOTICS, POTENTIAL FREE CASE

For the case N�s�=s, V=0 we can precise the large time asymptotics and develop the solution
up to order O�1/s3/2� We have

E�s� =
q�

q2 .

So m�q�=arg�q�. Observe that

K = K��,I� = I2 − arg�	2I1e��1� + 	2I2e�− �2��

is an integral of motion.
Theorem 5.1: Let V=0, N�s�=s. Denote by I= �I1 , I2�, �= ��1 ,�2� the solution of the equa-

tions of motion (4) and (5),

�̇�s� = �IK���s�,I�s��, I�0� = �I1
0,I2

0� ,

İ�s� = − ��K���s�,I�s��, ��0� = ��1
0,�2

0� ,

then the following asymptotic behaviors hold.

a. In the future, s→�.
The following limits exist and define the constants a0�0, b0:

lim
s→�

I2�s� ¬
a0

2

4
, lim

s→�
��1�s� + �2�s� − s� ¬ b0, lim

s→�
�I2�s� − �1�s�� = K .

The asymptotics are

I2�s� =
a0

2

4
−

a0

2
sin�s + b0�

1
	s

+
1

4
�1 +

a0
2

2
sin�2�s + b0���1

s
+ O� 1

s3/2� ,

I1�s� = I2�s� + �s − s0� ,

�1�s� =
a0

2

4
− K −

1

4s
+ O� 1

s3/2� ,

�2�s� = s + b0 −
a0

2

4
+ K −

1

a0
cos�s + b0�

1
	s

+
1

8
�− 1 + 2 cos�2�s + b0�� −

4

a0
2 sin�2�s + b0���1

s

+ O� 1

s3/2� ,

with s0 defined as in Eq. (3).
b. In the past, s→−�.

The following limits exist and define the constants ã0�0, b̃0:

lim
s→−�

I1�s� ¬
ã0

2

4
, lim

s→−�
��1�s� + �2�s� − s� ¬ b̃0, lim

s→−�
�I2�s� + �2�s�� = K .

The asymptotics are

I1�s� =
ã0

2

4
+

ã0

2
sin�s + b̃0�

1
	�s�

−
1

4
�1 −

ã0
2

2
sin�2�s + b̃0���1

s
+ O� 1

�s�3/2� ,
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I2�s� = I1�s� − �s − s0� ,

�1�s� = s0 + b̃0 +
ã0

2

4
− K +

1

ã0

cos�s + b̃0�
1

	�s�
,

−
1

8
�1 − 2 cos�2�s + b̃0�� −

4

ã0
2 sin�2�s + b̃0���1

s
+ O� 1

�s�3/2� ,

�2�s� = s − s0 −
ã0

2

4
+ K −

1

4s
+ O� 1

�s�3/2� .

Proof: We give an outline of the main steps of the proof for the case t→�. Some particular
computations in the proof turned out to be quite tedious and thus computer algebra systems were
employed to facilitate them.

Suppose t�0.
Step 1. From Eq. �2� we know I1�s�− I2�s�= �s−s0�. So the equations of motion only involve

Jª I1+ I2 and �ª�1+�2 and transform to

�̇ = 1 +
s sin �

	J2 − s2�J + 	J2 − s2 cos ��
, J̇ =

s

J + 	J2 − s2 cos �
,

Step 2. Do a second transformation,

x1 ª
	J2 − s2 cos �, x2 ª 1 + 	J2 − s2 sin � ,

the J, � equations transform to

ẋ1 −
x1

s
+ x2 = F�s,x1,x2�, ẋ2 − x1 = 0,

with

F�s,x1,x2� ª 1 −
x1

s
−

s

	x1
2 + �x2 − 1�2 + s2 + x1

.

The corresponding homogeneous system is equivalent to

ẍ1 −
ẋ1

s
+ �1 +

1

s2�x1 = 0 or sÿ + ẏ + sy = 0,

with y defined by x1=sy. The latter is Bessel’s equation of order 0 so one has two independent
solutions of the homogeneous system:

�x1�s�
x2�s�

� = �sJ0�s�
sJ1�s�

� and �x1�s�
x2�s�

� = �sY0�s�
sY1�s�

�
with the Bessel functions Jm �Ym� of the first �second� kind.

Step 3. Transform the x-differential equation to the integral equation,

x1�s� = c1sJ0�s� + c2sY0�s� −
�s

2
�

s

�

�Y0�s�J1��� − J0�s�Y1����F��,x1���,x2����d� ,
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x2�s� = c1sJ1�s� + c2sY1�s� −
�s

2
�

s

�

�Y1�s�J1��� − J1�s�Y1����F��,x1���,x2����d� ,

where the numbers c1, c2 involve the initial conditions.
The equation is of the form x=K�x�; the solution is constructed as the limit of the sequence

xn+1=K�xn� starting from x0=0. To verify the convergence one can apply yet another substitution
x�s�=y�s� /	s, G�s ,y�=s−1/2F�s ,s−1/2y�. Consequently, the integral equation takes the form

y�s� = y0�s� − �
s

�

F�s,��G��,y1���,y2����d� ,

where

y0j�s� = c1
	sJj−1�s� + c2

	sY j−1�s�, j = 1,2,

F j�s,�� =
�

2
	s��Y j−1�s�J1��� − Jj−1�s�Y1����, j = 1,2.

Considering the new integral equation in the Banach space L���s* ,��� � R2, one can show that the
iteration process is indeed contracting provided s*�1 is sufficiently large. It is then straightfor-
ward to derive from the integral equation the asymptotic expansion of the solution x�s�. One finds
that

x�s� = a0e�s + b0�	s + �a0
3

8
e�s + b0� −

5

8
a0e��t + b0�� 1

	s
+ O�1

s
� .

Step 4. Transforming back first to the J, � then to I1, I2, �1, �2 variables gives the claimed
asymptotic expansion. �

VI. AVERAGED DYNAMICS

In the perspective to investigate the behavior at the transition point between the two dynamics
in the case of small epsilon we analyze the equation averaged over the fast angle �2. This might
provide a good approximation for the actions for small � for times of order 1 /�.14 We consider
again the case N�s�=s. We set up the averaged equations and show that in the adiabatic limit the
energy grows if and only I1� I2.

We then solve the equations explicitly for the case V=0 and show that in the adiabatic limit
the transition between the pinned and the “Hall dynamics” happens for a unique value of the
driving flux and that the center moves if and only if the Landau orbit does not encircle the origin.

We apply averaging with respect to the fast angle �2 to the system �4� and �5�.

E�s� = ��q�

q2 − �qṼ�q�� .

Further, choose m and thus K,

m�q� = ��arg�q� − Ṽ� ,

K��,I� = I2 − m�	2I1e��1� + 	2I2e�− �2�� .

Denote the average of a function f on the phase space by
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fav��1,I� ª
1

2�
�

0

2�

f��1,�2,I�d�2.

In particular, for a function f defined on the plane thus depending only on the variable q we denote

fav��1,I� =
1

2�
�

0

2�

f�	2I1e��1� + 	2I2e�− �2��d�2.

Making use of the identities

� q�

q2 ,�Iq� =
sin��1 + �2�

q2 � 	I2/I1

− 	I1/I2
�, � q�

q2 ,��q� = ���I1 − I2�/q2� + 1/2

��I1 − I2�/q2� − 1/2
� ,

the system �4� and �5� reads

�̇�s� = �0

1
� − �

sin��1 + �2�
2�I1 + I2 + 2	I1I2 cos��1 + �2��

� 	I2/I1

− 	I1/I2
� + ��IṼ�q�I,��� ,

İ�s� = �
I1 − I2

2�I1 + I2 + 2	I1I2 cos��1 + �2��
�1

1
� +

�

2
� 1

− 1
� − ���Ṽ�q�I,��� .

The averaged quantities are readily calculated: using

� 1

q2�
av

=
1

2�I1 − I2�
, � sin��1 + �2�

q2 �
av

= 0,

one finds for the averaged vector field

��IK�av��1,I� = �0

1
� + ��IṼav��1,I� − ���K�av��1,I� = �� ��I1 � I2�

− ��I1 � I2�
� − ����1

Ṽav��1,I�

0
� ,

�6�

where we used the binary function �: ��True�ª1, ��False�ª0.
Remark 6.1: Remark that the averaged vector field is the Hamiltonian vector field derived

from the from the “averaged” Hamiltonian Kav. Indeed, using the splitting of arg�q�, which is a
multivalued function defined on the covering space of R2 \ �0�, into a linear and oscillating part,

arg�q��,I�� =��1 + arg��1,0� +	I2

I1
e�− �1 − �2�� if I1 � I2

− �2 + arg��1,0� +	I1

I2
e��1 + �2�� if I2 � I1,�

and the equality

�
0

2�

arg��1,0� + ae�s��ds = 0 for 0 � a � 1,

one finds that for

Kav��,I� ª I2 − ����1��I1 � I2� − �2��I1 � I2�� − Ṽav��1,I�� ,

it holds ��Kav= ���K�av, �IKav= ��IK�av.
The result on the averaged dynamics now is as follows.
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Theorem 6.1: Let N�s�=s. Denote by J= �J1 ,J2�, �= ��1 ,�2� the solution of the averaged
equations (6)

�̇�s� = �IKav���s�,J�s��, J�0� = �J1
0,J2

0� ,

J̇�s� = − ��Kav���s�,J�s��, ��0� = ��1
0,�2

0� ,

then it holds the following.

1. Let V=0, denote �J=J2
0−J1

0 then

J�s� = min
J1
0,J2

0� + ��s − �J�� ���s � �J�
− ���s � �J�

� ,

��s� = � �1
0

�2
0 + s

� .

2. For any V and any s1 ,s2�R,

�J2�s2� − J2�s1�� = ���
s1

s2

��J1�u� � J2�u��du� .

Proof: Using that for V=0 it holds J1�s�−J2�s�−�s=�J the first assertion follows by inspec-
tion. The second assertion follows from integration of Eq. �6�. �

Remark 6.1:

1. Loosely speaking the second assertion of the theorem means that, on the average, one has

�energy change� = �flux change through the orbit during stay time� ,

where the stay time means the time where the “orbit surrounds the origin.” This should be
like this as the change in energy equals the work of the electric field along the orbit:

H�s;q�s�� − H�s0;q�s0�� = �
s0

s

�aE�s�,ds� .

2. In situations where the averaging approximation is valid one gets estimates of the type
�I�s�−J�s��=O��� for �s��O�1/��. Because of the singular behavior of the averaged equa-
tion it is a challenging problem to investigate if such an estimate is true or not and how the
error would depend on the initial conditions.

3. In the case when a smooth potential is present in view of the second assertion of the above
theorem, it would be interesting to investigate if the kinetic energy only fluctuates by small
amounts as soon as the particle is in the region c2 /2�H.

4. Remark that a finite time adiabatic analysis would apply also to the case where � is a
switching function which is linear for some time.

VII. SCALING

Let T, L, B, ��� be units of time, length, magnetic field, and flux. Define dimensionless
parameters T�¬�−1; ��� / �2�BL2�¬�, denote N�s�ª��sT� / ��� and choose L such that �=1
then

H�t;q,p� =
�e

2�
���H�t/T,q/L,p/�eLB�� ,

where
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H�s;q,p� =
1

2
�p − a�s,q��2,

with

and

Ṽ�q� ª
2�T

e���
V�Lq� .

The scaled function �qsc�s� , psc�s��ª �q /L�s /�� , p / �eBL��s /��� then solves the Hamilton equa-
tions for the Hamiltonian H��s�.

Corollary 7.1: (To Proposition 7.1). Suppose that the torque of the background field is smaller
than the circular one, i.e., that there exists a� �0,1� such that for all t, q:

e�q ∧ �qV�q�� � e
�t��t�

2�
a ,

then for any initial condition there exists a unique hitting time t0 such that

±�Bc2�t� � ±
2�

e�
H�t,B�, ± t � ± t0.

Furthermore for any initial condition we have

lim inf
��t�→−�

2�

e�

H�t,B�
���t��

� �1 − a� � 0,

lim inf
��t�→�

�Bc2�t�
��t�

� �1 − a� � 0.

�

We have

H�t,B� =
e�

2�
���I2���t�, H�t,− B� =

e�

2�
���I1���t� ,

q�t� = Lqsc��t�, qsc = 	2I1e��1� + 	2I2e�− �2� .

Corollary 7.2: (To Theorem 5.1). Let ��t�= ���t /T, V=0. The following limits are valid for
any fixed initial condition:

�Bq2�t�
���t��

→���t��→�1,

H�t,B�
���t��

→��t�→−�

e�

2�
←��t�→�

H�t,− B�
��t�

,

H�t,B�→��t�→�

�a0
2

4
,
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H�t,− B�→��t�→−�

�ã0
2

4
,

�B
	���t��

q�t�→t→�e�a0
2

4
− K� ,

	 �B

���t��
q�t��t→−�e�− �t� .

Remark also that for the rescaled center it holds

H�t,− B� =
1

2m�2c2

so

�Bc2�t��t→���t� .
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