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Abstract. Berry's Phase is given by integration of a characteristic two form. We
consider integrable systems defined by Weyl quantized classical Hamiltonians.
It is shown that the limit of h/i times this two form is the curvature of the classical
connection whose holonomy is the Hannay angles. A result of this type was
derived by Berry [B2].

Introduction

Consider a quantum system whose dynamics is determined by a family of self adjoint
Hamiltonians on a Hubert space depending smoothly on several parameters.
Consider furthermore a region of energies such that the corresponding spectral
subspace - defined by a projection P - also varies in a smooth manner.

Thus a vector bundle over the manifold of parameters is defined. As it is
embedded in the trivial Hubert bundle Pd is a natural connection on it - d denotes
differentiation with respect to the parameters. It is well known [K], [A-S-Y] that as
the parameters are driven adiabatically slowly in time the dynamical evolution
starting in the spectral subspace is essentially the parallel - adiabatic - movement
induced by this connection.

Curvature and holonomy effects have gained considerable interest in chemistry
and physics. This was initiated by the work of Mead-Truhlar [M-T], Berry [B] and
Simon [S] who first recognized the geometrical meaning.

We are interested in the quantum two form tr PdPdP which represents the first
Chern class of the bundle. Integrated over the interior of a contractible loop it gives
Berry's Phase in the case of a line bundle.

Let the operators be given by quantization of classical Hamiltonians. All objects
then depend on a semiclassical parameter h. Consider a sequence of eigenvalues
approaching a given classical energy as h goes to zero and the corresponding
eigenprojections P.
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Our question is:
Is there a limit of XxPdPdP as h goes to zero and how can this be interpreted
geometrically?

We proceed as follows: If the classical flow is ergodic on the energy shell it is known
[H-M-R] that - morally - the semiclassical limit of tr PA is <α> for a Pseudo-
Differential Operator (i^DO) A with symbol a, < > denoting the mean over the
energy shell. So we should like to approximate dP in some sense by a i^DO.

This can be achieved with an operator whose symbol solves an equation which is
- morally - {•, f(h)} = df(h), where h is the classical Hamiltonian and / a suitable
function.

As it is not clear whether such an equation admits smooth solutions for general
ergodic systems we are forced to restrict ourselves to the integrable case which is
ergodic in the sense that the joint flow of the commuting constants of motion is
ergodic on the joint energy torus. Here we can solve the equation for the symbol and
use the solution for the computation of the limit of the quantum two form.

In geometric terms our result may be described as follows: For integrable
systems a manifold of fixed actions in parameter-phase space is a torus bundle on
which a natural connection is given. This was recently shown by [M], [Kn].

We shall show that tr PdPdP multiplied by h/i tends to the curvature of this
connection for ft->0. Here P is the projection on the joint energy space of n
commuting Hamiltonians - n the number of freedoms. A result of this type was
derived by Berry [B2] in a special coordinate system.

For more general systems one might define a smoothed out quantum two form
which can be expanded asymptotically in h without any assumptions on the classical
flow. This was suggested by [Se] and [S-T].

In the next section we shall state the assumptions on the system and describe the
strategy. In Sect. 2 a differentiable functional calculus for φΌOs will be developed
and the classical equation will be solved. Section 3 is dedicated to the proof and
interpretation of the results for integrable systems. Finally in Sect. 4 we prove that
the smoothed out quantum two form admits an asymptotic expansion in h.

1. Assumptions and Strategy

By quantization of Hamiltonian functions we want to obtain a family of selfadjoint
operators which is differentiable in norm-resolvent sense. This is assured by the first
two sets of hypotheses.

For a positive continuous function w on R 2 w denote

Daf

w

S(w) is a Frechet space in the topology defined by the seminorms || | | w α .
Let n, d be elements of N, UQCZJR0 be an open ball around zero. A function

h:U0xΊR2n^Wi satisfies the conditions (HI) iff:
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(i) *(κ)eC»(]R2") (κeU0),
(ii) h(κ,p)>y (foraγ>0, (κ,p)eUoxR2"),

(iii) for κeU0 3c>0, iVeN such that h(κ,p)^h(κ,q)(l + \p-q\)jV for all
p,qeJR.2n,
(iv) h(κ)eS(h(κ))(κeU0).

For quantization we use the Weyl scheme: For φe6^(W), he(0,1), κeUo,

h(κ)(x,hD)ψ(x): = ̂  £ exp (l {x-y,ξ)jh(κ, "ψ-., ξjψiy)

The following statement is known cf. [H-R]:

Theorem 1. Let h satisfy (HI), then

h(κ)(x, hD) is essentially selfadjoint for KE UO .

Suppressing the dependence upon h we denote the closure by H(κ).
Conditions (H2) are in addition to (HI):

(i) ί τ ^ ^ ^ > 0 (some c, (κ,p)eUo x R2"),

(ii) heCHUotSihφ,-))).

They are sufficient for differentiability:

Theorem 2. Let h satisfy (HI), (H2). For Vε>03?yG(0, l)V/z<ί7Vze<C\[y-ε, oo)
the following holds:

(i) zGQ(H(K)) (κeU0) (* resolvent set *).
(ii) (H(-)-zY1 eCW^BίL2^))).

(iii) There exist r}(z, )eCγ{U0,S(\)) (/eN0) such that for NeΊN0

φ

in Uo. Θ(\) is ^(U^BiL2)) uniformly in h.

Proof. We get this extending the construction of the parametrix used in [H-R] to the
parameter dependent case. Recall the definition of the # operation [Hδr]:

is a continuous bilinear map with the property

ax # a2(*, hD) = aγ (x, hD)a2(JC, hD) .

For 7VGN0 exists sNeS(w1w2) such that

N 1 /hi V
a1φa2(x,ξ)= X — I — σ(Dx,Dξ;Dy,Dη)\ aϊ(x,ξ)a2(y,η)\(x>ξ)=iy>η)

j=o J - \ z /

where



640 J. Asch

Define rj(z, κ)sS(l/h(κ)) such that

(h-z)(x,HD) X V Σ Vj
7=0 j=O

with δN(z, ft)eS(l), sup \\δN(z, h)(x, hD)\\ < oo.
h

Then ^ Ξ O by construction, zeρ(H(κ)) and

From the explicit form of r ; and as # is bilinear and continuous one sees:

implies H'1 eC1 (U0,B(L2)) uniformly in h<η.

For Oφzeρ(H) differentiability of (H( )-z)"1 and 0(1) follow from

. D
z

Let us now state the problem more precisely.
For n functions hv satisfying (HI), (H2) suppose (H3):

Fix a classical "energy" ^ e l R " and consider sequences Eζsσd(Hv(0)) (* discrete

spectrum *) with <£#,..., ^ π > -^^ 0 (ft-^0).
By Theorem 2 the corresponding eigenprojections P* are C 1 as bounded

n

operators for every h in a vicinity J^ of 0. So is P Λ : = Π P*> which by the
v = l

commutativity assumption is the projection on the common eigenspace. We are
interested in the limit as h tends to zero of

tr PhdPhdPh\κ=0 .

In order to apply φΌO techniques the operator in tr P( ) has to be regularized.
We shall suppress the index h.

To illustrate our strategy we remark that [dP, P] solves

dP=[;P] ,

which implies for its (pathwise) flow U, U(0) = 1:

U(κ)P(0) = P(κ)U(κ) .

Hence the physical significance of [dP, P] is to generate adiabatic motion.
We shall demonstrate the following points: Firstly that a generator of classical

adiabatic motion (in a sense to be explained) exists for our systems, secondly that the
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operator obtained by quantization solves the commutator equation up to an error
small in ft, and finally that this is sufficient for the solution of our problem.

To do this we employ the following useful representation of dP which we state
without proof.

Lemma 3. Let Hbe self adjoint on a Hilbert space, A c σ(H) separated by a nice closed
curve Γ from σ(H)\A. Let g : IR-+IR be measurable such that there is a nice closed
curve Γg which separates g(A) from g(σ(H)\A). Then

P(A):=-^- $(H-zΓ1dz=-^ J (g{H)-z)-Uz .
2πι Γ 2πι fg

Corollary 4. Suppose that f: IR-»1R satisfies the g conditions of Lemma 3 for all
κeU0, ve{l,...,/i}, Ax

κ = {E;{κ)}, H=Hγ(κ). If furthermore f(Hv) is in
C\U0,B(L2)\then

2πι Γ v

The corresponding representation of dP is obtained via the Leibnitz-rule.
A one form M on ΊR0 with values in the bounded operators on L2(R") which

satisfies
df(Hv) = [M,f(Hv)] for all v

would fulfill as well

dPv=[M,Pv] for all v .

It will be shown that it is in fact sufficient for the last relation to establish the first on
the off-diagonal with respect to the decomposition 1 = P v + β v , namely

The Leibnitz-rule then implies that a simultaneous solution at K = 0 for all v of

solves dP=[ ,P] at κ = 0.
It will be sufficient for the solution of our problem to find such a one form with

regular values which solves (*) up to a semiclassical small error. In order to find this
we will solve the classical equations corresponding to (*) and quantize the solution.

2. Differentiable Functional Calculus and the Classical Equation

We shall develop a suitable tool for the semiclassical analysis and solve the classical
equations corresponding to (*). For re JR. denote

Sr: = {/ e C» (R) supp /<= (0, oo),

||/||(f[>: = sup |(1 +£)*-'/«>(£)| < oo, (*εN0)} ,
EeW.

which if equipped with its seminorms is a Frechet space.
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Theorem 5. Let f be in C 1 ^ , Sr)for anr< - 2 , assume (HI), (H2) on h. Then

(i) /(',#
(ii) There exist /, ( ) e C1 ({70,5(1)) (Je^o) sucn that for NelN0,

f(κ,H(κ))=N_
j=o

with Θ{\)EC\U0,B(L2)) uniformly in h.
(iii) fo(κ,p) = f(κ,h(κ,p)\ f=0, dfj(x,

(* d always denotes the differential with respect to K *).

Proof Again this is by extension of results of [H-R] to parameter dependence. We
give an outline of the ideas. Denote

Mf(s,κ): = Ί Es~1f(κ9E)dE (>eρ + ΠR,ρe(0, -r))

the Mellin transformation of /. Mellin inversion formula implies via the spectral
calculus

f(κ,H(κ))=-^ J Mf(s,κ)H-s(κ)ds (ρe(0,-r)).
Z π l ρ + iJR.

Mf is C1 with respect to K in each of the norms given by

sup \(\ + \lms\k)Mf(s)\
seρ + iΊR.

H~s has the representation

for any conical curve Γθ with opening angle 2 0 surrounding the spectrum oϊH(κ) in
the right half plane.

Using the identity

i _ J L Λ r _ i ^ (zeρ(ίO\{0})

and Theorem 2 one deduces that H~s(-) is C1 in the norm

sup (1 + |Im s\k) ~γ ||Operator (s) ||

for ρ>2 and some
Furthermore it follows from Theorem 2 that # ~ s has an asymptotic expansion

by regular operators with Weyl symbols differentiable in the S(l) norms weighted in
the same manner. This implies the assertion. •

The result carries over to functions f(Hγ,...,Hn). We shall need only the
following statement which we cite from [Ch].
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Theorem 6. For /GC0°°(Rn) there exist fjsS(i) (/eN0) such that for Ne¥l0,

N

f(Hl9...9Hn)=Σ hjfj(x,hD) + hN+ίΘ(\) .
i=o

In particular fo(p) = f(hl9....9hn) (p) (peJR2"), ^=0.

We are now able to attack equations (*).
Weyl calculus implies that the first term in the asymptotic expansion of a
commutator is the Poisson bracket. Thus the classical equations for (*) are -
modulo terms constant on the energy torus -

df(hv) = { ,f(hv)} at 7c = 0 (ve{l,...,«}) .

If the classical system is integrable this system of PDEs can be solved.
Denote by h the map h : R 2 M - > R M , h(p) : = (h±(p),...,hn(p)) at κ = 0.

In addition to the assumptions already made we suppose (H4) at κ = 0:

V vhγ,..., Vphn are linearly independent in a vicinity Vofh~1(E0), h\v is proper,

h~1(E0)czR2M is connected.

(H3) implies {hλ,hv}=0 for all λ, v. By the Theorem of Liouville ArnoΓd
there are neighborhoods U of h~1(E0), U1 of Eo, an open set £/2<=Rπ and
diffeomorphisms

i//:JnxU2-+U ,
such that

dyiΛdxi , φohoψ(χ,y)=y ((jcj)eFxί/2) .

Denote by φv the components of φ and by πv the flow oίφv°h. Then it holds for the

joint flow π(t9p): = π1(t1.9π2(t29...9πn(tH9p))) ((*,/>)eR"x C/):

n{t9p) = q (p,qeU such that h(p) = h(q)9 a suitable teΈn) .

For /eC°°(C7) define the mean

The solution of the classical equations will be consequent on

Lemma 1. Assume (HI),...,(H4). Consider bμeC™(U)(βe{l9....9n}) with <bμy

{bμ,φvoh} = {bv,φμoh}(μ,ve{U...,n}).
There exists an αeC°°(C/) such that

{a,φμoh}=bμ
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Proof. Pick an ω e 1RΠ such that for some norm on Rw,

\(ω,k)\^y\\k\\-σ (keZn\{0}, some y,σ>0) ,

which exists by a theorem of Liouville.
Define for ε > 0

oo n

Σ bv(π(ωs,p))ωvds (peU) .

Then tfεeC°° (£0

Φμ°

and

h}(p) =

=

= (

0

00

0

0 0

0

0

Kip)

v = l

n

v = 1

n
,-εs y

v = 1

" ε sέ
00

+ε 1 e
0

ω v {6 v ,

b"(π(ωi

-Kin

Φμ

Φ

»./»:

(co.

° π(ωs,p)ds

°π(ωsp)ds

)ds.

As π is completely periodic we can handle the limit ε-»0,

Vπ(ί,/>)= Σ
{

By smoothness

sup H μ p ^ ^ o ^ ^ ^ l ^ c o n s t («6]Ng",j86NS) ,
/? G compact

which gives

Z); J e-£ si ) 1(π(ωi,/.p= X D;(bμ°πf(k,p) ] e
0 /t€Z"\{0} 0

The diophantine condition on ω implies convergence uniformly in ε for/? in compact
sets. So

Z > ^ = lim Z>;αε . D
ε->0 ε->0

Now follows

Corollary 8. There is a one form m on R d with values in C°°(U) which satisfies

{m,hμ}=dhμ-(dhμ)(φ{h)) in U at κ = 0 for all μ .
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n

Proof. Define bμ: = ]Γ (dEλΦμ)°h(dhλ — (dhλ}(φ(h))). ThenZ^is a one form with

values in C°°(ί7), (bμ}=z0,

μ } Σ μ { Q } μ

since {hλ, hρ}=0 in Uo x IR2".
Applying Lemma 7 to every component of the one form bμ the corollary follows

from the invertibility of DEφ. •

We have accomplished the first step of the program stated in Sect. 1. Let us
remark that it does not seem to be possible to find a smooth solution of the classical
equations for general ergodic systems.

3. Semiclassical Limit

We shall show that the quantized solution of the classical equations obtained in
Chapter 2 provides a regularization of dP in the sense described in Sect. 1 and that
this is sufficient for the computation of the limit of tr PdPdP.

Clearly we can suppose E0 = (e0,...9e0} for some e0e(0, oo) and furthermore
for some ε > 0 : Uί =(e0 — ε,eo + ε)x ... x(e0 — ε,eo + ε).

Let / be in Co°°((0, oo)), decreasing in (y/2, oo), decreasing strictly in
( e o - ε , e o + ε). For η>0, let χη be in C°°(IR), χη = l in (eo-η/29eo + η/2)9 χη = 0 in

We now are able to give a regular approximate solution of (*).

Theorem 9. Assume (H1),..., (H4). Then there is anη>0 and a Q° (R 2") valued one
form m on R d such that for all ve{l,...,w} the following holds at κ = 0:

(ii) In the sense of bounded operators:

Proof, (i) m: = χ^h^)...χε(hn)m for m constructed in Corollary 8 (* m continued to
zero outside £/*). m has values in C0°°(]R

2") and for η<ε/2,

Z,(*i) UK) {m, f{K)} = χ,(*i)... Xη{K)f'(K) {m, hv}

(ii) We suppress the closure of an operator in notation. By the calculus developed
in Sect. 2 we have
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For the estimates it is sufficient to restrict all operators to Sf (R") where we can use
the Weyl calculus [Hδr]. We have

= ih{m,f(hv)}(x,hD) + Θ(h3

For α, €5( l ) , Ai=ai(x,hD) + &(h2) (ie{l,...,«}) it holds

A1...An=a1...an(x,hD) + 1-^ £ ({at,a}} Π ak)(x,hD)+&(h2) .

For η from (i) we obtain

χη(H1)...χη(Hv)[m(x,hD),f(Hγ)]χη(Hv+1)...χη(Hn)

= ihχη(h1)...χη(hn){m,f(hv)}(x,hD)+h2second

and

χη(H1)...χη(Hv)df(Hv)χη(Hv+1)...χη(Hn)

^χη(h1)...χη(hn)df(hv)(x,hD)+h first order+0(fc2) .

By (i),

In each term of the symbols of "first" and "second order" there is a Poisson bracket
with at least one χη(fιv) for some v. Hence they are delocalized in energy. Applying
projections we get

= ΛP1...Pvfirst orderQ v P v + ί . . .P n

= hP1...Pvχη/2(#i) Xnβ(Hv)first order

xχηl2(Hv+1)...χηl2(Hn)Pv+1...PnQv+Θ(h2)

= &(h2) .

The other equality is proven in the same manner. •

In order to obtain information about dP we make the assumption that the distance
between eigenvalues of Hv is of the order h. This can actually be deduced from the
assumptions already made cf. [Ch].
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We suppose (H5): For the reduced resolvents

ε-0

it holds: \\Sv{El)\\ =Θ(l/h).
From Theorem 9 we conclude

Corollary 10. Assume (H1),. . . , (H 5). Then

Proof.

dp= £ pί...dpv...pn.
\ — 1

By Corollary 4,

dp= Σ P i - 2 ^ ί (f(»v)^y1df(Hv)(f(Hv)-zy1dz...PH

~v + Sv(z)Qv with 5V analytic.zy \

Hence

= Pvdf(Hv)SvQv + QvSvdf(Hv)Pv .
It follows

n 1

v=i ^ π z * i

. •
We cite from [Ch2] the following statement:

Theorem 11. Assume (H1),..., (H4). For aeS{\) and a sequence of joint eigenstates
φh with Hvψh = Eζψh, it holds:

The result concerning the limit of the quantum two form is

Theorem 12. Assume (H1),. . . , (H 5). Then

lim T — tvPdPdP=\ ({m,m}}(φ(E0)) at κ = 0 .
ji^o i trP 2

Proof Define M:=m^X^D\ By Corollary 10,

= trP([M9P][M,P] + Θ(ί))= -tτP(MM+Θ(l))
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By the Weyl calculus

and the assertion is implied by Theorem 11. •

Let us now interpret the result.
We are interested in the limit of XxPdPdP at the point κ = 0. The geometric

objects used should be understood as local portions of objects which are non-trivial
in general.
Recall the "quantum" geometry.
For a vicinity V of κ = 0, (J <κ, R a n P κ > is a complex vector bundle embedded

KGV

in FxL 2 (IR w ) , where a natural connection respecting the subbundle is given

( * Q : = 1 - P * ) b y

PdP+QdQ = d-[(dP),P] .

So [(dP), P] generates parallel - adiabatic - motion.
On the subbundle the connection reduces to V = Pd whose curvature is the

operator-valued two form on V acting on sections by

1/2[d-(dP\ d-(dP)] = 1/2[{dP\ (dP)] = (dP)(dP) .

So XxPdPdP represents the first Chern class of the bundle.
It was first recognized by [S] that for dim P = 1 Berry's Phase is the holonomy of

such a bundle.
For details of the description of the "classical" geometry we refer to [M]. If there

exist actions φv°h which are smooth in the parameters they can always be chosen
such that (dφv°h}=0. Clearly it is then possible to find a smooth m such that

{m,φv°h}=dφv°h all v, <m> = 0 .

The vector fields

dκk

span the horizontal distribution on Uo x IR2" defined by averaging —-j over the
t/fC

toral action given by the joint flow of φ ° h. They project to a connection on
(J ^κ,(φ°h(κ))~1(φ(0,Eo))} which is a candidate of an "adiabatic

κeϋ0

subbundle."
Let now γ be a rectifiable curve in Uo and W be unitary with

dt τr v' ih

By Corollary 10,

jt(P(γ(t))W(t)-W(t)P(0))

s»wy><y'^ .
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It follows

P(γ(t))W(t)-W(t)P(O) =

So '— generates quantum adiabatic motion up to a semiclassical small

error.
The curvature of the classical connection turns out to be \ <{ra, ra}>. Hence the

content of Theorem 12 can be stated as:

- x mean quantum curvature^classical curvature (ft->0) .
i

The two forms used in [H] and [B2] to compute the Hannay angles are coordinate
versions of l/2<{ra,ra}>. In this sense the result was derived by Berry [B2].

4. Non-Integrable Systems

As it was proposed by [Se, S-T] one might consider a smoothed out quantum two
form which admits an asymptotic expansion without any assumptions on the
classical flow. This works if the classical Hamiltonian satisfies the conditions for
selfadjointness and differentiability, and if the portion of phase space correspond-
ing to the energies considered is compact in phase space.

Fix a classical energy Eoe 1R+ and E1<E0<E2. Consider χteQ°(1R)
(/e{l,...,4} such that suppχ^<=(Eί9E2), Zj = l on [Eί+ε,E2 — ε] (some ε>0).

The statement is

Theorem 13. Assume (H1), (H 2) on h and compactness ofh ~x ([Ex, E2 ]) c R2". Then:
χ1(H)dχ2(H)dχ3(H)χ4(H) is trace class and there exist aieC£(Wί2n) (/eN 0 ) such
that for

hntr(χi(H)dχ2(H)dχ3(H)χ4(H))=Σ ** T Λ ^ ί a

Proof. It holds for an TVeN (cf.: [Hδr])

hn\\a(x,hD)\\tτ^const sup \\

and for a(x, hD) trace class and a integrable

Pick now χeC^(ΊR), suppχc(E1,E2), χ = \ on suppχ^ By a result of [H-R]
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furthermore there are tf e C™ (WL2n) 0 'eN o ) such that for iVeN 0,

N

χ(H)=Σ hiχί(x,hD) + HN+1RNχ

i = 0

and \\hnRNχ\\tr=Θ(l).
Theorem 5 and Weyl calculus imply: There exist #ι.eC0

αo(]R2'1) (/eN 0 ) such
that for NelN0

χi(H)dχ2(H)dχ3(H)χ4(H)=Σ tia^hD)^"*1 RN

with RN bounded in operator norm uniformly in h. Application of χ(H) gives:

χί(H)dχ2(H)dχ3(H)χ4(H) = χ(H)χί(H)dχ2(H)dχ3(H)χ4(H)

N N

= Σ h'ϊ(χ,hD) Σ «'«.•
i=0 ί=0

Σ *'«*(*.
i = 0

Clearly hn R
Nχ

As the symbols of the explicit terms are all supported in h ί((E1,E2)) one
const

applies the Weyl calculus for the flat metric with conformal factor j (P e ^2n)
to conclude p

h" const (ft->0)

So χί(H)dχ2(H)dχ3(H)χ4(H) is trace class and the expansion holds. •

We remark that for χx = ... = χ4 = : χ the leading term is

I yl π) R

The asymptotic expansion stated in Theorem 13 is essentially a special case of
Proposition 7-1 of [S-T]. The following points in the Schrader-Taylor approach are
different:

The Hamiltonians considered are second order elliptic operators on a compact
manifold with additional gauge fields. The functional calculus is based on an
analysis of the fundamental solution of the wave equation rather than complex
powers of the Hamiltonian. Questions related to differentiability with respect to the
external parameters are not explicitly treated.

Acknowledgement. I should like to thank R. Seiler for pointing the subject out to me and for
discussions.
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