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2 Centre de Physique Théorique (CNRS UMR 6207), Luminy, 13288 Marseille
Cedex 9, France
3 Complex Networks Lagrange Laboratory, Institute for Scientific Interchange
(ISI), Torino, Italy
E-mail: paolo.moretti@upc.edu, andrea.baronchelli@upc.edu,
Alain.Barrat@cpt.univ-mrs.fr and romualdo.pastor@upc.edu

Received 19 January 2011
Accepted 8 March 2011
Published 31 March 2011

Online at stacks.iop.org/JSTAT/2011/P03032
doi:10.1088/1742-5468/2011/03/P03032

Abstract. We present a simple mathematical framework for the description of
the dynamics of glassy systems in terms of a random walk in a complex energy
landscape pictured as a network of minima. We show how to use the tools
developed for the study of dynamical processes on complex networks, in order
to go beyond mean-field models that consider that all minima are connected to
each other. We consider several possibilities for the rates of transitions between
minima, and show that in all cases the existence of a glassy phase depends
on a delicate interplay between the network’s topology and the relationship
between the energy and degree of a minimum. Interestingly, the network’s
degree correlations and the details of the transition rates do not play any role
in the existence (or in the value) of the transition temperature, but have an
impact only on more involved properties. For Glauber or Metropolis rates in
particular, we find that the low temperature phase can be further divided into two
regions with different scaling properties of the average trapping time. Overall,
our results rationalize and link the empirical findings concerning correlations
between the energies of the minima and their degrees, and should stimulate
further investigations on this issue.
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1. Introduction

In the last decade, studies concerning the structure and dynamics of complex networks
have blossomed, thanks in particular to the versatility of the network representation, which
has turned out to be adequate for systems as diverse as the Internet and social networks.
A large body of knowledge about the empirical description of networked systems has
thus been accumulated, together with a wealth of modeling techniques; a good level of
understanding of how dynamical processes taking place on networks depend on their
structure has also been reached [1]–[6]. Many network studies have been concerned with
systems of interest in several scientific areas a priori remote from physics (social sciences,
biology, computer science, epidemiology, . . .), and they have also reached more traditional
fields of statistical physics, such as the study of glassy systems, as we now describe.

The many puzzles raised by the glass transition, and in particular the slow dynamics
displayed by glassy systems at low temperatures, have been a subject of great interest in
the past few decades [7, 8]. One of the approaches which has led to promising insights
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consists in the description of the dynamics of a glassy system inside its configuration
space. The energy landscape of a glassy system is typically rugged, made up of many local
minima (metastable states), whose huge number makes it difficult to reach equilibrium.
In this framework, the energy landscape is seen as a set of basins of attraction of local
minima (‘traps’), and the system evolves through a succession of harmonic vibrations
inside traps and jumps between minima [9, 10]. This picture has stimulated the definition
and study of various simplified models of dynamical evolution between traps, in efforts to
reproduce the phenomenology of glassy dynamics [11]–[17]. On the other hand, several
studies have focused on obtaining a better understanding of the structure of these local
minima. A way to attain this goal is to perform numerical simulations of small systems, at
a fixed temperature, quenching them at regular time intervals in order to make them reach
the nearest local minimum. Information is then gathered on the various local minima,
and on the sizes of their basins of attraction. Various studies have investigated, among
other issues, the detailed structure of the potential energy landscape, the substructure of
minima, and the properties of energy barriers between minima [18]–[20]. Several works
have also used the information on the energy landscape to study a master equation for the
time evolution of the probability of being in each minimum. The systems considered range
from clusters of Lennard-Jones atoms to proteins or heteropolymers [9, 10], [21]–[23].

An interesting property of the modeling of the energy landscape in terms of a set of
traps linked by energy barriers lies in the possibility of defining and studying its network
representation within the context of network theory. In this representation, each local
minimum is associated with a node, and a link is drawn between two nodes whenever it
is possible for the system to jump between the basins of attraction of the corresponding
minima. The links can then be defined as weighted and directed, as jumps between minima
are not equiprobable, and may be easier in one direction than in another. Networks of
local minima of the energy landscape have thus been built and studied. These networks
have been found to exhibit a small-world character [24]. The number of links of each
node (its degree) turns out to be strongly heterogeneous, possibly with scale-free degree
distributions, which have been linked to scale-free distributions of the areas of the basins
of attraction [25]–[27]. Complex network analysis tools have also been used to investigate
the structure of energy landscapes of various systems of interest: Lennard-Jones atoms,
proteins, and spin glasses, among others [21]–[23], [27]–[33]. The energy of a minimum and
its degree (i.e., the number of other minima which can be reached from this minimum)
have been shown to be correlated, as have the barriers to overcome to escape from a
minimum. In particular, a logarithmic dependence of the energy of a minimum on its
degree has been exhibited, as well as the energy barriers increasing as a (small) power of
the degree of a node [23, 25, 27]. No systematic study of these issues has however been
performed, and most investigations have been limited to relatively small systems because
of computational limitations.

Most importantly, the investigations cited above have focused on the topology of the
network of minima, conceived as a tool for characterizing the energy landscape. The
structure of a network has however a deep impact on the properties of the dynamical
processes which take place on it [6]. It seems thus adequate to put to use the tools and
techniques developed for the analysis of dynamical processes on networks to achieve a
better understanding of how the energy landscape structure, represented as a network,
affects the system performing a random walk in it, and how the onset of glassy dynamics

doi:10.1088/1742-5468/2011/03/P03032 3

http://dx.doi.org/10.1088/1742-5468/2011/03/P03032


J.S
tat.M

ech.
(2011)

P
03032

Complex networks and glassy dynamics: walks in the energy landscape

can be described in this way in a general framework. In a previous paper [34], we have
made a first step towards filling this gap by focusing on the trap model put forward in [11].
In this paper, we generalize our approach to more involved rates of transition between
energy minima. We show how the heterogeneous mean-field (HMF) theory [6, 35] can be
used in this context to highlight the connection between the topological properties of the
network of minima and the dynamical exploration of these minima. We show in particular
that the relationship between energy and degree of the minima is a crucial ingredient for
the existence of a transition and the subsequent glassy phenomenology. Our results shed
light on the empirically found relationship between the energy of a local minimum and its
degree, and we hope that they will stimulate more systematic investigations on this issue.

We have organized our paper as follows. In section 2 we define our model of energy
landscape dynamics as a random walk on a complex network. Different physical transition
rates are proposed, and the corresponding numerical implementation is discussed. In
section 3 we present a theoretical analysis based on the heterogeneous mean-field
approximation for dynamical processes on complex networks. This formalism is applied
in section 4, where general analytical approximate expressions are presented for the
main quantities characterizing the glassy transition and dynamics. These expressions
are applied to the different physical transition rates considered in section 5, where checks
against numerical simulations are also presented. In section 6 we discuss the relation
between energy basins and energy barriers. Finally, in section 7 we present our conclusions.

2. Random walk models on complex energy landscapes

2.1. The definition

We consider a network of N nodes, in which each vertex i corresponds to a minimum in
the energy landscape, and a link is drawn between two minima i and j if the system can
jump directly from i to j. With each node i there is associated the energy −Ei of the
corresponding minimum (energies are defined from a reference level, in such a way that
Ei > 0 for all i). Moreover, an energy gap Σij is associated with the edge between vertices
i and j, as depicted in figure 1: Σij is a symmetric function, such that the energy barrier
that must be overcome to jump from vertex i to vertex j can be written as ΔEij = Ei+Σij

and, analogously, ΔEji = Ej + Σij . Obviously, we will have in general ΔEij �= ΔEji.
The system under investigation is pictured as a walker exploring the network through

a biased random walk. The rate (probability per unit time) ri→j for going from vertex i
to vertex j depends a priori on the energy at vertices i and j and/or the energy barrier
between i and j that must be overcome. The random walk model is defined in discrete
time t as follows:

• At time t, the walker is at vertex i.

• It chooses at random a neighbor of i, namely j.

• With a probability ri→j, that depends on the energy Ei and/or on the energy barrier
ΔEij , the walker hops to vertex j.

• Time is updated: t → t + 1.

The relationships between the probabilities ri→j and the energy and energy barriers
can be of different forms. In usual unbiased random walks, ri→j is a constant independent
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Figure 1. Potential energy landscape description. Energies Ei are measured
positive downwards. Energy gaps Σij are defined positive upwards.

of both i and j [36]. As a first step to introducing a dependence on the nodes, a possible
approach is that in which the energy barriers depend only on the local minima themselves,
i.e. we consider Σij = 0. For example, in the Bouchaud trap model considered in [11],
the probability of exiting from a trap is just an Arrhenius law depending only on the
departing trap’s depth, namely

rtraps
i→j = r0e

−βEi, (1)

where β = 1/T is the inverse temperature and r0 is a constant that determines a global
timescale. Other possible definitions include the Metropolis one:

rMetropolis
i→j = r0 min

(
1, eβ(Ej−Ei)

)
, (2)

and the Glauber rate:

rGlauber
i→j =

r0

1 + e−β(Ej−Ei)
. (3)

We note that the rates considered in the Bouchaud trap model are quite different from
the Metropolis and Glauber rates. Indeed, while the former depends only on the depth
of the originating trap, the latter depends also on the energy of the arriving vertex.
This translates into the fact that, in the limit of zero temperature, the dynamics of the
Bouchaud trap model is frozen for any Ei, while Metropolis and Glauber dynamics still
allow jumps to lower energy minima [13]. Within an even more realistic representation of
glassy dynamics, one can also contemplate the case Σij �= 0, allowing for the transition
rates to depend explicitly on the energy barriers between adjacent minima. As a paradigm
of this choice, we propose a rate of the Arrhenius form

rbarriers
i→j = r0e

−βΔEij , (4)

which acts as a straightforward generalization of the local transition rate (1).
The case of rate (1) (local trapping) was studied in a previous publication [34]. In

the following, we will consider in turn non-local rates (2), (3) and (4) and discuss the
fundamental differences due to the introduction of energy barriers in the model.

We emphasize that our model differs both from usual unbiased random walks, since
the local energy determines the transition rates, and from mean-field trap models in which
jumps between any pair of energy minima are a priori possible: here, the system can jump
only between neighboring nodes. The dynamical evolution depends therefore both on the
network topology and on the energies associated with the nodes.
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2.2. Numerical implementation

To implement the random walk numerically, it is convenient to resort to the techniques
developed for general diffusion processes on complex weighted networks [37]. The main
advantage of this method is that it avoids rejection steps, thus dramatically improving the
computational efficiency [38, 39]. Therefore, at each simulation step the random walker
sitting at node i selects a neighbor j with probability ri→j/

∑
j ri→j, where the sum in the

normalizing factor is extended to all of i’s neighbors. As the walker hops onto node j, the
physical time is incremented by an interval Δt drawn from the exponential distribution
P (Δt) = 1/Δt exp(−Δt/Δt), where Δt = ki/

∑
j ri→j is the inverse of the average rate of

escape from node i. In this way the simulation time is disentangled from the physical time
and the latter has no impact on the simulation efficiency. No matter how much physical
time a walker spends at a node, from the simulation time point of view it is always just
one time step.

The network substrates on which we will focus are scale-free networks with a degree
distribution of the form P (k) ∼ k−γ and 2 < γ ≤ 3. We will generate them with the
uncorrelated configuration model (UCM) [40] that allows us to tune the degree distribution
to the desired form and prevents the formation of degree–degree correlations. Networks
are therefore generated as follows. A number of stubs (or semi-links) extracted from the
desired final degree distribution are assigned to each node. Stubs are then randomly
paired to form links between nodes, with the prescription that multiple links as well as
self-loops must be avoided. A minimal degree m is fixed a priori. To avoid spurious effects
due to the possible presence of tree-like structures [41] it is convenient to adopt m > 2.
We will choose m = 4 in all of our simulations. So far the algorithm coincides with that
of the configuration model [42], but the UCM introduces moreover a cut-off to the degree
distribution, kc = N1/2, which avoids the formation of degree correlations by limiting the
size of the hubs [40].

3. Heterogeneous mean-field theory

In order to gain an analytical understanding of the role of the different transition rates in
the corresponding glassy dynamics, we apply a standard heterogeneous mean-field (HMF)
formalism [6, 35]. The basic tenet of HMF is the assumption that all the dynamical
properties of a vertex depend only on its degree. Vertices are thus grouped into classes
according to their degree, and vertices with the same degree are treated as equivalent. This
approximation is consistent with previous findings that have uncovered the correlations
between the energy of a local minimum and the degree of the corresponding node in
the network [25]. We therefore make the assumption that there exists a relationship
Ei = h(ki) where the function h(k) is a characteristic of the model. This also means that
the distributions of energies ρ(E) of the system’s landscape and the degree distribution
P (k) of the corresponding network are linked through h. In the same spirit, we make
the further assumption that the energy gap between minima i and j depends only on
the degrees of i and j, i.e., that it can be written as Σi,j = σ(ki, kj), where σ(k, k′) is a
symmetric function of k and k′.

Under the HMF approximation the dynamics will thus focus on the transitions
between different degree classes. The rate of going from a vertex k to a vertex k′ can
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be written as

Wkk′ = P (k′|k)r(k → k′). (5)

The function P (k′|k), defined as the conditional probability for a vertex of degree k to be
connected with another vertex of degree k′ [43], takes into account the topological features
of the network, through gauging the probability of selecting a vertex k′ as neighbor of k.
The function r(k → k′) measures the rate of jumping from a vertex of degree k to a vertex
of degree k′ (given that they are connected by an edge), and depends on k and k′ through
the rates ri→j and the functions h and σ. Obviously, the rate r(k → k′) is not in general
a symmetric function of k and k′. It is worth noting that, apart from a normalization,
equation (5) is simply the so-called weighted propagator describing the probability that a
node in class k interacts with a node in class k′ [37]. We also note that the rates r(k → k′)
depend on the inverse temperature β through the microscopic rates ri→j.

4. The general HMF formalism

In this section, we apply the HMF theory to compute different quantities relevant for
the characterization of the dynamics of a random walk in a complex energy landscape
represented in terms of a network of minima.

4.1. Occupation probability

The description of a random walk dynamics starts from the occupation probability
P (k, tw), defined as the probability for the walker to be in any node of degree k at a
time tw. Its time evolution can be easily represented in terms of a master equation of the
form

∂P (k, tw)

∂tw
≡ Ṗ (k, tw) = −

∑

k′
Wkk′P (k, tw) +

∑

k′
Wk′kP (k′, tw). (6)

Upon describing the state at time tw with the row vector P(tw) = {P (1, tw), P (2, tw), . . . ,
P (kc, tw)}, where kc is the cut-off or largest degree in the network, equation (6) can be
rewritten in vector form as

Ṗ(tw) = −P(tw)L, (7)

where the matrix L, with elements

Lk′k =

(

δk′k

∑

l

Wkl − Wk′k

)

, (8)

is a generalization of a Laplacian matrix to the case of directed weighted graphs. The
matrix elements satisfy

Lk′k′ =
∑

k,k �=k′
Lk′k, (9)

which ensures conservation of probability and states that the columns of L are not linearly
independent. The real part of every eigenvalue of L is non-negative [44]. As a consequence,
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all solutions of equation (7), which can be formally written as

P(tw) = P(t0)e
−L(tw−t0), (10)

are stable according to Lyapunov criteria. In particular, since det L = 0, L always has the
eigenvalue 0, which corresponds to a constant solution of the problem. At this point one
can proceed in close analogy with discrete time regular Markov chains [45]. By making
the assumption that the matrix Wk′k is non-negative and irreducible (it indeed is for every
choice of r(k′ → k) in the following), we can prove that the 0 eigenvalue of L has algebraic
multiplicity 1. Hence, the stationary solution of equation (7) is unique.

4.1.1. The steady state. In order to calculate the steady solution P∞ in the limit tw → ∞,
one can impose Ṗ(tw) = 0. This leads to the condition

P∞L = 0, (11)

so we are left with the task of finding the left nullspace of L. Equation (11) is a
homogeneous system of algebraic linear equations. It admits non-trivial solutions since
det(L) = 0. In our case, the solution to (11) can be easily found by imposing the detailed
balance condition. Namely, writing equation (11) as

∑

k′
[−Wkk′P∞(k) + Wk′kP

∞(k′)] = 0, (12)

we can obtain a solution by imposing that the terms inside the summation in equation (12)
cancel individually, that is

Wkk′P∞(k) = Wk′kP
∞(k′), ∀k, k′. (13)

Substituting in the form of Wkk′, we obtain

P∞(k)

P∞(k′)
=

Wk′k

Wkk′
=

P (k|k′)r(k′ → k)

P (k′|k)r(k → k′)
=

kP (k)

k′P (k′)
r(k′ → k)

r(k → k′)
, (14)

where in the last step we have used the degree detailed balance condition kP (k)P (k′|k) =
k′P (k′)P (k|k′) which simply expresses that the number of edges from a node of degree k
to a node of degree k′ is equal to the number of edges from a node of degree k′ to a node
of degree k [46]. From equation (14), we see that its right-hand side must be expressible
as a simple ratio of a function of k over a function of k′. A general way to obtain this is
to impose a coarse-grained rate r(k′ → k) taking the general form

r(k′ → k) = f(k′)g(k)s(k′, k). (15)

In other words, we assume that the rate r(k′ → k) can be written as the product of a
function of k′, a function of k, and a symmetric function s(k′, k) = s(k, k′) (where k and
k′ need not be separable). We will see later that all the rates ri→j defined in section 2.1
(traps, Glauber, Metropolis, and energy barriers) can be written in such a form. The
stationary solution is then given by

P∞(k) =
1

Z kP (k)g(k)/f(k) (16)

where Z is a normalizing constant determined by the condition
∑

k P∞(k) = 1. Such a
solution is unique, as proven above. Interestingly, the symmetric function s(k′, k) does not
enter the steady solution, although it will play a role in affecting the transient behavior,
as we will see in the following sections.
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4.1.2. The glassy phase. The steady state solution found above for the occupation
probability is defined if and only if the normalization constant

Z =
∑

k

kP (k)g(k)/f(k), (17)

is finite. When this condition is met, the random walker reaches an equilibrium state
with a distribution Peq = P∞. On the other hand, whenever such a condition is not met,
the random walker is unable to reach a steady state, i.e. the steady solution to the rate
equation does not correspond to any physical steady state in equilibrium Peq. We identify
this region of the phase space with the glass phase for our random walker [11].

The functions f and g depend on the temperature, and on the precise dynamics chosen
(traps, Glauber, Metropolis), and encode the relationship h between the energy and degree
of the minima. The degree distribution moreover explicitly enters the expression for Z. As
the various parameters of the model are changed, it is thus a priori possible to go from one
phase in which Z is finite to one in which Z diverges. In a physical system in particular,
the control parameter is usually the temperature, while the topology of the network of
minima and the function h are given. It is then clear from equation (17) that the presence
or absence of a finite glass transition temperature βc, such that Z becomes infinite for
β ≥ βc, depends on the interplay between the topology of the landscape network (as
determined by P (k)) and the functions f and g. Interestingly, at this mean-field level,
the existence of a transition does not depend on the network degree correlations, since
the conditional probabilities P (k′|k) do not enter equation (17).

Let us consider for instance a network of minima with a heavy-tailed degree
distribution such as P (k) ∼ k−γ . A transition between a finite and an infinite Z can
be observed if and only if g(k)/f(k) shows a behavior at large k of the form ∼ka where
the exponent a depends on the temperature, and can take values smaller or larger than
γ−2 depending on the temperature. Another example is given by a stretched exponential
form for P (k), P (k) ∼ e−bka

, in which case a transition is observed if and only if g(k)/f(k)
is of the form eb′ka

, with b′ a function of the temperature (the transition is then given by
b′(βc) = b).

4.1.3. Glassy dynamics. In any finite system, unless the product function g(k)/f(k)
exhibits some sort of singularity, the normalization constant equation (17) is finite and
the steady state distribution P∞(k) exists, the occupation probability P (k, tw) converging
to it after an equilibration time, i.e.

lim
tw→∞

P (k, tw) = P∞(k). (18)

The corresponding thermalization of the occupation probability occurs in a way depending
on the function h. Shallow energy minima are indeed explored first, while deep traps (large
E) are visited at larger times [11, 13]. If h is a growing function of k, as is indeed found
empirically [25], small degree nodes correspond to shallow minima, and deeper minima are
associated with larger nodes. The evolution of P (k, tw) then takes place in a hierarchical
fashion: the small degree region equilibrates first, and progressive equilibration of larger
degree regions takes place at larger times. In this respect, we obtain a strong difference
between the biased random walk that the glassy system experiences and usual diffusion
processes corresponding to unbiased random walks, which first visit large degree vertices
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and then cascade down towards small degree nodes [36, 47, 6]; in the present case we
observe an ‘inverse cascade process’ from small vertices to hubs.

We have found in [34] that, in the case of a random walk among traps, this hierarchical
thermalization is summarized in a scaling form for P (k, tw), which can be written as

P (k, tw) = kw(tw)−1F
(

k

kw(tw)

)
, (19)

where kw(tw) represents the maximum degree of the vertices equilibrated up to time tw,
and F(x) interpolates between P∞(x) at small x and the short time form of P (k, tw)
which is proportional to kP (k). We will see in the next section that a similar scaling
is obeyed for other transition rates. In general, for the glassy dynamics, the functional
form of kw(tw) can moreover be obtained through the following argument: the total time
tw can be written as the sum of the trapping times spent in the vertices that have been
visited since the beginning of the dynamics. Trapping times increase with the depth of
the minimum, and hence with the degree (we are still considering the case of an increasing
function h(k)), and, in the glassy phase, the consequence is that the sum of trapping times
is dominated by the vertex with the largest degree visited up to that point, namely kw.
Moreover, the average trapping time τk at a given vertex k can be estimated as the inverse
of the average rate of escape rk from that vertex:

1

τk

= rk =
∑

k′
Wkk′ =

∑

k′
P (k′|k)r(k → k′) =

∑

k′
P (k′|k)f(k)g(k′)s(k, k′). (20)

We can therefore estimate kw(tw), the typical degree up to which nodes are ‘equilibrated’
at time tw, by approximating τkw ∼ tw, and solving the equation

tw =
1

f(kw)

1
∑

k′ P (k′|kw)g(k′)s(k′, kw)
(21)

to obtain kw as a function of tw. Note that the result depends here on the function s(k, k′)
and not only on f , g, h and P (k).

4.2. Average escape time

The properties of the system can be further quantified by measuring the average time
tesc(tw) required by the random walker for escaping from the vertex that it occupies
at time tw [34]. For small waiting times tw, tesc increases as a result of the transient
equilibration of P (k, t). For large tw, such that P (k, tw) is close enough to the equilibrium
P∞, tesc can be calculated instead as the average

tesc(tw → ∞) =
∑

k

P∞(k)τk =
1

Z
∑

k

kP (k)[g(k)/f(k)]τk (22)

where τk = 1/rk is the inverse of the equilibrium escape rate (cf equation (20)), yielding

tesc(tw → ∞) =
1

Z
∑

k

kP (k)g(k)

f(k)2
∑

k′ P (k′|k)g(k′)s(k′, k)
. (23)

Most interestingly, the explicit form of the average escape time tesc depends explicitly on
the symmetric function s(k, k′) as well as on the network degree correlations, as expressed
by the conditional probability P (k′|k).
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4.3. Average rest time

Let us go back to the issue of the existence of a glass transition in the model. We
first recall the phenomenology of the fully connected trap model, with transition rates
ri→j = r0e

−βEi/N for any i and j, where the energies Ei are random numbers extracted
from a distribution ρ(E) [11, 14]. As all traps are connected with each other, all traps are
equiprobable after a jump, so the probability for the system to be in a trap of depth E is
simply ρ(E), and the average rest time spent in a trap is 〈τ〉 =

∫
ρ(E)eβE dE. A transition

between a high temperature phase and a glassy one is thus obtained if and only if, when
β increases, 〈τ〉 is finite at small β and diverges at a finite βc. Such a phenomenology is
obtained if and only if ρ(E) is of the form exp(−βcE) at large E (otherwise the transition
temperature is either 0 or ∞), and the transition temperature is then Tc = 1/βc [11].

In the present case of a network of minima, the average rest time that the walker
spends in a minimum is

〈τ〉 =

〈
1

rk

〉

h

, (24)

where the symbol 〈· · ·〉h refers to the average performed over the measure Ph(k), which
represents the probability that the walker is at any vertex of degree k after a hop. Note
that we disregard here the physical time, which is the sum of times spent in the various
minima, and consider only the number of hops between minima. In the case of the traps
model, Ph is simply given by the probability of being at a node of degree k after a hop
in a random walk, i.e. by kP (k)/〈k〉 [34], since the transition rates do not depend on the
arrival node. In a non-local trapping model instead, we need to write a master equation
of the form

Ṗh(k) = −Ph(k) +
∑

k′
Wk′kPh(k

′), (25)

where the matrix Wk′k = Wk′k/
∑

l Wk′l = Wk′k/rk′ is now stochastic and the derivative is

intended with respect to the number of hops. In the long time limit, we impose Ṗh(k) = 0
and calculate Ph(k) as we did for P∞(k), imposing the detailed balance condition, and
obtaining

Ph(k) =
1

I kP (k)[g(k)/f(k)]rk (26)

where I is a normalization factor, given by

I =
∑

k

∑

l

kP (k)P (l|k)g(k)g(l)s(k, l). (27)

We finally obtain for the average 〈τ〉

〈τ〉 =
∑

k

Ph(k)/rk =
Z
I , (28)

where Z is the normalization factor of P∞(k) defined in equation (17). As for the average
escape time, the average rest time 〈τ〉 thus depends on all the parameters of the system,
including the network’s degree correlations and the symmetric function s.
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5. Application to physical transition rates

In this section, we apply the general HMF results obtained in section 4 to physical
probabilities of transition between local minima given by the trap model, Glauber,
Metropolis and barrier-mediated rates. We will focus for definiteness on scale-free
networks characterized by a power-law degree distribution P (k) ∼ k−γ with 2 < γ ≤ 3,
which turns out to be the interval reported in the literature [23, 25].

Let us first consider the explicit form of the transition rates in each case, to show that
they can be cast in the form given by equation (15). In the case of the trap model, the
rate for jumping from a vertex k to a vertex k′ is simply r(k → k′) = r0e

−βEk = r0e
−βh(k),

where we recall that h(k) gives the depth of a node of degree k: it depends only on
the degree of the starting node, and not on the node reached after the jump. We can
therefore use

(Trap model) f(k) = e−βh(k), g(k) = 1, s(k, k′) = r0. (29)

The Glauber rate can be written as

r(k → k′) = r0
eβh(k′)

eβh(k) + eβh(k′) , (30)

leading to

(Glauber) f(k) = 1, g(k) = eβh(k), s(k, k′) = r0
1

eβh(k) + eβh(k′) . (31)

The Metropolis transition, in its turn, reads

r(k → k′) = r0 min[1, eβ(h(k′)−h(k))]. (32)

Since, for positive a, min(1, b/a) = min(a, b)/a, we can choose

(Metropolis) f(k) = e−βh(k), g(k) = 1, s(k, k′) = r0 min(eβh(k), eβh(k′)). (33)

Finally, in the presence of energy barriers, the transition rate reads

r(k → k′) = r0e
−β(h(k)+σ(k,k′)), (34)

where σ(k, k′) is a symmetric function of its arguments, so we can use

(Barriers) f(k) = e−βh(k), g(k) = 1, s(k, k′) = r0e
−βσ(k,k′). (35)

5.1. The steady state and the glass transition temperature

Interestingly, for all the transition rates considered above, the product of the functions
1/f and g, which controls the existence of the steady state solution of the occupation
probability, takes the form

g(k)/f(k) ≡ eβh(k). (36)

The normalization constant Z defined in equation (17) can thus be written as

Z =
∑

k

kP (k)eβh(k). (37)
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Figure 2. Equilibrium probability distribution P∞(k) for the random walker
being in any node of degree k. For γ−βE0 = 2 the system undergoes a transition
to a glassy state.

For a power-law degree distribution P (k) ∼ k−γ, a finite glass transition temperature is
then obtained if and only if h is of the form

h(k) = E0 log(k), (38)

which is precisely what has been found, in conjunction with a scale-free degree distribution,
in [25]. Z is then indeed given by a sum of terms of the form k1−γ+βE0 , which converges
if and only if

βE0 − γ < −2. (39)

In other words, a transition between a high temperature phase in which P∞(k) exists and
a low temperature glassy phase is obtained at the critical temperature [34]

Tc =
1

βc

=
E0

γ − 2
. (40)

Quite noticeably, the existence of a transition at a finite temperature, like the value
of this temperature, does not depend on the form of the transition rates between the local
minima, but only on the existence of a particular interplay between the topology of the
network of minima and the relationship between energy and degree in this network, as
determined by the function h. We emphasize that this result is also independent of the
network degree correlations P (k′|k), as already noted in section 4.

5.2. The steady state and finite size effects

Let us focus on the case of a scale-free network of minima, with P (k) ∝ k−γ and
Ei = E0 log(ki). For any of the rates discussed above, the steady state measure, when it
exists, is given by

P∞(k) =
k1−γ+βE0

ζ(−1 + γ − βE0)
for γ − βE0 > 2, (41)

where ζ is the Riemann ζ function. A plot of P∞(k) as a function of k and γ − βE0 is
given in figure 2, while data from simulations are reported in figure 3 for the evolution of
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Figure 3. Evolution towards equilibrium of the probability distribution P (k; tw)
for Glauber dynamics. The distribution measured after a small waiting time tw
is determined by a usual unbiased random walk behavior, i.e. P (k; tw) ∼ kP (k),
while at larger times it relaxes to the equilibrium P∞(k). The relaxation towards
equilibrium starts from small degree nodes. Data refer to UCM networks with
N = 106 and γ = 3.0 for β = 2 (E0 = 1): with these parameter values, for small
times, P (k; tw) ∼ k−2, while at large enough times, P (k; tw) ∼ P∞(k) = const.

P (k, tw) under Glauber dynamics. Above the transition (γ − βE0 > 2), low k states (i.e.,
shallow minima) are more probable. As the temperature decreases, P∞(k) becomes less
and less peaked at low values of k, and large k states, which correspond to lower energies,
become more and more probable.

In any finite system, the sum defining Z is finite at any temperature as the degree
distribution has a cut-off at a finite kc:

Z =
kc∑

k

kP (k)g(k)/f(k). (42)

For instance, for P (k) ∝ k−γ , and with h(k) = E0 log(k), the sum
kc∑

k=1

k1−γ+βE0 = H
(−1+γ−βE0)
kc

(43)

is analytic in γ − βE0 = 2 for any finite kc. Here H
(α)
kc

is the harmonic number of order
α, which tends to ζ(α) for kc → ∞.

The probability P∞(k) is thus well defined for every γ − βE0 and for any finite
system. In particular, performing a continuous degree approximation in equation (43),
we can obtain an estimate of the network size dependence of Z as

Z ∼
∫ kc

k1−γ+βE0 dk ∼ const + k2−γ+βE0
c . (44)

For β < (γ − 2)/E0, Z tends to a constant as the network size (and thus kc) increases.
On the other hand, for β > (γ − 2)/E0, Z diverges as k2−γ+βE0

c , i.e., as N (2−γ+βE0)/2 in
uncorrelated scale-free networks, which obey kc ∼ N1/2.

doi:10.1088/1742-5468/2011/03/P03032 14

http://dx.doi.org/10.1088/1742-5468/2011/03/P03032


J.S
tat.M

ech.
(2011)

P
03032

Complex networks and glassy dynamics: walks in the energy landscape

5.3. Glassy dynamics

At low temperatures, even for a finite system, the evolution of P (k; tw) towards P∞(k)
is slow, as displayed in figure 3, and an ageing regime takes place, in which the function
P (k, tw) obeys the scaling form

P (k, tw) = kw(tw)−1F
(

k

kw(tw)

)
, (45)

where the characteristic degree kw can be estimated from equation (21). In order to
simplify its computation, we will consider an uncorrelated network of minima, such that
P (k′|k) = k′P (k′)/〈k〉, and we will work in the continuous degree approximation, using
the normalized form P (k) = (γ − 1)mγ−1k−γ , where m is the minimum degree present in
the network.

In the case of the Glauber dynamics, the escape rate can be expressed, within the
above approximations, as

rk =
1

〈k〉
∫ ∞

m

k′P (k′)r0
eβh(k′)

eβh(k) + eβh(k′) dk′ ≡ mγ−1(γ − 1)

〈k〉
∫ ∞

m

z1+E0β−γ

zE0β + kE0β
dz

= Γ

[

1,
γ − 2

β
, 1 +

γ − 2

β
,−
(

k

m

)β
]

, (46)

where we have used the relation h(k) = E0 ln k and where Γ[a, b, c, z] is the Gauss
hypergeometric function. Using the asymptotic expansion for z → 0 [48], we obtain
that the leading behavior for large k yields

rk ∼
{

k−βcE0 β > βc

k−βE0 β < βc,
(47)

which leads to

τk =
1

rk
∼
{

kβcE0 β > βc

kβE0 β < βc.
(48)

From here, using the relation τkw ∼ tw, we obtain

kw ∼
{

t1/(βcE0)
w β > βc

t1/(βE0)
w β < βc.

(49)

In figure 4 we check the validity of equations (45) and (49) by performing a data
collapse analysis for different values of tw. The curves obtained for different tw do indeed
collapse as predicted.

In the case of the Metropolis transition rates, a similar analysis yields

rMetropolis
k ∝ 1

(βc − β)E0

(
k−βE0 − β

βc

k−βcE0

)
, (50)

leading to the same asymptotic behavior as in equation (47), and therefore to the same
scaling picture as for the Glauber rate.

As pointed out for the case of the traps model [34], however, in finite systems the
scaling relations in equation (49) hold only as long as kw(tw) < kc, i.e. there exists an
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Figure 4. Data collapse for the time evolution of the occupation probability
P (k; tw) at different temperatures (Glauber dynamics). Data refer to UCM
networks with N = 106 and γ = 2.5, so βc = γ − 2 = 0.5 (where we have
taken E0 = 1). The top panel presents data for β < βc while both the middle
and bottom panels concern the low temperature case β > βc. Accordingly, for
the top panel we use kw ∼ t

1/β
w ∼ t4w for the rescaling, while for the central

and the bottom ones it holds that kw ∼ t
1/βc
w = t2w (see equation (49)). The

curves corresponding to different tw collapse well under this rescaling. Note
that we use rather small values of tw, because the equilibration time, defined by
kw ∼ kc ∼ N1/2, is teq ∼ Nβc/2 
 32 for β > βc and teq ∼ Nβ/2 
 6 for β < βc.
Each curve is obtained by averaging over 3 × 106 simulation runs.

equilibration time teq, obtained by inverting equation (49), above which the system has
completely relaxed and equation (45) is no longer valid. Finally, it is worth stressing
that, while for large temperatures the scaling exponent relating kw and tw depends
on the temperature, in the low temperature phase it becomes independent, being just
proportional to the transition temperature. We note that this saturation of the exponent
at 1/(βcE0) is very different from the phenomenology obtained in the trap model [34],

for which kw ∼ t
1/(βE0)
w . An immediate consequence is that the equilibration time

strongly depends on β, as teq ∼ k
(βE0)
c , for a system described by traps, but is given

by teq ∼ k
(βcE0)
c � k

(βE0)
c for any β > βc for Glauber and Metropolis rates.

Contrarily to the case of the glass transition temperature Tc and the steady state,
the glassy dynamics for barrier-mediated rates does not yield the same results as for
Glauber and Metropolis rates, since rk does depend on the symmetric function σ(k, k′).
In particular, we need here to choose a functional form for σ. We propose to use

σ(k, k′) = σ0(k
μ + k′μ), (51)

which will be justified in section 6. In this case we obtain

rbarriers
k ∝ r0k

−βE0e−βσ0kµ

. (52)
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Figure 5. Maximum degree of equilibrated nodes up to time tw for barrier-
mediated dynamics. Curves are obtained from the numerical inversion of
equation (21). The values of the parameters are γ = 2.5, βc = 0.5, E0 = ε = 1,
kc = 103, μ = 0.5.

In order to keep an interesting phenomenology, the constant σ0 cannot be chosen
arbitrarily. If σ0 were independent of the system size, the escape rate would be dominated
by the exponential at all temperatures. This behavior would reflect the fact that in this
case the rate is suppressed in transitions involving nodes of large k, eventually generating
unphysically large barriers at large kc. To prevent the system from building up infinite
barriers, one can impose

E0 ln kc ∝ σ0k
μ
c , (53)

such that the maximum barrier is always comparable to the lowest energy minimum and
neither term dominates the other. As a consequence, we take

σ0 = εE0
ln kc

kμ
c

, (54)

where ε is now constant and size independent. Contrarily to the previous cases, kw(tw)
is hard to determine, as no explicit inversion of equations (21) and (52) can be provided
for the range of parameters of interest in our study. A numerical evaluation of kw(tw) is
reported in figure 5. The maximum degree of equilibrated vertices kw has an initial power-
law increase in time, which is reminiscent of the local trapping model. However, as larger
degree nodes are equilibrated, exponential barriers come into play and the hierarchical
thermalization becomes logarithmic in time.

5.4. Average escape time

The average escape time, defined as the average time required by the system to escape from
the vertex that it occupies, can be computed in the long time limit from equation (22), as
a function of the average time of trapping τk in vertices of degree k. From the asymptotic
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Figure 6. Rescaled average escape times (Metropolis dynamics). Data are for
the UCM network with γ = 3.0, so βc = 1.0 (E0 = 1). The scaling forms of
equation (55) produce a collapse of the curves concerning different systems sizes
in the three regimes of high, intermediate and low temperature (top, center and
bottom panels, respectively). The slightly worse collapse obtained for β = 0.75
may be due to logarithmic corrections as β is close to both βc and 2βc. Each point
is averaged over 400 simulation runs (20 runs on each of 20 network realizations).

expansions of τk in equation (48), valid for Glauber and Metropolis dynamics, evaluation of
equation (22) allows us to observe that, whenever a finite Tc exists, tesc(tw → ∞) diverges
at 2Tc in an infinite system, as was already observed in the case of local trapping [34]. It
is noticeable that the same divergence temperature is obtained, as equation (22) a priori
involves the network’s degree correlations and the function s. Within the continuous
degree approximation, the divergence of the escape time with the system size follows the
scaling laws

teqesc ≡ tesc(tw → ∞) ∼
∫ kc

P∞(k)τk ∼

⎧
⎪⎨

⎪⎩

kβcE0
c β > βc

k(2β−βc)E0
c βc/2 < β < βc

const. β < βc/2.

(55)

As noted in the previous paragraph for the equilibration time, we note that the scaling
for β > βc differs from the form kβE0

c encountered for local trapping [34]. Figure 6
reports simulation data that confirm the validity of equation (55). As the temperature is
lowered, the initial transient becomes longer, but for large enough times tw the asymptotic
behavior predicted in equation (55) is reached, as is made clear from the collapse of curves
concerning different system sizes.

In the case of barrier-mediated dynamics, τk depends on the symmetric function
σ(k, k′), as expressed in equation (52), namely

τk ∼ kβE0eβσ0kµ

. (56)
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Proceeding as above we obtain

tesc ∼

⎧
⎪⎨

⎪⎩

k(1+ε)βE0
c β > βc

k[(2+ε)β−βc]E0
c βc/(2 + ε) < β < βc

const. β < βc/(2 + ε),

(57)

where we recall that ε does not depend on the system size.

5.5. Average rest time

The HMF expression for the asymptotic average rest time, defined as the average time
spent by the system in a minimum, is given by equation (28), namely 〈τ〉 = Z/I, where
the quantities Z and I, for uncorrelated scale-free networks and a degree–energy relation
h(k) = E0 ln(k), take the form, in the continuous degree approximation,

Z ∼
∫ kc

k1−γ+βE0 dk ∼ const + k(β−βc)E0
c , (58)

I ∼
∫ kc

dk

∫ kc

dk′ k1−γg(k)k′1−γg(k′)s(k, k′). (59)

Let us first recall the case of the local trap model. Both g(k) and s(k, k′) are then
constants, so I ∼ 〈k〉2 = const. Thus, the average rest time behaves as Z: it is finite for

β < βc, and diverges with the system size as k
(β−βc)E0
c for β > βc, signaling the emergence

of the glassy regime at low temperatures.
In the cases of Glauber and Metropolis dynamics (which lead to the same results), the

situation is more involved, since the product g(k)g(k′)s(k, k′) entering I is not constant.
In fact, I diverges with kc for βE0 > 2(γ − 2), that is, at a lower temperature given by
β ′

c = 2βc. The interplay of these two temperatures determines the behavior of the system
for finite sizes within the low temperature phase. In particular, for the Glauber dynamics
with g(k) = eβh(k) and s(k, k′) = r0/[eβh(k) + eβh(k′)], we have

I ∼ const + k(β−2βc)E0
c . (60)

Upon considering lower values of β, 〈τ〉 first encounters the divergence of Z at βc, which
is then partially regularized by the divergence of I at 2βc. From these results, we obtain
the emergence of three scaling regimes for the behavior of 〈τ〉 as a function of the system
size:

〈τ〉∞ ≡ 〈τ〉(tw → ∞) ∼

⎧
⎪⎨

⎪⎩

kβcE0
c β > 2βc

k(β−βc)E0
c βc < β < 2βc

const. β < βc.

(61)

The direct numerical computation of equation (28) is shown in figures 7 and 8, showing
the validity of this analysis. In particular, the exponential increase of 〈τ〉 with β in
the intermediate temperature range βc < β < 2βc is clearly apparent in figure 7, and
figure 8 confirms that, for β > 2βc, the exponent in the scaling law for the system size
kc does not depend on the temperature. While the temperature βc signals the onset of
the low temperature phase with glassy dynamics for all transition rates considered, for
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Figure 7. Average rest time for the Glauber dynamics in a scale-free uncorrelated
network with γ = 2.75, as a function of the inverse temperature, for different
system sizes. Data are obtained by numerical computation of equation (28) (with
E0 = 1). Note the exponential increase with β for βc < β < 2βc, which saturates
for β > 2βc as predicted by equation (61).

Glauber/Metropolis dynamics the low temperature phase can be further divided into two
regions that correspond to different behaviors of the timescales with the system size.

Figures 9 and 10 moreover show the result of numerical simulations of random walkers
on scale-free networks for Glauber and Metropolis dynamics as well as in the case of
barriers, globally confirming the above discussed picture.

Dynamics in the presence of barriers do not yield the same phenomenology as Glauber
and Metropolis rates. In this case, we have g(k) = 1 and s(k, k′) = r0e

−βσ(k,k′). Selecting
σ(k, k′) = σ0(k

μ + k′μ), as in section 5.3, we are led to

I ∼
[∫ kc

dk k1−γe−βσ0kµ

]2

. (62)

As for the escape time tesc, upon choosing σ to be size independent, the rest time 〈τ〉
will be diverging exponentially with kc at every temperature. By introducing the size
dependence as in equation (54), instead, one can see that the I integral converges to a
constant for large kc, so one is left with

〈τ〉 ∼
{

k(β−βc)E0
c β > βc

const. β < βc.
(63)

We therefore obtain the same picture as in the case of traps, with an exponential increase
of 〈τ〉 as β increases, as confirmed by numerical simulations in figure 9.

6. Energy basins and energy barriers

Inspired by analogies with systems governed by the Arrhenius law, we have introduced
a transition rate that takes into account the energy barriers between states. Within the

doi:10.1088/1742-5468/2011/03/P03032 20

http://dx.doi.org/10.1088/1742-5468/2011/03/P03032


J.S
tat.M

ech.
(2011)

P
03032

Complex networks and glassy dynamics: walks in the energy landscape

Figure 8. Average rest time for the Glauber dynamics in a scale-free uncorrelated
network with γ = 2.5, as a function of the degree distribution cut-off and
for different temperatures. Data are obtained by numerical computation of
equation (28). 〈τ〉 grows as a power law in kc, with an exponent that grows as β
increases (going from bottom to top in the figure). The thick gray line corresponds
to β = βc, while the thick black line corresponds to β = 2βc. For larger values
of β, the power-law behavior corresponds to the predicted 〈τk〉 ∼ kβcE0

c ∼ kγ−2
c ,

which no longer depends on β. The kγ−2
c curve is reported as a dashed line for

reference. Values of β represented here are between 0.25 and 3.

heterogeneous mean-field approximation, in which all variables depend only on the degree
of the vertices, and choosing Ei = E0 ln(ki), the transition rate that we have considered
becomes

r(k → k′) = k−βE0e−βσ(k,k′), (64)

where σ(k, k′) is a symmetric function of the degrees of the two nodes. This model
represents in essence an extension of the local trap model, where non-locality enters only
in the form of symmetric energy gaps Σij (see figure 1). The steady state has exactly the
same form as the ones discussed so far, which incidentally is the same as for the local
trap model. As shown in the previous sections, the presence of barriers affects transient
relaxation phenomena, but not the steady state.

A different question is that of whether one can be more specific about the realistic
functional form of the coarse-grained function σ(k, k′). In the previous section we have
already introduced a definition of σ(k, k′). Here we provide the rationale behind that
choice.

Numerical simulations of the energy landscape network of Lennard-Jones clusters
show that the average barrier to escape from state k follows the power law ΔEk ∼ kμ,
with μ > 0 [23]. In our model, such an average can be computed as

ΔEk =
∑

h

P (h|k) [E0 ln k + σ(h, k)] . (65)
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Figure 9. Average rest time as a function of β for different transition rates, for a
random walker on UCM networks with γ = 2.75 (E0 = 1) and N = 106. Discrete
points: simulation results; continuous lines: theoretical predictions from 〈τ〉 =
Z/I, based on simulation parameters. The Glauber and Metropolis transition
rates induce two changes of behavior at βc and at 2βc, the first being a steep
increase of the average rest time 〈τ〉 and the second a smoothing/saturation of
this increase. No saturation of 〈τ〉 is observed however when barriers are present.
The agreement with theoretical predictions is remarkable, thus corroborating the
validity of the HMF assumptions. Moderate deviations are found only in the case
of barriers, where exponential growth is expected to add greater fluctuations. In
the inset, the difference between the two behaviors is more evident thanks to a
different scale of the plot. Note that, since in the simulations E0 = 1, the high
temperature limits of the rest time are different for the Glauber and Metropolis
dynamics, being τ(β = 0) = 2 and τ(β = 0) = 1 respectively. For the case of
barriers we have chosen σ0 = 10−1. Each point is obtained by averaging the
rest times corresponding to the first 106 hops of the random walker in each of 10
network realizations.

For simplicity we focus on uncorrelated networks, as simulations do indeed show weak
degree correlations. Under this assumption, the first term of the sum on the right-hand
side of equation (65) will contribute as a logarithm of k and the power-law behavior of
ΔEk is possible whenever σ(h, k) ∼ kμ, which leads us to consider the form proposed in
previous sections:

σ(k, k′) = σ0 (kμ + k′μ) , (66)

where σ0 has the dimensions of an energy (a discussion about the possible values of σ0

is given in section 5.3). More complicated functional forms can also be proposed, for
example accounting for barriers of different signs, as long as they retain the same power-
law behavior as equation (66) in the large k limit. It is interesting to notice that ΔEk ∼ kμ

implies that the average escape rate e−βΔEk has the form of a stretched exponential,
∼ exp(−βkμ), if we neglect the logarithmic correction.
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Figure 10. Average rest time for Metropolis dynamics on uncorrelated scale-free
networks with γ = 3.0 (E0 = 1, βc = 1.0). Data for different system sizes collapse
well when rescaled according to the theoretical values of equation (61). While
the agreement is excellent both for high and low temperature (top and bottom
panels, respectively), logarithmic corrections are probably present for the regime
of intermediate temperatures βc < β < 2βc (central panel). In each simulation
run the rest interval starting before tw and ending after tw is considered, and
each point in the figure is averaged over 400 simulation runs (20 runs on each of
20 network instances).

7. Conclusions

In this paper, we have presented a simple mathematical framework for the description of
the dynamics of glassy systems in terms of a random walk in a complex energy landscape.
We have shown how to incorporate into this picture the network representation of this
landscape, put forward and studied by several authors [25]–[27], [29]–[33], in order to go
beyond simple mean-field models of random walks between traps that are all connected
to each other. While our previous work had focused on the case of a landscape consisting
of traps connected by a network [34], we have here generalized our study to more involved
and realistic rates of transitions between minima, including Glauber or Metropolis rates,
and the possibility of energy barriers between minima. We have shown how the interplay
between the topology of the network of minima and the relationship between the energy
and the degree of a minimum may determine a rich phenomenology, with the existence of
two phases and of glassy dynamics at low temperature. Interestingly, the existence of these
phases, and the transition temperature, do not depend on the network’s degree correlations
or on the precise form of the transition rates, but other more detailed properties do. In
the case of Glauber and Metropolis dynamics, the low temperature phase can be further
divided into two regions with different scaling properties of the average trapping time
as a function of the temperature. Overall, our results rationalize and link the empirical
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findings concerning correlations between the energies of the minima and their degrees,
and should stimulate further investigations on this issue.

Our work also has interesting applications in terms of diffusion phenomena on complex
networks, and shows that non-trivial transition rates can lead to a very interesting
phenomenology. Usual random walks lead to a higher probability for the random walker to
be in a large degree node (∝kP (k)), with respect to the random choice of a node (∝P (k));
here, the models that we have studied can lead to various stationary probabilities, such
as a uniform coverage which no longer depends on the degree. Interestingly, the biased
random walks among traps that we have studied can even display a phase transition
phenomenon, as either a temperature parameter or the network’s properties are changed,
with the possible presence of a glassy phase with slow dynamics.
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