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Surrogate networks can constitute suitable replacements for real networks, in particular to study
dynamical processes on networks, when only incomplete or limited datasets are available. As
empirical datasets most often present complex features and interplays between structure and
temporal evolution, creating surrogate data is however a challenging task, in particular for data
describing time-resolved interactions between agents. Here we propose a method to generate
surrogate temporal networks that mimic such observed datasets. The method is based on a
decomposition of original datasets into temporal subnetworks encoding local structures on a short
time scale. These are used as building blocks to generate new synthetic temporal networks that will
hence inherit the shape of local interactions from the datasets. Moreover, we take into account larger
scale correlations on structural and temporal dimension, using them to inform the process of
assembling the building blocks. We showcase the method by generating surrogate networks for
several datasets of social interactions and comparing them to the original data. First, we show that
surrogate data possess complex structural and temporal features similar to the ones of the original
data. Second,we simulate several dynamical processes and compare their outcomeon the generated
and original datasets.

Networks are a reference representation tool in thefield of complex systems,
well suited to describe systems composed of multiple interacting agents1–4.
Formed by a set of discrete nodes and the connections between them,
networks (or graphs) schematize the existing interactions among elements,
providing a representative picture of the system architecture in many dis-
ciplines, from physics to sociology, biology, and economy. In many cases,
agents’ interactions undergo a temporal evolution, with links appearing and
disappearing over time, and their description necessitates the use of tem-
poral networks representations and tools5,6. This framework proves valuable
inmany settings, like neuronal functions and ecosystems, but is particularly
useful to describe social contexts, where connections among people change
over time, both in physical and remote interactions, with non-trivial tem-
poral and structural correlations. Both static and temporal network repre-
sentations allowmoreover to describe the unfolding of dynamical processes
among agents such as, for instance, spreading phenomena (of diseases,
opinions or information), transportation models, communication, syn-
chronization, and consensus formation1. The collective behaviors resulting
from these processes depend on both the structure of the underlying net-
work and its temporal evolution1,5,7,8, so that the correct description of their
properties requires their study and simulation on temporal networks with
realistic structural and temporal patterns.

However, information about real temporal sequences of interactions
between agents is often incomplete, limited in size and duration, due to the
many challenges in collecting datasets5,9,10. It is thus not straightforward to
study processes on empirical temporal networks of large size and of dura-
tions long enough with respect to the processes’ timescales. In this context,
synthetic networks that mimic the observed complex patterns of real
structures can serve as surrogate substrates on which to simulate processes.
In particular, the techniques to obtain synthetic networks are not necessarily
limited to creating data of the same temporal length as the empirical
datasets, and can thus provide solutions to the problem of data with limited
duration. For instance, it is possible to generatemany instances of surrogate
datasets (of the same duration as the original data) and arrange them in
temporal succession to create a dataset with arbitrary duration11,12.

Generating synthetic temporal networks with realistic features and
arbitrary sizes and timescales remains however a challenging task: the
interplay between temporal evolution (e.g., how each connection changes in
time, the durations of interactions, the frequency at which new ones appear
and existing ones disappear) and topological organization (the structural
correlations between the instantaneous relations amongnodes) leads indeed
to convoluted spatio-temporal structures that require specifically designed
tools to analyze and are difficult to reproduce13–19.
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Themethods for temporal network generation can be broadly divided
into two categories: the first is represented by theoretical models7, which
start from governing rules assumed to be the basis for the evolution
mechanisms of the agents’ interactions. These rules are thus used to build
connections among nodes and determine their temporal evolution. A well-
known example is constituted by the activity driven models20–24: in their
simplest versions, they focus on reproducing the heterogeneity between
nodes’ activations, without reproducing complex temporal properties.
Refined versions show that short and long-term memory effects in the
activation of nodes and links are needed to reproduce temporal features
such as the heterogeneity of contact durations and of the times between
subsequent contacts, or the emergence of correlated evolution patterns of
groups of nodes (communities)18,21,24–33. Note that thesemodels are typically
not targeted at mimicking a specific observed network: they rather aim at
investigating and validating the possible underlying mechanisms of tem-
poral network dynamics, by trying to recreate some general features con-
sidered as relevant. In this respect, their goal is usually not to reproduce the
full complexity of empirical temporal networks, but to address the emer-
gence of interesting statistical characteristics, such as, e.g., bursty distribu-
tions of intercontact durations, or broad distributions of contact durations,
using simple rules.Thesemodels also remaingeneral, in that theydonot aim
at producingnetworks similar to data collected in a specific context (such as,
e.g., the temporal network of contacts between students in a school), and are
thus not suitable to produce surrogate networks of given datasets, for use in
numerical simulations of processes.

The second category of models is represented by emulative algo-
rithms that are instead specifically designed to produce surrogate net-
works of given datasets10,12,34–38. In these somewhat more applicative
procedures, one starts from a specific input network and tries to create a
surrogate network that mimics the input structure, i.e., that produces
patterns similar to the ones observed in the input (machine learning
processes can also be used for this goal35). These models do not make any
theoretical assumption about the underlying mechanisms that led to the
emergence of these patterns, nor take these mechanisms into account in
the creation of the surrogate data.

Emulative algorithms have been less developed and explored than
theoretical models, and their use has mostly been considered and validated
in the context of numerical simulations of models of infectious diseases.
Here, we give a significant twofold contribution to this field: first, we put
forward a novelmethodology to create surrogate temporal network datasets
for a variety of contexts, which brings together the emulative and theoretical
points of view; second, we show the possibility to use the obtained surrogate
data to simulate a variety of dynamical processes with very different prop-
erties, describing respectively epidemic spread, opinion formation and
emergence of norms in a population. The method we propose can on the
one hand be ascribed to the category of emulative algorithms, as it aims at
producing surrogates of given empirical temporal network datasets. On the
other hand, it also leverages several theoretical assumptions on the
mechanisms for the establishment and dynamics of links. First, similarly to
models in which the activity of nodes depends on their recent prior
interactions24–26,39, it focuses on the behavior of individual nodes, on their
recent past and on their local neighborhood to determine their future
interactions. Such approach was developed by Longa et al.40 and was shown
to reproduce several time averaged quantities (such as the number of
instantaneous neighbors of a node, averaged over nodes and time) and
instantaneous ones (such as the total number of interactions at each time). It
however fails to reproduce other relevant properties observed in empirical
data, such as the large values of the clustering4 (i.e., the fractionof completely
connected triads of nodes), the organization of nodes into groups4,41, and the
heterogeneity in the overall activity of connections (the total time in inter-
actionof pairs of nodes can vary over orders ofmagnitude14,42). Toovercome
these limitations, we introduce the second assumption: that some network
features observed in real data result frommeso-scale topological correlations
and long-term temporal correlations. We thus include mechanisms to
reproduce global and meso-scale properties observed in the real temporal

networks that we want to mimic. Notably, the technique that we develop
makes it possible to generate anetworkof arbitrary length, not limited by the
temporal length of the original dataset it is based on.

In the following, we first provide a detailed explanation of the metho-
dology. We use it to produce surrogate datasets of eight empirical temporal
networks describing social interactions in different contexts, namely face-to-
face contacts in a primary school43, a high school44,45, a workplace46, and a
conference14, and co-location contacts in a primary school and a middle
school47 andauniversity campus48.The surrogates arefirst generatedwith the
same temporal length as the original datasets in order to test the model. We
assess the similarity between the surrogate and original datasets along a series
of structural and temporal characterization tools of temporal networks. We
then consider three dynamical processeswithdifferentdynamical properties,
to showcase the possibility to use such surrogate data in numerical studies of
these processes: a generic model for the spread of infectious diseases1,8, the
Deffuant model for opinion dynamics49,50, and the Naming Gamemodel for
the emergence of conventions in a population51,52. We also show the results
obtained with two simplified versions of the method, which allow us to
outline the role and the importance of thedifferentmechanisms at play in the
generation of the surrogate data. We moreover go one step further and
perform numerical experiments using surrogate data generated on longer
timescales than the observed network’s temporal length.

Results
Generating surrogate temporal networks
Let us consider a temporal network in discrete time, with N nodes and T
temporal snapshots. There are in principle no constraints on the char-
acteristics of this network, that we denote as the “original network” to
distinguish it from the synthetic surrogate networks that our method will
generate.Wefirst explain theprocedure to generate a networkwith the same
number of nodes and the same temporal length as the original and we will
discuss later how to adapt the methodology to generate longer networks.

Building blocks of the original network. The generation process begins
with the extraction of information from the (known) original network.
The first step consists in decomposing the original network into building
blocks, called “Egocentric Temporal Neighborhoods”, which describe
how each node interacts with its neighborhood on a short time scale53.
The Egocentric Temporal Neighborhood of a node i at time t is indeed
defined as the temporal subgraph of the original network composed by i,
all the nodes that interact with it between t and t+ d, and their linkswith i.
The connections between the neighbors of i are thus not included (see top
panel of Fig. 1). The time length of the subnetwork is given by d + 1,
where d is a free parameter of the method. In Fig. 1 and in all the suc-
cessive figures we use d = 2, a comparison between different values of d is
provided in the Supplementary Note 1.

Next, each Egocentric Temporal Neighborhood is mapped onto an
ego-subgraph, which encodes just the shape of the local interactions: each
ego-subgraph is indeed the equivalence class of all isomorphic Egocentric
Temporal Neighborhoods (just as a motif in a static network is an equiva-
lence class of isomorphic static subgraphs). Toobtain the ego-subgraph, one
thus removes thenode identities of theEgocentricTemporalNeighborhood,
but one keeps the crucial information about (i)whichnode is the central one
(ego) and (ii) which nodes are neighbors of ego in different snapshots. The
ego-subgraphs are thus not simply successions of stars in the different
snapshots. For instance, in the sketch of Fig. 1a, the neighbor drawn to the
top left of the ego is connected to it in the first two snapshots, and this
information is kept in the resulting ego-subgraph (rightmost sketch of
Fig. 1a). Note that, for computational ease of manipulation, each ego-
subgraph can be mapped to a binary string, with the following procedure53:
for each neighbor of the ego, we create a binary sequence of length d+ 1
with a 1 each time theneighbor is connected to the ego, and a 0when it is not
(in the example of Fig. 1, there are thus 5 sequences of length 3: for instance,
the sequence for the neighbor to the top left of the ego is 110, which encodes
the information that it is connected to ego in the two first snapshots but not
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in the third); we then concatenate these sequences (using the lexico-
graphic order).

We thus extract the Egocentric Temporal Neighborhood and the
resulting ego-subgraph of each node and at each time. Note that, since the
node identities are removed in the ego-subgraph, different Egocentric
Temporal Neighborhoods (of different nodes and at different times) can
yield the same ego-subgraph. Overall, the set of all the ego-subgraphs and
the numbers of Egocentric Temporal Neighborhoods to which they cor-
respond encode the local interactions of the original network, i.e., how the
nodes’ neighborhoods are formed and evolve on a short time-scale53, and it
has been shown that adjusting a model’s parameters to reproduce the ego-
subgraphs relative frequencies allows to reproduce as well several other
temporal properties of the data24.

Decomposition in temporal states. While the global set of ego-
subgraphs provides a representation of all the local interactions in the
temporal network, it is not suited to describe several meso-scale

structural features of the temporal snapshots seen as static networks, such
as the existence of triangles or of densely connected groups of nodes. It
does not either give direct insights into the temporal variations that can
characterize a temporal network at various temporal scales. It cannot, for
instance, differentiate between periods of high and low activity, or
between periods in which nodes form separate groups and others in
which they all mix together.

To understand the network’s temporal organizaton, we resort to the
method of 15 to gather the temporal snapshots of the original networks into
groups of snapshots with similar structure: each group of snapshots then
defines a “state” of the temporal network. We first assess the similarity
between each pair of snapshots (t1, t2) through the Laplacian distance

dLt1 ;t2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1 ½λnðt1Þ � λnðt2Þ�2
max

PN
n¼1 λnðt1Þ2;

PN
n¼1 λnðt2Þ2

� �
s

; ð1Þ

Fig. 1 | Schematic procedure for generating surrogates. a Example of Egocentric
Temporal Neighborhood extraction from a temporal network. An ego-node (in
aqua green) and its neighbors (in light green) are highlighted for three time steps
(d = 2) and the corresponding ego-subgraph is depicted on the right together with its
univocal signature. Note that, even if the ego-subgraph does not contain informa-
tion on the identity of the nodes (as it is an equivalence class of all isomorphic
Egocentric Temporal Neighborhoods), it retains the information on whether some
neighbors of the central node (the ego) are the same in different snapshots. b The
temporal snapshots are partitioned into states based on de (left) and dL (right). The
two matrices report the distances among snapshots for a temporal network
describing interactions between children in a primary school43, with temporal
resolution of 5 min. For de we use here kd with d = 2. The plot below each matrix

depicts the succession of states associated to each snapshot (the state numbers do
not carry any specificmeaning, they just serve to label the snapshots). cGenerating a
generic snapshot t of the surrogate involves several steps. For each node i (here the
aqua green node), we first extract its Egocentric Temporal Neighborhood on the
surrogate snapshots t− d,⋯ , t− 1 previously constructed, and build the resulting
ego-subgraph gdi of temporal length d; we extract at random, from the set of ego-
subgraphs of length d+ 1 of state se∋ t (collected from the original dataset), an ego-
subgraph gdþ1

i of length d+ 1whose d first temporal steps are isomorphic to gdi . The
d + 1 snapshot of gdþ1

i is used to design the provisional neighborhood of i. The
provisional static directed network of snapshot t is obtained by repeating this
procedure for all nodes. The link confirmation step finally yields the surrogate
snapshot t.
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where λn(t) is the nth largest eigenvalue of the Laplacian LðtÞ of snapshot
t4,15. The matrix of distances between all pairs of snapshots of an example
dataset (contacts recordedbetween students of an elementary school during
two days43) are shown in the left part of Fig. 1b.

Using this matrix of distances, we then cluster the temporal snapshots
into states15. Such optimal classification is found using the Dunn’s index54

(see the Methods section “Temporal states clustering”). For the example
dataset considered in Fig. 1, three states are found (corresponding in the
school to the time spans of the lectures, of the lunch breaks andof the night).
As we have used the Laplacian distance to determine these states, we call
them “Laplacian temporal states”, sL. They are characterized by a different
organization of nodes into communities. This can be shown by building, for
each state, a weighted static network aggregating all the temporal snapshots
of that state (i.e., where each link is weighted by the number of snapshots in
which it appears), and examining the community structures of these static
networks. In the example of the school dataset of Fig. 1, a simple application
of the Louvain algorithm55 yields a partition in 9 groups for the state 0
(lectures), which approximately reflects the students school classes43. The
resulting modularity index is high, equal to 0.74. The partition that is
obtained for the state formed by the lunch breaks snapshots consists instead
in 5 groups (modularity 0.38). To summarize these differences, we compute
for each state sL an index χ, corresponding to the ratio of inter-group and
intra-group links, (see theMethods section “Modularity and value χ” for the
precise definition). For the primary school example, χ = 0.014 for the state
corresponding to lectures and χ = 0.15 for the state of the lunch breaks (χ=0
for the night, where no links are present).

We notice however that the number of interactions of singular snap-
shots can undergo considerable variations inside a state sL. It is thus also
useful to define amorefine-grained temporal state decomposition, based on
nodes activity. To this aim, we define 〈kd(t)〉 as the average number of a
node’s distinct neighbors between t and t+ d (this quantity is proportional
to the mean length of all ego-subgraphs at time t), and we compute the
distance

det1 ;t2 ¼
jhkdðt1Þi � hkdðt2Þij
hkdðt1Þiþhkdðt2Þi

� ; ð2Þ

between all pairs of times in [1, T ]. The resulting matrix of distances in
shown in Fig. 1 for the primary school dataset. Using this matrix to cluster
the snapshots and extract states of the temporal network results here in
8 states se. As these states correspond to different levels of activity, and as the
ego-subgraphs encode information on this activity (through the numbers of
neighbors of each ego), we group the ego-subgraphs into separate sets, each
corresponding to a state: for each Egocentric Temporal Neighborhood
collected at time t ∈ se, the resulting ego-subgraph is put into the set
associated to se.

Overall, we thus end up with two different partitions of the temporal
snapshots: one based on the Laplacian distance between snapshots, which
will be used to adjust the overall group structure of the synthetic temporal
snapshots created by our methodology, and one based on the variations of
activity, which will determine which set of ego-subgraphs is used to create
each surrogate temporal snapshot.

Reassembling the building blocks to generate a surrogate temporal
network
Provisional snapshot. The surrogate network is progressively built one
snapshot after the other, starting from time 1 to the final step T, with an
iterative procedure. Each snapshot t is built making use of information on
the previously built snapshots t− d,⋯ , t− 1, and of the information on the
Laplacian state sL and activity state se to which the snapshot t of the original
network belongs.

Leaving to theMethods section the description of the initial creation of
the first d snapshots, we present here the procedure to generate a generic
temporal snapshot t > d, which is inspired by the configuration model for
staticnetworks4.While, in the configurationmodel, one assigns to eachnode

adesireddegree, andone tries tomatch thedifferent nodes in order to satisfy
these requests, here we will assign to each node i in the snapshot t a desired
set of neighbors, combining neighbors of i in the preceding snapshots and
new neighbors, in order to eventually obtain a network with the same
distribution of ego-subgraphs as the original network. Then, similarly to the
configurational model, connections are built in order to match the requests
of the various nodes.

More in details, to generate snapshot tof the surrogate, assuming that all
the previous layers (t0<t) have already been generated, we consider all nodes
one after the other and assign to each their interactions at time t based on the
previous ones, as sketched in Fig. 1c. Specifically, for each generic node i we
consider it as the ego-node, andweobserve its neighborhood in thepreviousd
surrogate snapshots t − d, ⋯ , t − 1. This is an Egocentric Temporal
Neighborhood of length d, that we map onto an ego-subgraph gdi (as shown
in Fig. 1(c)).We then consider the set of all ego-subgraphs of length d+ 1 of
the original network associated to the state se to which t belongs. Among
these, we select thosewhosefirst d time-steps coincidewith the ego-subgraph
gdi (in the example of Fig. 1c only the two highlighted ego-subgraphs satisfy
this condition). Note that, although comparing graphs is in general a com-
putationally heavy process56, the fact that ego-subgraphs have been mapped
onto binary strings makes this step very efficient, only requiring to find the
binary strings of the setwhosefirstd stepsmatch the stringdescribing gdi . The
resulting subset of strings (or ego-subgraphs) determines the possible
extensions of the neighborhood of node i in snapshot t that are compatible
with the statistics of ego-subgraphs in se. We extract one of these possible
extensions at random, with probability proportional to the observed fre-
quency of the corresponding ego-subgraph. The extracted extension deter-
mines the desired neighborhood of i in snapshot t, which can include nodes
already in interaction with i in the previous time snapshots, and interactions
with newnodes.We represent thefirst case by directed desired links from i to
theneighbors, and the secondcaseby stubs, i.e., half linksnot yet connected to
other nodes. In the example of Fig. 1c the random extraction yields an
Egocentric Temporal Neighborhood of i on [t − d, t] in which one of the
neighbors at twas alreadyneighbor at t− 2 and t− 1,while another neighbor
isnew,and is thusdepictedasa stub (withaquestionmark).Once thisprocess
has been applied to every node, we thus obtain for the snapshot t a static
“provisional” network with directed links and stubs, which encodes the
desired neighborhoods of all nodes.

Linkconfirmation. Inorder tobuild the surrogate snapshot at time t, wenow
need to decide which of the desired neighborhood directed links of the
provisional network to transform into actual links of the surrogate network,
andhow to connect the stubs. Indeed, not all the desiredneighborhood links
can be satisfied: for instance, if there is a directed link from i to jbut not from
j to i, it means that node i needs to connect to node j to have its desired
Egocentric Temporal Neighborhood, but that a link between i and j in the
snapshot t would frustrate the desired neighborhood of j by making its
Egocentric Temporal Neighborhood different from the one extracted in the
creationof theprovisional network (vice-versa, nothaving the linkbetween i
and jwould fit j’s neighborhood but frustrate the one of i). To decide which
desired neighborhoods to satisfy, we thus perform now the “confirmation”
stage of the procedure, to go from the provisional snapshot to the actual
surrogate one. The confirmation will depend on the Laplacian state sL
corresponding to time t in the original network.

First, we accept each reciprocal request (when both directed links i→ j
and j→ i exist in the provisional network), transforming them into links of
the surrogate snapshot, as the establisment of such links contributes to
creating desiredEgocentricTemporalNeighborhoods of both i and j. All the
unidirectional links (i → j without reciprocal request) instead represent
links that would satisfy one node and frustrate the other one, so we accept
half of them40. The choice of the ones to accept is made taking into account
(i) a mechanism of long term memory on the links, (ii) the average node
clustering coefficient in the original snapshot, and (iii) the network’s
organization into groups at time t. More specifically, the confirmation
process is designed to preferentially accept links:
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• (i) that already appeared in previous snapshots of the surrogate net-
work corresponding to the state sL, repeating interactions between
nodes that have already met in that Laplacian state;

• (ii) that increase clustering, i.e., closing triangles by connecting nodes
that have common neighbors;

• (iii) where the two nodes belong to the same group, according to the
nodes partition in the state sL, with a probability that depends on the
value χof that state (i.e., if the original networkhas low/highmodularity
this effect is weak/strong), thus yielding a level of modularity in the
generated snapshot similar to the one of the original snapshot.

In practice, we compute for each unidirectional link i→ j, the quantity

sij ¼ ð1þ γijÞð1þ ρijÞ ð3Þ

with γij the number of common neighbors of i and j in snapshot t (counting
all the possible bidirectional links to confirm) and ρ the memory matrix
defined as follows: the element ρij counts the number of past interactions
between i and j in the surrogate that took place in snapshots up to t − 1
corresponding to the same state sL of time t, divided by themaximumvalue
of ρ. Favoring pairs with larger γij implies increasing clustering in the
snapshot that we are generating, while favoring pairs with large ρij corre-
sponds to a (long-term) memory mechanism (a reinforcement process
known to create heterogeneity between the aggregated strength of the
connections21,24). We thus sort all the pairs in decreasing order of sij.
Moreover we use the information about the groups to which each node
belongs and the value χ of inter-groups versus intra-groups connections
(found in the original network for the state sL corresponding to time t) as
follows: we review the list of unidirectional links, starting from the pair with
the largest sij, and accept each link with probability 1− χ if i and j belong to
the same group, andwith probability χ otherwise.We stop the processwhen
we have accepted the needed number of pairs (half of the total). If the end of
the list is reachedbefore this number is reached, we choose themissing links
at random in the list. We note that this method is designed to reach large
values of the clustering, since one accepts preferentially the links with large
values of the number of common neighbors. It is however possible to
modulate this effect and obtain lower values of the clustering bymultiplying
γij by a factor c < 1 in Eq. (3).

Finally, we couple the stubs (deleting one if we have an odd number of
them) using a similar process. We first create the list of all the nodes with
stubs, each node being repeated a number of times equal to its number of
stubs. We choose a random node i from this list, and compute sij for all the
other elements j ≠ i of the list. We sort the nodes j in decreasing order of sij
and, as above, starting fromthe largest value, accept thematchbetween i and
j’s stubs with probability 1− χ or χ, dependingwhether i and j belong or not
to the same group. As soon as a match is accepted, we create the corre-
sponding link (i, j) in the surrogate snapshot (if not yet existing), and remove
one copy of i and j in the list of nodes. We repeat the process until all the
stubs have been coupled.

At the end of the confirmation stage, we obtain a static network that
becomes the snapshot t of the surrogate network. We iterate to create
snapshot t + 1 and so on, until we reach the final time T.

Since we are using the memory of past interactions to generate each
sapshot, we do not consider valid the first Tρ snapshots that are generated,
wherememory isnot significant yet, sowegenerateT+Tρ snapshots in total
and the surrogate network will correspond to just the last T. The parameter
Tρ is here arbitrarily set to correspond to 24 hours.

Note that the surrogate generation process is stochastic, as both the
choice of the desired Egocentric TemporalNeighborhoods of the nodes and
the confirmation steps include random choices. Using different realizations
of these choices thus allows us to produce as many different surrogate
temporal networks as needed, all reflecting the same statistical properties of
the original data. Since the procedure takes into account the statistics of the
ego-subgraphs (E), the structural correlations (S) like modularity and
clustering, and the long term temporal correlations (T), in the following we

will refer to it as the EST model. We will consider also two simplified
versions: the ES model (without temporal correlations, i.e., setting
ρij = 0 ∀ i, j) and the E model (without temporal nor structural temporal
correlations, i.e., ρij = 0 and γij = 0 ∀ i, j).

Temporal extension. The procedure described above generates surro-
gate networks with the same temporal length T as the original network.
We note however that it is possible to iterate the procedure beyond T and
to create as many additional snapshots as desired, and thus to generate
surrogate networks of arbitrary length. To do this, we need however to
associate each time t > T to a pair of states se and sL, as the original
network does not contain such information. One possibility is to use the
set of known states, with (for instance) a periodicity depending on the
context (for the primary school data for instance a periodicity of 24 h can
be suitable to reconstruct the general temporal evolution of successive
days). Such a procedure allows to extend datasets without repeating
identical interactions, but mimicking the general behavior of the original
datasets to generate new synthetic stochastic interactions.

Empirical evaluation
We illustrate the procedure using eight temporal networks of social inter-
actions as original networks. Five of them have been collected by the
SocioPatterns collaboration (www.sociopatterns.org) and report face-to-
face contacts between sets of anonymized individuals, collected using
wearable sensors in diverse environments, including schools, workplaces
and conferences, and have a temporal resolution from 20 s. The other three
datasets have been collected as colocation data in an elementary school, a
middle school47 and a university campus48 with a resolution of 20 s for the
first two and 5min for the last.We show in themainmanuscript the results
when using the primary school contact data of Sociopatterns43 as original
network, and show the results for the other datasets in the Supplementary
Information (Supplemetary Note 6). Indeed, this dataset, which describes
the interactions between students and teachers during two days, entails rich
intertwined structural and temporal features such as groups of nodes
(classes) that are densely connected during some periods (classes) and form
larger, less dense clusters during other periods (lunch breaks).

Using thisdataset asoriginalnetwork (withhere a temporal resolutionof
5min) we apply our stochastic procedure (with d= 2) 10 times, thus
obtaining 10 different surrogate networks, for which we report the averaged
results.Note thatwe report the results both for themost refined version of the
procedure (EST) and for the two baselines E and ES, in order to understand
which aspects of the procedure are most needed to best mimic the various
features of the original network. We first compare the surrogate and the
original networks under the lens of several structural and temporal features of
temporal networks, and we then study whether several dynamical processes
unfold in a similar fashion on the surrogate and on the original data.

The basic method that only uses Egocentric Temporal Neighbor-
hoods and ego-subgraphs is very fast (as shown in ref. 40 for a method
similar to our E process). It is slightly slowed down by the additional
structural and temporal features but the implementation time remains
short: it takes from 20 s to 10min on a standard laptop to generate one
surrogate network of those shown in main text and Supplementary with
the EST method (the most complicated). The time variability is mainly
due to the number of nodes, that for the networks we tested go from
113 to 675.

Structural and temporal properties. All three procedures (E, ES and
EST) produce surrogate temporal networks whose number of interac-
tions per temporal snapshot mimics well the original one (top panel of
Fig. 2a), albeit with smoothed out fluctuations. This is expected from the
method’s design, as the original temporal activity has been divided into
states se, which are reproduced in the procedure. Similar results were
obtained by ref. 40, whose method corresponds to the E procedure with a
temporal partition built on an arbitrary time-scale of one hour, instead of
being extracted from the data through the states se.
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The lower panels of Fig. 2a report the evolution of more interesting
quantities, namely the average clustering and the modularity of each
snapshot. The E model, which does not take into account structural cor-
relations, yields snapshots with very low clustering and lower modularity
than the original ones. In contrast, both the ES andESTprocedures produce
values similar to the ones of the original data. Panel (b) of Fig. 2 gives an
illustration of this point by showing the networks resulting from the tem-
poral aggregation of the original and surrogate temporal networks (one
realization for each surrogate method) where the nodes have been colored
according to their partition in communities obtained with the Louvain
method55. The panel also gives the value of the modularity m of these
aggregated networks, averaged over 10 realizations of the surrogates
(modularity value obtained in each realization through the Louvain
method). Both ES and EST methods yield structures comparable to the
original one, while the E method produces a rather homogeneous network
with no group structure.

Panel (c) of Fig. 2 gives amore systematic comparison of the properties
of surrogates and original dataset by showing the distributions of eleven
quantities characterizing the statistics of individual snapshots, temporal
statistics and aggregated ones.

Instantaneous snapshot properties. The first six quantities of Fig. 2c are
defined for static networks: we compute them on each single snapshot and
display the resulting distributions. They consist in: clustering, degree,
assortativity, size of largest connected component, number of interactions
and orders of interactions. The clustering is computed as 3#triangles

#triads where
#triangles is the number of closed triangles (triplets i, j, k such that all links
i− j, j− k, k− i exist in the snapshot) and #triads is the number of triads in
which at least two of the links exist. The degree refers to the degree of each

node in each snapshot (instantaneous number of neighbors). The assorta-
tivity coefficient measures the correlation between degrees of connected
nodes in each temporal snapshot57. The largest connected component of a
temporal snapshot is the largest subgraph that is connected in that snapshot.
The number of interactions refers to the number of links in a snapshot. The
order of interactions is definedbypromoting all themaximal cliques (groups
of all-to-all connected nodes) in each temporal snapshot to higher-order
interactions58; the order of an interaction is then given by the number of
nodes in a clique minus one (first order interactions involve two nodes,
second order involve three, and so on).

In most cases, the distributions computed on the surrogates obtained
with the EST procedure are very similar to the original ones. Some prop-
erties (distributions of degree andof the number of interactions) are actually
well reproduced even with the simplest model E. On the other hand, the E
procedure yields small clustering values and small orders of interactions,
while taking into account structural correlations in the procedure (Eq. (3))
yields distributions close to the original ones. Note that the generation
method considers only pairwise interactions, does not build higher-order
interactions (involving more than two nodes) and does not rely on higher-
order concepts.Nevertheless, the combination of clustering and community
structure effects increases the probability to generate cliques in the surrogate
snapshots, and allows us here to reproduce the statistics of instantaneous
cliques, which can be interpreted in the present context as higher-order
interactions58,59. Two of the distributions are not well reproduced by the
surrogates, highlighting some limitations of the model. First, the assorta-
tivity is always around zero, independently on the degree correlations in the
original network, which are instead slightly positive in all the considered
datasets (see Supplementary Note 6). In the generation procedure indeed
there is no mechanism that takes into account the neighbors’ degree when

Fig. 2 | Structural and temporal measures. a Number of interactions, modularity
and clustering for each temporal snapshot of original network (D), here the primary
school dataset, and for surrogate networks obtained by the EST, ES, and E methods
(average over 10 realizations for each method; the shaded area represents the
standard deviation). b Aggregated networks for original and surrogates (one

realization for eachmethod), where nodes colors reflect the nodes partition obtained
by the Louvain algorithm and m is the corresponding modularity index.
c Distributions of values for several structural and temporal quantities, divided in
three groups according to the measure type. For the surrogate networks we average
over 10 realizations (vertical bars give the standard deviation).
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confirming the links or connecting the stubs, hence no correlation between
degrees emerges. Second, the distribution of the sizes of largest connected
components is shifted to larger values with respect to the original network.
This is true for all the datasets considered (see Supplementary Note 6), and
this effect is particularly large for the primary school dataset shown in Fig. 2.
The reason canbe ascribed to the rigid constraints of a school context, which
are not directly implemented in the surrogate but only loosely reproduced
through the division in temporal states: during lectures at school, the chil-
dren are separated into classes and there are no interactions between indi-
viduals of different classes, so that the largest connected components in the
corresponding snapshots are small. In the surrogates instead, this is not
strictly implemented: the generation of a group structure, even with a high
modularity value, still leaves the possibility for some interactions between
groups, which strongly increase the connected components sizes.

Temporal properties. The second group of plots in Fig. 2c displays the
distributions of three important measures characterizing the temporal
evolution of interactions in a temporal network, and measured for all
pairs of interacting nodes and over the whole time span of the networks.
The duration of an interaction between two nodes i and j is defined as the
number of consecutive snapshots in which i and j are connected. The
inter-contact duration is instead the number of consecutive snapshots
between two successive interactions of i and j (excluding the empty
snapshots such as those representing the nights). The burstiness
parameter60,61 quantifies the heterogeneity of the inter-contact durations

distribution as B ¼
ffiffiffiffiffiffiffi
nþ1

p
r� ffiffiffiffiffiffiffi

n�1
p

ð ffiffiffiffiffiffiffi
nþ1

p �2Þrþ ffiffiffiffiffiffiffi
n�1

p with r the ratio between standard

deviation and mean inter-contact duration, and n the sample size
(number of inter-contact durations used to create the distribution). The
burstiness is −1 for a periodic time series, 0 for a Poisson one, and it is
positive for a bursty distribution. Finally, we consider the distribution of
the number of events in a train19: an “event” is defined here as an
uninterrupted interaction between two nodes (with its duration), and a
“train of events” as a series of consecutive interactions between the same
two nodes such that the interval between the end of an event and the
beginning of the successive one is smaller than a parameter Δt. Multiple
trains of events can exist for each pair of nodes and the desiredmeasure is
obtained by counting the number of events in each train for each pair of
nodes. A broad distribution of this quantity unveils the presence of
temporal correlations in the network19.

Figure 2c shows that the EST procedure yields surrogate networks able
to reproduce well the statistics of these three quantities, while the E and ES
procedures yield narrower distributions of the interaction durations and of
the numbers of events in a train. The burstiness of the EST surrogate
(averaged over 10 realizations) is also closer to the original one (Bdata= 0.33,
〈B〉EST = 0.28, 〈B〉ES = 0.26, and 〈B〉E = 0.16) even if all three methods yield
comparable inter-contact durations distributions. Overall, the EST surro-
gate thus reproduces well the temporal heterogeneities and correlations
observed in the original empirical dataset.

Aggregated network. The last two quantities displayed in Fig. 2c are mea-
sured on the networks aggregated on their whole temporal span: we show in

the bottom panel the distributions of the links weights and of the node
strengths: the weight of a link is equal to the number of snapshots in which
the link has been active, while the strength of a node is the sum of the
numbers of instantaneousneighbors of this node in each snapshot. For theE
procedure, the links weights display a narrow distribution, reaching only
smallweight values. This is due to the fact that this procedure doesnot entail
structural normemory effects, so that the newconnections of a node created
in the generation and confirmation of a snapshot are taken at random
among all possible ones, and are less repeated than in the ES and EST cases.
Taking into account structural correlations leads to a slightly broader dis-
tribution but, as expected from previous studies21,24, memory effects are
needed to obtain distributions more similar to the original ones.

Temporal network structures. Several characterization tools have been
developed recently to analyze the complex interplay and correlations
between topological and temporal aspects of temporal networks: we con-
sider here two of these tools, which highlight the existence of mesoscale
structures in temporal networks.

We first perform the span-core decomposition16 of the original and
surrogate networks: it decomposes a temporal network into hierarchies of
subgraphs of controlled duration and increasing connectivity, generalizing
the core-decompositionof static graphs. Specifically, a span-core gof order~k
is definedonan interval ofΔ consecutive timestamps, such that all nodes in g
have at all timestamps of that interval at least ~k stable neighbors in g (i.e., the
links to these nodes are present during all timestamps of the interval).
Highly connected (large ~k) and stable (largeΔ) span-cores have been shown
to be structures relevant in spreading processes62, and empirical temporal
networks are often characterized by the presence of such structures, which
are absent from random, uncorrelated temporal networks16. We report in
Fig. 3 the result of the span-core decomposition for the original dataset and
for one instance of each surrogate, by showing the duration and the con-
nectivty of the span-cores starting at various times. Span-cores of durations
comparable to the ones of the original data are obtained with the EST
method, while the E and ES methods, which lack long-term memory or
structural effects or both, yield less rich structures.

We then investigate the temporal rich club phenomenon17, i.e., the
tendency of nodes that are well-connected in the aggregated network to
form structures that are simultaneous and stable in a temporal network. To
measure this tendency, we consider, for the original data and for the sur-
rogates, the subset of nodes S > �k of nodes with degree larger or equal to �k in
the aggregated network, and we compute ε > �kðt;ΔÞ, defined for each time t
as the fractionof links that connect thenodes of S > �k in a stableway from t to
t+Δ. ThemaximumMð�k;ΔÞ over t of ε > �kðt;ΔÞ (the Temporal Rich Club
coefficient17), shown inFig. 4 as a function of�k andΔ, quantifieswhether the
connections between the nodes highly connected in the aggregated network
were simultaneous, dense and stable. Connected and stable structures are
observed in the dataset, with a temporal rich club effect of increasing density
with increasing �k, and also in the surrogate produced by the EST method,
while the effect is much weaker for the ES case and totally absent in the
E model.

These results show that our methodology, when taking into account
both structural and temporal characteristics of the original network, is able

Fig. 3 | Span-core decomposition. For different ~k (different colors) we show the duration of span-cores starting at various times ts of the second day of the primary school
network and of its surrogates.
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to generate surrogate data that entails highly complex structures observed in
the empirical temporal networks.

Dynamical processes. As discussed in the introduction, surrogate
networks are particularly important as a substitute to empirical data to
perform numerical simulations of a variety of dynamical processes. As
the outcomes of these processes depend on numerous properties of the
network they take place on, we investigate here whether the processes
simulated on the original and surrogate data unfold in a similar manner.
We choose three paradigmatic processes that have been largely studied
on static and temporal networks1: (i) a model describing the spreading of
a schematic disease8, (ii) a model for opinion dynamics with bounded
confidence, i.e., such that agents can change opinion by interacting with
other agents whose opinion is not too different49, and (iii) a model for the
emergence of conventions in a population52.

Spreading dynamics. The first dynamics that we consider is the Susceptible-
Infected-Recovered (SIR)model for the spread of infectious diseases, where

the nodes of the network can only be in one of the three states: Susceptible
nodes (S state) have not yet been reached by the disease, but can be infected
with probability β per unit time (per snapshot) when interacting with an
infectious node (in I state)8. Infectious nodes then recover spontaneously
with probability μ per unit time, entering the R state. Each simulation starts
with one initial seed, represented by a node chosen uniformly at random,
which is put in the I state at a random time t0, while all the others are
susceptible. The simulation endswhen no node is in the I state anymore (all
nodes have either been infected and then recovered, or have remained in the
S state). If the last snapshot (timeT) of the temporal network is reachedwith
the process still active,we repeat the temporal network starting from thefirst
snapshot.

Weperfomsimulations of theprocess for varyingβ andμ andusing the
original and surrogate datasets. For each simulation we compute the basic
reproduction number R0 and the final number of recovered R∞, which
quantify respectively howmany other nodes the initial seed infects, and the
final epidemic size, i.e., the size of the network that has been reached by the
spread (see the Methods section). The heatmaps in Fig. 5 display the mean

Fig. 4 | Temporal rich club. Size of the subset S > �k (top panel) and maximum Mð�k;ΔÞ over time of ε > �kðt;ΔÞ, as a function of �k, for several values of Δ (lower panels).
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values of R0 for the different networks (first column) and the difference
between themean values obtained in simulations on surrogates and dataset
(second column), for each set of parameters (β, μ). The third and fourth
columns showheatmaps for the average values ofR∞ and for the differences
in these average values obtained in the simulations on surrogates and on the
original data. The plots on top of the second and fourth columns show, for a
specific choice of β and μ, the distributions ofR0 andR∞ for eachunderlying
network. Finally, the rightmost column shows the temporal evolution of the
number of infectious individuals for 75 simulations starting all at t0 = 0
performed on the original network and on each surrogate.

The values, variation patterns, and distributions ofR0 andR∞ obtained
with the ESTmodel are very similar to the ones obtained for simulations run
on the original dataset. The temporal variations of the number of infectious
is also well reproduced. A similar picture is obtained when simulations are
performedon surrogate networks obtainedwith the ESmodel. In surrogates
produced by the Emodel, the lack of structure leads to a faster process with
larger impact8: more nodes are infected at the beginning (larger R0) and the
spreading is faster (epidemic curves spanning typically shorter timescales),
reaching larger parts of the network (larger R∞). In contrast, the group
structure present in the ES and EST surrogates has the effect, as in the
original dataset, to limit the possibility of spreading between groups.
Moreover, the memory effects, which leads to the repetition of interactions,
also impact the spread12. Overall, the better reproduction by the EST of the

structural and temporal features highlighted in Fig. 2 leads also to outcomes
closer to the one of the original data10.

Deffuant model for opinion dynamics. The second dynamical process that
we consider is the Deffuant model of opinion dynamics49,50. In this model
each node i represents an individual, endowed with an opinion represented
by a real valued variable xi between 0 and 1. The initial state is given by
assigning an opinion extracted uniformly at random to each individual.
Then, at each snapshot t, opinions of pairs of individualswho interact on the
network can change, if and only if their opinions differ less than a fixed
parameter q, i.e., ∣xi(t)− xj(t)∣< q (a rule knownas “bounded confidence”, to
express the concept that individuals tend to exchange only with other
individualswhose views do not differ toomuch). If this condition ismet, the
two individuals update their opinion to a common middle ground:

xiðt þ 1Þ ¼ 1
2

xiðtÞ þ xjðtÞ
� �

xjðt þ 1Þ ¼ 1
2

xiðtÞ þ xjðtÞ
� �

:

ð4Þ

The dynamics evolves until the opinions of all interacting pairs cannot
change anymore (either because they are already aligned or because they are
farther apart than q). See Methods section “Deffuant model and Naming

Fig. 5 | SIR model. The heatmaps of the first column show R0 at varying β and μ for
original and surrogate networks (averaged over 200 simulations for each pair of
parameters). The second column shows the differences between the values obtained
by simulations on surrogate networks and the ones obtained with the original net-
work. On top of these heatmaps we report the Canberra distances66 between the two
matrices of values.We also report on top of the column the distributions ofR0 values
for a specific choice of β and μ. Analogously, the heatmaps on the third column show

the mean values of R∞ for all the networks and those of the fourth column the
differences between surrogates and original network. The plot above reports the
distribution of R∞ for a given pair of parameters β and μ. With the same choice of
parameters, the plots on the right show the time evolution of infected individuals on
all the networks for 75 simulations. For these specific plots, to facilitate the com-
parison, the start of the simulations is fixed at t0 = 0 for all the realizations.
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Game on temporal networks” formore details. Such a process tends to align
opinions of interacting individuals but does not necessary lead to a globally
aligned population because of the bounded confidencemechanism: even in
a population where all individuals can potentially interact with each other,
small values of q lead to the separation into groups of individuals who share
the same opinion, but such that the opinion of different groups differ more
than q, making communication between groups impossible49.

In the case of a process taking place on a (temporal) network, the
situation is a bitmore complex. Thefinal state corresponds to a separationof
the population into groups of nodes inside which all nodes share the same
opinion, such that the opinion in a group differs of more than q from the
opinion of the other groups with which it has interactions. However, there
can potentially be two groups of individuals whose opinions differ of less
than q, but who never interact directly along the network. We thus char-
acterize the final state by the number of subnetworks of individuals with a
homogeneous opinion, which depends on q and on the interplay between
the dynamics of opinions and the network’s structural and temporal
properties. To obtain this number in practice, we consider the aggregated
network, and remove all the links connecting nodes whose opinions differ
more than q in the final state: we then count the number of remaining
connected components (which constitute the opinion subnetworks gener-
ated by the process).

We report in Fig. 6a thefinal number of suchopinion groups generated
when simulating the Deffuant model on the original and surrogate net-
works, as a functionofq. Panel (b) reportsmoreover the convergence timeof
the process, i.e., the number of snapshots after which the opinions do not
evolve any more. Interestingly, the final number of opinion groups is well
reproduced even with the simulations on the surrogate networks obtained
with the simplest E method. However, the process is there much faster and
the addition of structure in the ES and EST surrogate methods leads to
dynamics much closer to the one on the original network.

Naming Game. Lastly, we consider the Naming game, a process where the
nodes representing individuals aim to reach a consensus on thename to give
to some object or concept51,52. For simplicity we restrict the possibilities to
only two names, A and B. Each node has an inventory of possible names
which at the beginning contains either A or B (chosen at random). The
simulation starts at a random temporal snapshot of the network. At each
time, for each interacting pair of nodes, we choose randomly one node to act
as speaker and one as hearer. The speaker chooses a random name in its
inventory and proposes it to the hearer. If the hearer does not have it in its
inventory, the name is added to the inventory. If instead the name was
already present in the hearer’s inventory, the two nodes agree on this name
by removing the other possible name. This happens with probability η,
representing the propensity of the hearer to accept the name51. The process
ends when all the nodes agree on the same name (the other name has then
disappeared from all nodes’ inventories). See Methods section “Deffuant
model andNamingGame on temporal networks” formore details. Figure 7
reports the distributions of convergence times for two values of η and for
Naming Game processes simulated on the original data and on surrogate
networks. It also shows, for several realizations of the process, the temporal

evolutionof the number of nodes that have thefinallywinningname in their
inventory.

We observe here a similar phenomenon as in the Deffuant model:
simulations performedon the surrogate network produced by the Emethod
have a typically much faster convergence than for the original case. The ES
and EST methods produce surrogate networks that better reproduce
complex features of the original data, leading to dynamics more similar to
the original one, even if the convergence time remain slightly under-
evaluated (note that the peaks in the distribution of convergence times for
runs on the primary school data correspond to the successive day/night
sequence: the process can converge either in the first day, in the second day
or in few cases need even an additional simulation day).

Robustness. The Egocentric Temporal Neighborhood strategy is based
on the idea that the behavior of a node is strictly related to the imme-
diately previous interactions, where the time scale is set by the parameter
d. In the examples that we have shown, dwas fixed to 2 but values 3 and 4
have been tested and are shown in Supplementary Note 1. The results
with d = 3 are similar to those obtained with d = 2 (but slightly worse on
some importantmeasures like the degree), while thosewith d = 4 turn out
to be significantly worse. In fact, increasing d allows to retain more
information about last contacts, but, since manymore ego-subgraphs are
possible, the frequency of each one is reduced and the results are affected
by limited size effect: it is possible that a node in the surrogate snapshots
[t− d; t− 1] explores a set of interactions that does not match any of the
ego-subgraphs of length d + 1 of the original network. In that case
neighbors are progressively removed until a match is found. In other
words, increasing d can result in overfitting: trying to reproduce ego-
subgraphs with more information paradoxically leads to a surrogate
whose ego-subgraphs are less conform to those of the original network.

Another robustness investigation is related to the temporal decom-
position into states. As discussed in ref. 15, the decomposition can depend
on the measure used to compute the distance between temporal snapshots,
and also on the clustering algorithm considered (and on the choice of the
number of states). However, we show in Supplemenatry Note 2 that the
properties of the surrogate temporal networks remain similar when using a
division between states with an arbitrary time scale of one hour, hinting at a
robustness of the procedure with respect to the choice of the division into
temporal states.

Finally, we test the possibility to generate a surrogate of the full tem-
poral extension of the original network even if only the initial part of the
network is known. To this aim, we assume to have access only to the first
snapshots of the empirical data (corresponding to the first 24 h in most
cases, or to thefirstweek for longer datasets), representing between 14%and
75% of its total length. As described in the Supplementary Note 7, we then
generate surrogates covering the full temporal length of the original datasets.
Results are shown in Supplementary Note 7 and highlight the similarity of
these surrogates with the original networks: No significant difference is
observed with the case of surrogates obtained by using the information
collected on the complete original datasets. Note that we also show in the
Supplementary Note 4 an example of temporal extension beyond the time

Fig. 6 | Deffuant opinion model. Number of dis-
connected opinion groups (a) and convergence time
(b) at varying q, averaged over 200 simulations on
each network (for each surrogate method, we per-
form 10 realizations of the surrogate network and 20
runs of the opinion model on each realization). The
curves show mean and standard deviation
(shaded area).
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span of the original dataset, generating surrogates for the primary school
with a temporal length of 40 days, while the original dataset is only
2 days long.

Discussion
The method that we have proposed here to generate surrogate temporal
networks starts from the analysis of an original network, supposed to be
knownand that the surrogate data shouldmimic, i.e., the surrogate network,
without being identical to the original one, should have similar statistical
properties and structures. This analysis characterizes both its local and
global properties and their temporal evolution. The developedmethodology
leverages the temporal division of the temporal network into states on the
onehand, and in collections of ego-subgraphs on theother hand, to generate
surrogate temporal snapshots one after the other bygluing togetherdifferent
ego-subgraphs, implementing in the process a long-term memory
mechanism and mimicking the mesoscale organization of the original
snapshots (clustering, organization in groups). We have shown that the
resulting surrogate networks display a complex interplay of structural and
temporal properties similar to the one of the original network.Moreover, we

have shown that simulations of a variety of dynamical processes on the
surrogate networks yield outcomes similar to the ones obtained by simu-
lations on the empirical data, even if some discrepancies can be observed, as
surrogate data can never fully capture all the complex correlations of an
empirical dataset10,36.

In particular, it is important to note that the three dynamical processes
that we have considered represent a broad variety of testing frameworks for
our networks, as they differ in several fundamental aspects. For instance, in
disease spreading the nodes states are discrete (S, I, R) and each node can
only follow an irreversible process from S to I to R, without going back.
Nodes having reached the R state do not take part any more in the process.
In the Naming Game model the states are also discrete (A, B, AB) but each
node can in principle pass from one state to another one an infinite number
of times. In the Deffuant model, the states (opinions) are continuous
(x∈ [0, 1]) and also here there is a priori no limit to the numberof times that
a node can change opinion. The global outcomes that result from these
process properties are also different and highlight different characteristics of
the network: in the SIR model a fraction of the nodes is infected and then
recover, in the Deffuant model the nodes are partitioned into opinions

Fig. 7 | Naming game. The top panels show the
distribution of the convergence time for the Naming
Game simulated on all the networks (100 simula-
tions on the original network and 10 simulations on
each of the 10 realizations of the surrogate networks)
with η = 0.4 and η = 0.9. The four plots below show
the time evolution of the fraction of nodes that have
in their inventory only the name that will eventually
win. For each value of η 10 realizations are displayed
for each network.
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clusters, and in theNamingGamegroups of nodes having convergedonone
of thenamescanemerge, before a global convergence is obtained.The sizeof
the fraction of the network that is affected by the SIR process, the number of
opinion clusters in the Deffuant model, and the groups created in the
NamingGame are impactedby the properties of the network of interactions
in differentways1,7. For instance,memory effects impact theDeffuantmodel
and the Naming Game, as repeated interactions between a pair of nodes
allow them tomaintain their agreement even if they also interact with other
neighbors. In the Naming Game moreover, convergence between a node
having only name A and one having only name B requires at least two
interactions. The SIRmodel is less impacted bymemory, as, once a link has
been used to transmit the infection, it cannot be used for transmission any
more. The SIR process is instead more affected by the burstiness of a tem-
poral network: during a long time without interaction, a node cannot
transmit but can recover spontaneously. On the other hand, its opinion or
inventory in the othermodels simply does not evolve. Clustering and group
structures also favor local spreading andopinion convergence, but canmake
it harder for the SIR process to go beyond the group it started from, or for
different groups to converge on a common opinion (this last situation is
clearly observedwith one of the datasets corresponding to contacts collected
in a high school, where the group structure is very strong, as described in
Supplementary Notes 5 and 6).

The fact that simulations of such various processes on the surrogate
networks provide a similar phenomenology as on the original data high-
lights the versatility of our method. We also note that, while we have here
focused the presentation of our results on the ability of our method to
generate surrogates similar to the original networks, an interesting outcome
of our work also consists in the possibility to create synthetic datasets
mimicking the observed ones but with specific network features altered and
customized. Surrogate networks can indeed be generated with a different
grouping in communities (e.g., a different number or different sizes of
classes for a school), with a different organization of timescales (such as a
rearrangement of activities timetable), or, as shown in theprevious section, a
longer total duration. In fact, an important use of surrogate networks
consists inproviding substrateswith realistic properties onwhichdynamical
processes can be studied on various enough time scales, even if long enough
datasets are not available. An important example is given by simulations of
realistic spreading processes, which often have longer timescales than most
availabledatasets. It is then typicallyneeded tousemultiple repetitionsof the
same temporal network, which has consequences on the variability of
interactions and hence on the realism of the observed behaviors11,12,63,64. The
methodology presented here makes it possible to circumvent this difficulty
by generating surrogate data of the needed length, avoiding to repeat exactly
the same patterns12.

The methodology has also some limitations worth discussing. First, as
the surrogate networks are each based on an original dataset that they
mimic, a large quantity of information about the data is needed. We have
here assumed to have full knowledge of the original dataset and that it does
not suffer from incompleteness. The case of incomplete data10, where the
population of nodes is only partially observable and hence the Egocentric
Temporal Neighborhoods might be different from those of the complete
dataset, is an interesting avenue for future work. Second, we have observed
that, even if themethod is general and canbe applied to anykindof temporal
network, we obtain better performances on denser networks. In fact the
introduction of a preferential link confirmation byEq. (3) ismore effective if
the amountof possible links to choose fromat each time step is large enough:
if instead only a few possible links are available, the variability is limited and
so are the chances to find suitable links that correspond to high values of sij.
For temporal networks with too diluted snapshots, we have thus considered
lower temporal resolutions by partially aggregating the empirical data
snapshots (e.g., on 5min temporal windows for the primary school dataset,
20min for the high schools and the conference, and one hour for the
workplace dataset).

The methodology we have presented has focused on mimicking the
interaction behavior of nodes at short time scales, as well as the

instantaneous mesoscale structure and long-term memory effects. These
ingredients have shown tobe enough to reproduce abroad rangeof complex
features of temporal networks. The versatility of the method makes it
however possible to introduce additional mechanisms to reproduce other
properties that couldbeunveiledby future studiesof temporal networks. For
instance, the confirmation stage could be tailoredby changing the definition
of sij tomake it depend on other features of the nodes or pairs of nodes (e.g.,
nodes attributes). One example of additional mechanism is shown in
Supplementary Note 5 where, instead of the simple modularity, a hier-
archical clustering between communities is reproduced in the surrogates.

A further future development of the present work would be to use an
existing dataset and produce realistic surrogate data with larger population
sizes. This would yield the important benefit of being able to simulate
dynamical processes on networks of large size without needing to actually
collect the corresponding data (hence, for instance, without privacy con-
cerns). Such a development is however far from trivial as the way in which
the Egocentric Temporal Neighborhoods change when the population size
increases has not yet been investigated, for instance. We therefore plan to
tackle this point in future work.

Methods
Modularity and value χ
One of the steps of the original network analysis implies to separate the
temporal snapshots into states sL and to assess their group structure. Each
state consists of several snapshots, i.e., several static networks. To find the
best partition of nodes into groups we use the Louvain method55 on the
aggregate network of each state. Different states will hence correspond to
different partitions (for example for the primary school data, the temporal
state corresponding to the lectures periods yields a partition given by the
classes, and the partition is different during the lunch breaks). For each
state’s static network, we compute the number of links that take place inside
a group, lintra, and those connecting different groups, linter. The average
density of intra-groups links is then given by

pintra ¼
lintraP
g
ng ðng�1Þ

2

; ð5Þ

withng the the number of nodes of group g, and for the inter-link density we
obtain

pinter ¼
linterP

g
ng ðN�ng Þ

2

; ð6Þ

where the denominators correspond to the maximal possible values of lintra
and linter, respectively. We define the parameter χ as pinter/pintra so it quan-
tifies the probability of having links between groups with respect to inside
a group.

Generation of the first d snapshots of the surrogate
The first snapshot of the surrogate cannot be based on previous interac-
tions so we build it using the configuration model4, which allows us to
generate a static network with a given degree distribution, and we choose
the degree distribution of the first snapshot of the original network. To
generate the second snapshot we can then rely on the interactions of the
first snapshot, so we use the same method described above but using
temporal neighborhoods of length 2 timesteps instead of d+ 1.We repeat
the procedure d times, until we have the d snapshots that we need to
initialize the process.

Temporal states clustering
In the section “Decomposition in temporal states”, we have briefly described
how to decompose the temporal network into temporal states, each com-
posed of a set of (non-necessarily contiguous) temporal snapshots. More in
details, once the distances have been computed between all pairs of snap-
shots, we can cluster them into C clusters by a hierarchical clustering with a
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bottom up approach: we start by considering each snapshot as a different
cluster, and we proceed by iteratively merging the clusters. We do this for
C ∈ [3, T] for the Laplacian distance and for C ∈ [4, T] for the activity
distance, thus avoiding all the solutions with only a few clusters that would
not provide sufficient state variability. We then chose among all these
possible partitions the one that maximizes the Dunn’s index54, defined as

min1≤ c≠c0 ≤Cmini2cth state;j2c0th statedði; jÞ
max1≤ c00 ≤Cmaxi0;j02c00th statedði0; j0Þ

; ð7Þ

where d(i, j) is either dL or de. The numerator is the smallest distance
between two states among all pairs of states and the denominator is the
largest distance inside a state among all states.

Absent nodes
The population of a dataset of social interactions can be more or less stable:
for somedatasets the same set of individuals is present during the entire time
span, for other datasets individuals disappear and new individuals appear
making the population vary with time.

The method that we have described to generate surrogate networks
does not include such a variability of the population, and in principle all
nodes can be active at any time. For this reason we include a possible
variation, to be applied to datasets where the population change is impor-
tant. In fact, if in the original network we observe that some nodes do not
participate to the dataset during specific time intervals, we can reproduce
this feature in the surrogate networks too. This is implemented by imposing
that during the same time intervals these nodes, instead of sampling their
ego-subgraph from the probability distribution, always choose the empty
ego-subgraph, with no interactions. These nodes will not participate to
interactions, hence appearing as absent, in specific intervals of the generated
network, reproducing the original network population variability.

SIR model: R0 and R∞

In the SIR model we compute two observables that are commonly used to
evaluate the disease spreading dynamics. The first is the basic reproductive
number R0, that is numerically computed by counting the number of direct
contagions due to the first infected node, i.e., the number of nodes that are
infected by this seed node and not by other nodes. The second observable is
the final number of recovered, R∞, that is counted considering only the
simulations where at least one contagion event takes place (we exclude all
the realizations where R∞ = 1, which corresponds to runs in which the seed
recovered before infecting anybody else).

Deffuant model and Naming Game on temporal networks
The Deffuant model of opinion dynamics49 and the Naming Game51,52 have
been initially formulated for static networks, and can be generalized to
temporal ones in several ways50,65. In our implementation of both processes,
at each snapshot each couple of connected nodes (taken in randomorder) is
considered once and their opinions x or their name inventory are imme-
diately updated (or not). This means that each node at a generic snapshot
can change opinion or change its name inventory as many times as its
degree.

For instance, for the Deffuant model, if a node i is connected to node j
and l at time t, the interactionwith jwill change the opinion of i from xi to x0i
and the interaction with l will take place with the updated opinion x0i, that
will again change to x00i because of l. Thefinal opinion of i at time twill be x00i .

The same connections are similarly treated in the Naming Game: first
the roles of speaker and hearer are randomly assigned to i and j. Then their
name inventory are updated due to their interaction, and the new name
inventory of i will be used in the name exchange with l.

Theorder inwhich connections are considered at each time stepplays a
role in the final result. For the sake of generality we choose a random order
and repeat the process 100 times to explore a large set of possible evolution
patterns.

Data availability
The data of time-evolving social interactions used for the examples are
available here: http://www.sociopatterns.org, https://figshare.com/articles/
dataset/The_Copenhagen_Networks_Study_interaction_data/7267433/1,
and https://doi.org/10.1098/rsif.2015.0279#d1e2007.

Code availability
The code for generating the temporal networks, to analyze them, and to
simulate dynamical processes on them is available at the following link:
https://github.com/giuliacencetti/Surrogate_net_generation.
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