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What is a network

Network=set of nodes joined by links

very abstract representation

very general

convenient to describe

many different systems



Some examples

Chemical reactionsProteinsProtein interaction 

networks

HyperlinksWebpagesWWW

Cables

Commercial agreements

Routers

AS

Internet

Social relationsIndividualsSocial networks

LinksNodes

and many more (email, P2P, foodwebs, transport….)



Interdisciplinary science

Science of complex networks:

-graph theory

-sociology

-communication science

-biology

-physics

-computer science



Interdisciplinary science

Science of complex networks:

• Empirics

• Characterization

• Modeling

• Dynamical processes



Paths
G=(V,E)

Path of length n = ordered collection of 

• n+1 vertices i0,i1,…,in ∈ V

• n edges (i0,i1), (i1,i2)…,(in-1,in) ∈ E

i2
i0 i1

i5

i4

i3

Cycle/loop = closed path (i0=in)



Paths and connectedness

G=(V,E) is connected if and only if there exists
a path connecting any two nodes in G

is connected

•is not connected

•is formed by two components



Paths and connectedness

G=(V,E)=> distribution of components’ sizes

Giant component= component whose

size scales with the number of vertices N

Existence of a 

giant component

Macroscopic fraction of 

the graph is connected



Paths and connectedness:

directed graphs

Tube Tendril
Tendrils

Giant SCC: Strongly

Connected Component Giant OUT 

Component

Giant IN 

Component

Disconnected

components

Paths are directed



Shortest paths

i

j

Shortest path between i and j: minimum number

of traversed edges

distance l(i,j)=minimum

number of edges traversed

on a path between i and j

Diameter of the graph= max(l(i,j))

Average shortest path= ∑ij l(i,j)/(N(N-1)/2)

Complete graph: l(i,j)=1 for all i,j

“Small-world”: “small” diameter



Centrality measures

How to quantify the importance of a node?

• Degree=number of neighbours=∑j aij

i

ki=5

• Closeness centrality

gi= 1 / ∑j l(i,j)

(directed graphs: kin, kout)



Betweenness centrality
for each pair of nodes (l,m) in the graph, there are

σlm shortest paths between l and m

σi
lm shortest paths going through i

bi is the sum of  σi
lm / σlm over all pairs (l,m)

i
j

bi is large

bj is small

NB: similar quantity= load li=∑∑∑∑ σσσσi
lm

NB: generalization to edge betweenness centrality

path-based quantity



Structure of neighborhoods

C(i) =
# of links between 1,2,…n neighbors

k(k-1)/2

1

2

3

k

Clustering: My friends will know each other with high probability!

(typical example: social networks)

Clustering coefficient of a node

i



Structure of neighborhoods

C’ =
3 x number of fully connected triples

number of triples

Average clustering coefficient of a graph

C=∑i C(i)/N

NB: slightly different definition from the

fraction of transitive triples:



Statistical characterization
Degree distribution

•List of degrees k1,k2,…,kN Not very useful!

•Histogram:

Nk= number of nodes with degree k

•Distribution:

P(k)=Nk/N=probability that a randomly chosen

node has degree k

•Cumulative distribution:

P>(k)=probability that a randomly chosen

node has degree at least k



Statistical characterization
Degree distribution

P(k)=Nk/N=probability that a randomly chosen

node has degree k

Average=〈 k 〉 = ∑i ki/N = ∑k k P(k)=2|E|/N 

Fluctuations: 〈 k2〉 - 〈 k 〉 2

〈 k2 〉 = ∑i k2
i/N = ∑k k2 P(k)

〈 kn 〉 = ∑k kn P(k)

Sparse graphs: 〈 k 〉 ≪ N



Statistical characterization
Multipoint degree correlations

P(k): not enough to characterize a network

Large degree nodes tend to

connect to large degree nodes

Ex: social networks

Large degree nodes tend to

connect to small degree nodes

Ex: technological networks



Statistical characterization
Multipoint degree correlations

Measure of correlations:
P(k’,k’’,…k(n)|k): conditional probability that a node of 

degree k is connected to nodes of degree k’, k’’,…

Simplest case:
P(k’|k): conditional probability that a node of degree k is

connected to a node of degree k’

often inconvenient (statistical fluctuations)



Statistical characterization
Multipoint degree correlations

Practical measure of correlations:

average degree of nearest neighbors

i

k=3k=7

k=4
k=4

ki=4
knn,i=(3+4+4+7)/4=4.5



Statistical characterization
average degree of nearest neighbors

Correlation spectrum:

putting together nodes which

have the same degree

class of degree k



Statistical characterization
case of random uncorrelated networks

P(k’|k)

•independent of k

•proba that an edge points to a node of degree k’

proportional

to k’ itself
Punc(k’|k)=k’P(k’)/〈 k 〉

number of edges from nodes of degree k’

number of edges from nodes of any degree



Typical correlations

• Assortative behaviour: growing knn(k)
Example: social networks

Large sites are connected with large sites

• Disassortative behaviour: decreasing knn(k)
Example: internet

Large sites connected with small sites, hierarchical
structure



Correlations:

Clustering spectrum

•P(k’,k’’|k): cumbersome, difficult to estimate from data

•Average clustering coefficient C=average over nodes with

very different characteristics

Clustering spectrum:

putting together nodes which

have the same degree

class of degree k

(link with hierarchical structures)



Weighted networks

Real world networks: links

• carry trafic (transport networks, Internet…)

• have different intensities (social networks…)

General description: weights

i jwij

aij: 0 or 1

wij: continuous variable



Scientific collaborations: number of common papaers

Internet, emails: traffic, number of exchanged emails

Airports: number of passengers 

Metabolic networks: fluxes 

Financial networks: shares

…

Weights: examples

usually wii=0

symetric: wij=wji



Weighted networks

Weights: on the links

Strength of a node:

si = ∑j ∈ V(i) wij

=>Naturally generalizes the degree to weighted networks

=>Quantifies for example the total trafic at a node



Weighted clustering 
coefficient

si=16
ci

w=0.625 > ci

ki=4
ci=0.5

si=8
ci

w=0.25 < ci

wij=1

wij=5

i i



Weighted clustering 
coefficient

Random(ized) weights:   C = Cw 

C < C
w

: more weights on cliques

C > C
w

: less weights on cliques

i
j

k
(wjk)

wij

wik

Average clustering coefficient

C=∑i C(i)/N

Cw=∑i Cw(i)/N

Clustering spectra



Weighted assortativity

ki=5; knn,i=1.8

1
55

5

5

i



Weighted assortativity

ki=5; knn,i=1.8

5
11

1

1

i



Weighted assortativity

ki=5; s
i
=21; k

nn,i
=1.8 ; knn,i

w=1.2:  knn,i > knn,i
w

1

55

5

5

i



ki=5; s
i
=9; k

nn,i
=1.8 ; knn,i

w=3.2: knn,i < knn,i
w

5

11

1

1

i

Weighted assortativity



Participation ratio

1/ki if all weights equal

close to 1 if few weights dominate
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Two main classes

Natural systems:

Biological networks: genes, proteins…

Foodwebs

Social networks

Infrastructure networks:

Virtual: web, email, P2P

Physical: Internet, power grids, transport…



Metabolic Network

Nodes: proteins
Links: interactions

Protein Interactions

Nodes: metabolites              

Links:chemical reactions



Scientific collaboration network

Nodes: scientists

Links: co-authored papers

Weights: depending on

•number of co-authored papers

•number of authors of each paper

•number of citations…



Transportation network:

Urban level

TRANSIMS project

Nodes=locations (homes, shops, offices…)

Weighted links=flow of individuals



World airport network

complete IATA database

l V = 3100 airports

l E = 17182 weighted edges

l wij #seats / (time scale)
> 99% of total traffic



Meta-population networks

City a

City j

City i

Each node: internal structure

Links: transport/traffic



•Computers (routers)

•Satellites

•Modems 

•Phone cables

•Optic fibers

•EM waves

Internet

different

granularities



Mapping projects:

•Multi-probe reconstruction (router-level): traceroute

•Use of BGP tables for the Autonomous System level (domains)

•CAIDA, NLANR, RIPE, 
IPM, PingER, DIMES

Topology and performance 

measurements

Internet mapping

•continuously evolving and growing

•intrinsic heterogeneity

•self-organizing

Largely unknown topology/properties



Virtual network to find and share informations

•web pages 

•hyperlinks

The World-Wide-Web

CRAWLS



Sampling issues

• social networks: various samplings/networks

• transportation network: reliable data

• biological networks: incomplete samplings

• Internet: various (incomplete) mapping processes

• WWW: regular crawls

• …

possibility of introducing biases in the

measured network characteristics



Networks characteristics

Networks: of very different origins

Do they have anything in common?

Possibility to find common properties?

the abstract character of the graph representation

and graph theory allow to answer….



Social networks:

Milgram’s experiment

Milgram, Psych Today 2222, 60 (1967)

Dodds et al., Science 301301301301, 827 (2003)

“Six degrees of separation”

SMALL-WORLD CHARACTER



Small-world properties

Average number of nodes

within a chemical distance l

Scientific collaborations

Internet



Small-world properties

N points, links with proba p:

static random graphs

short distances

(log N)



Clustering coefficient

1

2

3

n

Higher probability to be connected

Clustering: My friends will know each other with high probability

(typical example: social networks)

Empirically: large clustering coefficients



Small-world networks

Watts & Strogatz, 

Nature 393393393393, 440 (1998)

N = 1000

•Large clustering coeff.

•Short typical path

N nodes forms a regular lattice. 

With probability p,                   

each edge is rewired randomly

=>Shortcuts



Topological heterogeneity
Statistical analysis of centrality measures:

P(k)=Nk/N=probability that a randomly chosen

node has degree k

also: P(b), P(w)….

Two broad classes

•homogeneous networks: light tails

•heterogeneous networks: skewed, heavy tails



Topological heterogeneity
Statistical analysis of centrality measures

Broad degree

distributions

(often: power-law tails

P(k) ∼ k-γ ,

typically 2< γ <3)

No particular

characteristic scale
Internet



Topological heterogeneity
Statistical analysis of centrality measures:

Poisson

vs.

Power-law

log-scale

linear scale



Exp. vs. Scale-Free
Poisson distribution

Exponential 

Power-law distribution

Scale-free 



Consequences
Power-law tails

P(k) ∼ k-γ

Average=〈 k〉 =∫ k P(k)dk

Fluctuations

〈 k2 〉 =∫ k2 P(k) dk ∼ kc
3-γ

kc=cut-off due to finite-size

N →∞ => diverging degree fluctuations

for γ < 3

Level of heterogeneity:



Other heterogeneity levels

Weights

Strengths



Other heterogeneity levels

Betweenness

centrality



Clustering and correlations

non-trivial

structures



Complex networks

Complex is not just “complicated”

Cars, airplanes…=> complicated, not complex

Complex (no unique definition):

•many interacting units

•no centralized authority, self-organized

•complicated at all scales

•evolving structures

•emerging properties (heavy-tails, hierarchies…) 

Examples: Internet, WWW, Social nets, etc…



Example: Internet growth



Main features of complex networks

•Many interacting units

•Self-organization

•Small-world

•Scale-free heterogeneity

•Dynamical evolution Standard graph theory

•Static

•Ad-hoc topology

Random graphs

Example: Internet topology generators

Modeling of the Internet structure with ad-hoc algorithms

tailored on the properties we consider more relevant



Statistical physics approach

Microscopic processes of the 

many component units

Macroscopic statistical and dynamical

properties of the system

Cooperative phenomena

Complex topology
Natural outcome of 

the dynamical evolution

Development of new modeling frameworks



(1) GROWTH : At every timestep we add a new 

node with m edges (connected to the nodes already 
present in the system).

(2) PREFERENTIAL ATTACHMENT :
The probability that a new node will be connected to 

node i depends on the connectivity k
i
of that node

A.-L.Barabási, R. Albert, Science 286, 509 (1999)

jj

i
i

k

k
k

Σ
=Π )(

P(k) ~k-3

New modeling frameworks

Example: preferential attachment

… and many other mechanisms and models


