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What Is a network

Network=set of nodes joined by links

very abstract representation

% very general
convenient to describe

many different systems



Some examples

Nodes Links
Social networks Individuals |Social relations
Internet Routers Cables
AS Commercial agreements
WWW Webpages |Hyperlinks
Protein interaction |Proteins Chemical reactions

networks

and many more (email, P2P, foodwebs, transport....)




Interdisciplinary science

Science of complex networks:
-graph theory

-sociology

-communication science
-biology

-physics

-computer science



Interdisciplinary science

Science of complex networks:
« Empirics

» Characterization

* Modeling

* Dynamical processes



Paths
G=(V,E)
Path of length n = ordered collection of
* n+1 vertices iy,l4,...,I, € V
* n edges (ig,ly), (I1;l5).--,(I.1,1,,) € E

Cycle/loop = closed path (1)=1,)



Paths and connectedness

G=(V,E) is connected if and only if there exists
a path connecting any two nodes in G

1S connected

*is not connected
*is formed by two components



Paths and connectedness

G=(V,E)=> distribution of components’ sizes

Giant component= component whose
size scales with the number of vertices N

Existence of a <:> Macroscopic fraction of
giant component the graph 1s connected



Paths and connectedness:
directed graphs

Paths are directed

Giant SCC: Strongly
Giant IN Connected Component ..+ OUT

Component Component

Disconnected
components

Tendrils
Tube Tendril o—> o



Shortest paths

Shortest path between 1 and j: minimum number
of traversed edges

. distance 1(1,))=minimum
o— number of edges traversed
on a path between 1 and

1

Diameter of the graph= max(l(1,}))
Average shortest path= Zij 1(1,j)/(N(N-1)/2)

Complete graph: 1(1,))=1 for all 1,
“Small-world”: “small” diameter



Centrality measures

How to quantify the importance of a node?

» Degree=number of neighbours=% a

% k.=5

(directed graphs: k., k_ )

» Closeness centrality
gi=1/ Zj I(1,))



Betweenness centrality

for each pair of nodes (I,m) in the graph, there are
o'™ shortest paths between | and m
oM shortest paths going through |

b. is the sum of ¢/™/ c'™over all pairs (I,m)

path-based quantity

i b. 1s large
J b; is small

NB: similar quantity= load 1.=2. ¢,
NB: generalization to edge betweenness centrality



Structure of neighborhoods
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Clustering coefficient of a node

C(; # of links between 1,2,...n neighbors
(1) = k(k-1)/2
Cl0) = s >
1) = A7 A5k
ki(k; — 1) wr RN
J

Clustering: My friends will know each other with high probability!
(typical example: social networks)

c)
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Structure of neighborhoods

Average clustering coetficient of a graph
C=2. C(1)/N

NB: slightly different definition from the
fraction of transitive triples:

3 x number of fully connected triples

C =

number of triples




Statistical characterization

Degree distribution

*List of degrees k,k,,...,k, <= Not very useful!

eHistogram:
N, = number of nodes with degree k

eDistribution:

P(k)=N,/N=probability that a randomly chosen
node has degree k

Cumulative distribution:
P>(k)=probability that a randomly chosen
node has degree at least k



Statistical characterization

Degree distribution

P(k)=N,/N=probability that a randomly chosen
node has degree k

Average=(k ) = 2. k/N =2, k P(k)=2IEI/N

Sparse graphs: (k) < N

Fluctuations: ( k?) - (k)2
(K2) =Y. K2/N = 3, k2 P(k)
(ko) =Y, k" P(k)




Statistical characterization

Multipoint degree correlations

P(k): not enough to characterize a network

A
=

Large degree nodes tend to
connect to large degree nodes
Ex: social networks

Large degree nodes tend to
connect to small degree nodes
Ex: technological networks



Statistical characterization

Multipoint degree correlations

Measure of correlations:
P(k’,k’’,... k™Ik): conditional probability that a node of
degree k 1s connected to nodes of degree k', k’’,...

Simplest case:
P(k’lk): conditional probability that a node of degree k 1s
connected to a node of degree k’

i often inconvenient (statistical fluctuations)



Statistical characterization

Multipoint degree correlations

Practical measure of correlations:

average degree of nearest neighbors

nnz:_ Z k

40

k=4

k—4

= =3
k=T =(3+4+4+7)/4=4.5

Ilnl



Statistical characterization

average degree of nearest neighbors

1
knn,z’ — k_ Z kj

L jEV(4)

Correlation spectrum:

putting together nodes which ke (k) = — Z koo
have the same degree |

class of degree k

knn (k) = K P(K'|k)
”




Statistical characterization

case of random uncorrelated networks

P(k’lk)
*independent of k

eproba that an edge points to a node of degree k’

k' N

% number of edges from nodes of degree k™
number of edges from nodes of any degree ) i K N

Puek’lk)=k’P(k’)/(k )

rie () =

proportional
to k’ 1tselt



Typical correlations

» Assortative behaviour: growing k., (k)
Example: social networks
Large sites are connected with large sites

» Disassortative behaviour: decreasing k.. (k)
Example: internet

Large sites connected with small sites, hierarchical
structure



Correlations:
Clustering spectrum

P(k’,k’’lk): cumbersome, difficult to estimate from data
eAverage clustering coefficient C=average over nodes with
very different characteristics

Clustering spectrum:

putting together nodes which C(k) = — Z C'(i)
have the same degree

class of degree k
(link with hierarchical structures)



Weighted networks

Real world networks: links
 carry trafic (transport networks, Internet...)
 have different intensities (social networks...)

% General description: weights

i Wi ]
o -®

a;: Oorl

w;;: continuous variable



Welights: examples

«Scientific collaborations: number of common papaers
oInternet, emails: traffic, number of exchanged emails
«Alrports: number of passengers

«Metabolic networks: fluxes

oFF1nancial networks: shares

usually w..=0
symetric: w;=w;



Weighted networks

Weights: on the links

Strength of a node:
Si = 2j e v() Wi

=>Naturally generalizes the degree to weighted networks

=>Quantifies for example the total trafic at a node



Weighted clustering

coefficient
C(i) = ki(k:— D ;aij%‘h%h
W;i=1
W;i=5

W;j + Wi
) E Q;;AihUih

Si=8

=16 =

cliW=0.625 > ¢ cil=0.5



Weighted clustering
coefficient

Average clustering coetficient
C=2. C(i1)/N
Cv=).. C¥(1)/N

Random(ized) weights: C=C,
C < C,, : more weights on cliques

C>C, : less weights on cliques

Clustering spectra

:—Zc :—ch

1/ k:=k 1/ k:=k




Weighted assortativity

1 1
knn,izz Z kj :k_ Z a”ijkj

Y ievi) ‘jev(i)




Weighted assortativity

1 1
knn,izz Z kj :k_ Z a”ijkj

Y ievi) ‘jev(i)




Weighted assortativity

1
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knn,z 8_ Wij k]
" JEV (i)
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Weighted assortativity

w=32: k

k;=5; s.=9; knn,i=1.8 ; Kk

nn,i nn,i <



Participation ratio

{wij } * | 1/k, if all weights equal

close to 1 if few weights dominate
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Two main classes

Natural systems:

Biological networks: genes, proteins...
Foodwebs

Social networks

Infrastructure networks:
Virtual: web, email, P2P

Physical: Internet, power grids, transport...
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Scientific collaboration network

Nodes: scientists
Links: co-authored papers

Weights: depending on

*number of co-authored papers
enumber of authors of each paper
enumber of citations...




Transportation network:
Urban level

TRANSIMS project
: A Person | Location| Location | Arrival | Departure
A 1D 1D type time time
e ¥ g | 116 | 4356 | Home | 00:00 | 07:00

Lv — : - ] 116 | 21343
ocation i 3 L] 116 | 4356
| |
o B & Ly 324 | 12679
: B - -] Location | e - 324 431
kI 324 | 12679
\j A

L

Nodes=locations (homes, shops, offices...)
Welghted links=tlow of individuals

" Social | 19:30 |
Home 21:00
Home | 00:00
School | 08:00

Home

14:30

21:00

07:00

07:00

14:00
19:00



World airport network

complete IATA database
1V =3100 airports
1 E =17182 weighted edges
1wy #seats/ (time scale)

| >99% of total traffic |




Meta-population networks

Each node: internal structure
Links: transport/tratfic

c:|ty

City j
Metwork structure

/ city j
homogeneous mixing




Internet

Computers (routers)
eSatellites

*Modems

Phone cables

*Optic fibers

‘EM waves

different
granularities Ao 59

Router Level Autonomous System level



Internet mapping

econtinuously evolving and growing
*intrinsic heterogeneity
eself-organizing

Q{} Largely unknown topology/properties

Mapping projects:
Multi-probe reconstruction (router-level): traceroute
*Use of BGP tables for the Autonomous System level (domains)

*CAIDA, NLANR, RIPE, — Topology and performance




The World-Wide-Web

Virtual network to find and share informations
web pages
— *hyperlinks
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Sampling issues

social networks: various samplings/networks
transportation network: reliable data

biological networks: incomplete samplings
Internet: various (incomplete) mapping processes
WWW: regular crawls

-

possibility of introducing biases in the
measured network characteristics



Networks characteristics

Networks: of very different origins

&> Do they have anything in common?
Possibility to find common properties?

the abstract character of the graph representation
and graph theory allow to answer....



Soclal Networks:
Milgram's experiment

Milgram, Psych Today2, 60 (1967)
Dodds et al., Science3d01,821(2003)

*ﬂ}— —{A —{Total no.of‘,
[l DR j—— A A

““Six degrees of separation”

SMALL-WORLD CHARACTER

iy /,&7‘95 . e with the median at five.

—#F

‘DOSITIOA/ No. of Intermediaries needed
., to reach Target Person
L I .
Cococcew In the Nebraska Study the chains varied 7
from two to 10 intermediate acquaintances \\
A




Small-world properties

Airport Network

AS (DIMES)

ﬁ ||||||||||||||||||||||||||||||||||||||
109 2 4 6

8

Average number of nodes
within a chemical distance 1

Scientific collaborations

Internet



Small-world properties

N points, links with proba p:
static random graphs

° ‘/' .o.>

short distances
(log N)



Clustering coefficient

Empirically: large clustering coefficients

Higher probability to be connected

Clustering: My friends will know each other with high probability
(typical example: social networks)

c)
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Small-world networks

Regular Small-world Random

N nodes forms a regular lattice.
With probability p,
each edge is rewired randomly

p=0 > p=1 =>Shortcuts

Increasing randomness

1:-“.5" TTETE g 6 g LT T

A O _ ]

osf ° Clp)/ C(0) © N=1000

I 0 ]

- 0.6 | ]

-Large clustering coeft. : y -
0.4 [ . 0 1

Short typical path Lb Lo _
2| 5 ]

E S °c o . f‘ )

Watts & Strogatz, e TT r’ﬁ

Nature202 AAN (10O N



Topological heterogeneity
Statistical analysis of centrality measures:

P(k)=N,/N=probability that a randomly chosen
node has degree k

also: P(b), P(w)....

Two broad classes
*homogeneous networks: light tails
*heterogeneous networks: skewed, heavy tails



0,

Topological heterogeneity
Statistical analysis of centrality measures
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Topological heterogeneity
Statistical analysis of centrality measures:
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EXp. vs. Scale-Free

P(k)

Poisson distribution Power-law distribution
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Consequences

Power-law tails

P(k) ~ k7
Average=( k) =/ k P(k)dk

Fluctuations
(k?) =[K2P(k) dk ~ k3

k.=cut-oft due to finite-size
N — oo => diverging degree fluctuations
for y< 3

. (k)
Level of heterogeneity: (kK = —7+

(k)




Other heterogeneity levels
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Other heterogeneity levels
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Complex networks

Complex 1s not just “complicated”

Cars, airplanes...=> complicated, not complex

Complex (no unique definition):
*many interacting units
*no centralized authority, selt-organized
ecomplicated at all scales
ecvolving structures
ecmerging properties (heavy-tails, hierarchies...)

Examples: Internet, WWW, Social nets, etc...



Example: Internet growth

| &——# AS birth
——nm AS death
[/ 51 3m [E
o
- _
[
=)
E 200 - \ 5
5 i |
Z 100 | |
{/\';-*'* ‘
" .
0 5 10 15 20 25

Months since November 1998



Main features of complex networks

Many interacting units

*Self-organization

*Small-world

*Scale-free heterogeneity

Dynamical evolution Standard graph theory
Random graphs

*Static
*Ad-hoc topology

Example: Internet topology generators
Modeling of the Internet structure with ad-hoc algorithms
tailored on the properties we consider more relevant




Statistical physics approach

Microscopic processes of the
many component units

4

Macroscopic statistical and dynamical
properties of the system

Cooperative phenomena

Natural outcome of
Complex topology j [ the dynamical evolution

Development of new modeling frameworks



New modeling frameworks
Example: preferential attachment

(1) GROWTH : At every timestep we add a new

node with m edges (connected to the nodes already
present in the system).

(2) PREFERENTIAL ATTACHMENT : [1(k;) =

The probability IT that a new node will be connected to jkj
node /depends on the connectivity k; of that node

10°®

L Lol L A | L L
10° 10’ 10° 10°
k

A.-L.Barabasi, R. Albert, Science 286, 509 (1999)



