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Random walks in complex networks

N nodes, W walkers Node i => W, walkers
W=2, W,

-
Diffusion rate out of i along (i,j): dij = 1~

=>Total escape rate outof i : r



Random walks in complex networks

Hypothesis= statistical equivalence of nodes with the same degree

=fundamental hyp. of heterogeneous mean-field approach

Degree block variables Wi = Z W;
z|k@—k

which evolve according to:

O Wy (t) = —rWi(t +kZP K'|k) ka( )



Random walks Iin complex networks
O Wi (1) = —rWi(t) + kZP K'|k) ka( )

Uncorrelated random networks:

% OWi(t) = —rWi(t —|— — ZP JrWi (t

Stationarity => | Wy (1) =




Random walks in complex networks

An application: the PageRank algorithm

Definition:

P('):% (1 —q) Zxﬁ

I

Random jumps

out,j

Random walk

(on directed network)

P (1) = stationary probability of being on node i



PageRank: heterogeneous MF

Pali) = L (1 ) Yy TED)

Kout. i
j out,]

Class of nodes of degree k = (kin, kout)

—>




PageRank: heterogeneous MF

k = (kin, kout)

LS Pt

1 — 1 zk
PR(k):%‘|‘ quzz k! . )

Mean-Field approximation:  Pg(j) = Pr(k’)

T Pello =+ i S T S S
=>PR(k):

1— Pr (k')
1 Z R Ek’—>k

out

ZIQ



PageRank: heterogeneous MF

k = (kin, kout)
1 — Pr (k')
Pr(k) :% qz d Ek’—>k ZPR
OUt zek

Fw—x = Nkin P(k) Py (K [K)

kl Pk’
Uncorrelated networks: Pm(k’ k) = 0"27;{ (> )

PR(k):% 1—q Kin ZPRk’
q 1_q kzn
Pr(k) = L
r(K) NN (kin)




PageRank: heterogeneous MF
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NB: MF result, important fluctuations are present



Random walks: mobility patterns

edges => weighted!

Ex: airport network: w,,. ~w, (k k)¢ , Traffic: T, ~ A k%!

:_ZW

z|l€ =k

General evolution equation:
O Wi (t) = —rgWi(t) + k Z di i P(K' |B) W (t)

In uncorrelated networks:
P(k")
(k)

L/
O Wi (t) = —rip. Wy (t) + k Z i 1 Wi (t)




Random walks: mobility patterns

P(k')
(k)

L/
3th(t) — —ri. W (t) + k E dir 1. W (t)
kl

First case: total escape independent from k:

re=r

a) Homogeneous diffusion d., = r/k’
=> Recover previous case

b) Movements prop. to traffic intensities
do,=rw,(kk’)% T,

O Wi (t) = —rWi(t) + rkHG% kZ P YW (t)



Random walks: mobility patterns

0, Wi (t) = —rWi () + rk'*? Uzo ZP )W (t)

KL W

Stationarity => Wi ( ) < k1+9> N




Random walks: mobility patterns

A different perspective:
We want:
W. tixed

w;; = number of travelers in a unit time, w;=w;,

Each individual in subpopulation i has a diffusion rate 2., w;,/W,
o W;=2; W, (wyW;) - W, 2, (w; /W, )=0

Any population distribution is stationary



Random walks: mobility patterns

Or, 1n the degree block approximation:
d,,. =w,(kk’)% W,

P(k')
(k)

Lt

oWy (t) — —ri. W (t) + k Z drr i Wi (t)
k/

k1+9>

D

ath(t) — —Tk(t) + k1—|—9w0 <
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1 Basic Epidemiology
10ne population: network of contacts
1 effect of heterogeneous topology
1 Metapopulation models: transportation network
1 propagation pattern?
1 epidemic forecasting?
1applications



Epidemiology

Two levels:

*Microscopic: researchers try to disassemble and Kill
new viruses => gquest for vaccines and medicines

Macroscopic: statistical analysis and modeling of
epidemiological data in order to find information and
policies aimed at lowering epidemic outbreaks =>
macroscopic prophylaxis, vaccination campaigns...



Stages of an epidemic outbreak

pre—outbreak
free spreading

clean—up / endemic

density of infected individ als

Infected individuals => prevalence/incidence




Standard epidemic modeling

Compartments: S, |, R...

S (susceptible) | (infected) R (removed)

» —_— —_—
» B ® u @ S (susceptible)

Homogeneous mixing assumption (Mean-field)

' geg®

t=4 =8




S (susceptible) | (infected)
The S| model c _— o
B
N 1ndividuals
I(t)=number of infectious, S(z)=N-I(t) number of susceptible
i(t)=I(t)/N, s(t)=S(t)/N

Individual with k contacts, among which n infectious:
in the homogeneous mixing approximation, the probability to
get the infection 1n each time interval df 1s:

1 -(1-Bdtr~Bkidt (Bdt<<])

If k 1s the same for all individuals (homogeneous network):

ds . .
o= Bk~ )




S (susceptible) | (infected)
The S| model ° > o

N individuals

I(t)=number of infectious, S(z)=N-I(t) number of susceptible
i(t)=I(t)/N, s(t)=S(t)/N

d1 . .
P B(k)i(1 — 1)

d

i) = et 7 =1/(B(k))

1+ io(exp(t/7) — 1)




The SIS model

S (susceptible) | (infected) S (susceptible)
. W) O — O
N individuals H

[(t)=number of infectious, S(z)=N-I(t) number of susceptible
i(t)=I(t)/N, s(t)=S(t)/N

Homogeneous mixing

d1 . . .
P B{k)i(1 — 1) — pa

% Competition of two time scales




The SIR model

N individuals

I(t)=number of infectious, S(z) number of susceptible, R(7) recovered
i(t)=I(t)/N, s(t)=S(t)/N, r(t)=R(t)/N=1-i(t)-s(t)

ds

Homogeneous mixing: E _ _/8<k'>i('[;)3(t)
= BlkYi(t)s(e) — pi(t)
% = pi(t)




SIS and SIR models: linear approximation

Short times, i(1) << 1 (and r(t)<<I for the SIR)

% (Bk) — w)i(t)

Exponential evolution exp(t/7), with

/7= Bk) —

If B <k> > u: exponential growth
If §<k> < u: extinction

Epidemic threshold condition: 5 <k> =



Long time limit, SIS model
Stationary state: di/dt = 0 Nflfoo — 6<k>@oo(]- — Zoo)

Iff<k><p: 1o =0

Epidemic threshold condition: 5 <k> = u

fp<k>>pu: 1o =1 — M/(B(k»

Loo
Phase diagram: glll’;::b‘“g Active phase
. Finite prevalence
Virus death

Je = (k) A=Bii



Immunization

Fraction g of immunized (vaccined) individuals:

p—>p(1-g)

=>critical immunization threshold

gc=1-:U/(/B<k>)




Wide spectrum of complications and
complex features to include...

hospital
- 2 ------ @ |school

Multi-scale Agent Based
models models

Contact network
models

Homogeneous Social structure
mixing

Simple meese——————  Realistic

Ability to explain trends at a Model realism looses in
population level transparency.
Validation is harder.



Complex networks

Viruses propagate on networks:
1 Social (contact) networks

1 Technological networks:
1 Internet, Web, P2P, e-mail...

...which are complex, heterogeneous networks



Epidemic spreading on
heterogeneous networks

Number of contacts (degree) can vary a lot
huge fluctuations ({ k? ) > (k))

.

Heterogeneous mean-field: density of

1 Susceptible in the class of degree k, 5,=S,/N,
1 Infectious in the class of degree k, i, =//N,
1 Recovered in the class of degree k, r,.=R,/N,

s()=X P(k) s, i(t)= ZP(k) i, r(t)= X P(k) r,



Epidemic spreading on
heterogeneous networks

Relative density of infected nodes with given degree k: i,

SI model: dZ .

dt

Bk(1 — )OOk

®,=Proba that any given link points to an infected node

For the SI model:

Op =Y

k,/

K —1

——P(K|k)ix

P (k’l k) = the probability that a link originated in a node
with connectivity k points to a node with connectivity k’




S| model on heterogeneous networks

d1 o
d: = k(1 =)0k  ©6,=) g - 1P(k'\k)@k,

In uncorrelated neworks:

Short times, i,(f) << 1 @ B <]€2> — <l€> @

Exponential growth T =




SIS model on heterogeneous networks
d1 . .
ﬁ — Bk(l — Zk)@k — Uk

dt
Op=0=> k—P(k’)ik,
k/

In uncorrelated networks: < k)

Short times, 7,(f) << 1 @ - (6 <]€2> u) o

Or =Y P(K'|k)ir
k/

Epidemic threshold condition




Long time limit, SIS model on het. networks

dt

Or =¥ P(K'|k)ix
-

In uncorrelated netwyg

|  BkOg(0)
= 0 m— 0100 Br(00) + 1

T
1 BREP(RO(0)
% O9) = 755 2 "5t6(00) + 1

Self-consistent equation of the form ®=F(O)
with F(0)=0, F’ >0, F’ <0



Graphical solution

A) B)
R A
| P 1
__..._.f-""l‘glope g 1 _ i
l & o* 1
Epidemic threshold:
existence of a non-zero solution for ® F0)>1:
Bk*P(k) B(k?)
Z >1 <4 > 1
- T (k)




Epidemic threshold in uncorrelated networks

Heterogeneous, infinite network:

(k%) — oo

Condition always satisfied

Finite prevalence for any spreading parameters [3, W



Epidemic phase diagram In
heterogeneous networks

05

04 r

*Wide range of spreading rate with low prevalence
e[Lack of healthy phase = standard immunization cannot
drive the system below threshold!!!



Immunization strategies

‘Usual’, uniform immunization:
Fraction g of randomly chosen immunized (vaccined) individuals:

p—>p(1-g)

=> 1nefficient
Targeted immunization:
Vaccination of the most connected individuals

=> efficient

(ctf resilience vs fragility to attacks)



Immunization

O—OUniform |

0.8 o—a Targeted

0.6

zg/zo

0.4

0.2

NB: when network’s topology unknown: acquaintance immunization



Wide spectrum of complications and
complex features to include...

hospital
..f -
.O ® O .. ------ @® |school
ol 9¢NO
® ‘ @ home |~ @:
o 0
: | work
Homogeneous Social structure Contact network Multi-scale Agent Based
mixing models models maodels

Simple meese——————  Realistic

Ability to explain trends at a Model realism looses in
population level transparency.
Validation is harder.



General framework:
Bosonic reaction-diffusion processes

1 Previous cases: (at most) one particle/individual per
site

1 In general: reaction-diffusion processes on networks
=> no restriction on the number of particles per site

“Particles”

ediffusing along edges
ereacting in the nodes



Example: Meta-population models

city 1

travel
City i

City j
Metwork structure

:‘>
Hospitalizedy, r
Hospitalize

Intra-population infection dynamics by

stochastic compartmental modeling

Baroyan et al. (1969)
Ravchev, Longini (1985)



Bosonic RD processes
on complex networks

1 A, a=1,...,S types of particles
1 Diffusion coefficients D,

1 Reactions (r=1,...R):

S S
D daAa Z 05 + o) Ao
a=1 a=1



Bosonic RD processes
on complex networks

Heterogeneous mean-field formalism:

nak_ naz

Densities pa,r =

1€k

_ Zpa,w)P(k)
k

atpoc,k(t) — Da + Roc

/X

Diffusion Reaction



Bosonic RD processes
on complex networks

Diffusion term:

For site i: —Dana,,,;(t) + D, %na,j (Yf)




Bosonic RD processes
on complex networks

S A S
> qhAa — Y (dh +Ph)Aa
a=1

a=1

Reaction term: R, = Z Do, Ar H( 03, k)qg
r r

See Baronchelli et al, Phys. Rev. E 78, 016111 (2008)

for various examples of further computations



A concrete example:
epidemic meta-population models



Unprecedented amount of data.....

1 Transportation infrastructures
1 Behavioral Networks

1 Census data

1 Commuting/traveling patterns

1 Different scales:
1 International
1 Intra-nation (county/city/municipality)
1 Intra-city (workplace/daily commuters/individuals behavior)



Meta-population models

city 1

travel
City i

City j
Metwork structure

:‘>
Hospitalizedy, r
ospitalize

Intra-population infection dynamics by

stochastic compartmental modeling

Baroyan et al. (1969)
Ravchev, Longini (1985)



Modeling of global epidemics
propagation

multi-level description :

§ intra-city

epidemics

§ inter-city
travel

Baroyan et al. (1969)
Ravchev, Longini (1985)



Inside a city

[s]

B S Homogeneous assumption

u Su! average infectious period

III S B rate of transmission



Global spread of epidemics on
the airport infrastructure @

Urban areas
+
Air traffic flows

World-wide airport network
1 complete IATA database
1V =3100 airports
1 E =17182 weighted edges
1 w; #seats / (different time scales)

| >99% of total traffic

1 N; urban area population
(UN census, ...)



Statistical distributions...

1 Skewed

1 Heterogeneity and high
variability

1 Very large fluctuations
(variance>>average)

P(s)

_4 r_I_I_I'ITI—I_I_I_I'ITI—I_I_I_I'ITI I TTTII I T I 1] ] I
10 B -I. [ [ . ~ n
Ny gt m = Ny, N
.I. u .l.. ~ <
E .--. % :!
6 ..l L ~ _
10 .-. N
| |
- A T T .-. \ . y
E . *ow, ‘:‘-‘;\ -~ C l. ~ E
0%z e T _ %
E o TR = '
-4 Wﬁ -] Ny
v - . :
§ - ||| 1 ||| 1 a é
10'10 ~ 00 10" 10° "
k (non-stop connections)
L Ll I L LLLL I L LLLI I L LLLL I [ T I LLLLLL I L LLLL
100 100 100 100 100 10° 100 10
s (airport traffic)

Barrat, Barthélemy, Pastor-Satorras, Vespignani. PNAS (2004)
Colizza, Barrat, Barthélemy, Vespignani. PNAS (2006)



Stochastic model: travel term

T
&

- -
.l @ ®

L : 4
“ " T ' . . . o o
i e ) ¢ %0 o Travel probability
N et P o Q‘ from PAR to FCO:

R L ° O

e @ : “ | _ WPAR,F CO A

. b % @\‘ g pPAR,FCO _ d

o '_ oFe0 8’ N e Near
® |

L @ y
0\"

L0 ﬁ Eparpco # passengers
. ey from PAR to FCO:
" andel il Stochastic variable,

multinomial distr.



Stochastic model: travel term

Transport operator:

| Qpar {XD =2, (E.»I,PAR {X)) - E.»PAR,] ({Xpar))

. M‘ ¢ ' ingoing Outhing

s other source of noise:  w;"t¢ = wy [o+n(1-0)] a=70%

S two-legs travel: Q({X})= Qj(l)({ X+ Qj(Z)({X})



Stochastic large-scale model

compartmental model + air transportation data

f
Susceptible

|

==
|

e

\




Large-scale model

Stochastic evolution equations describing the disease
evolution at a mean-field level in each city

Coupled through transport operators

1 complete IATA database
1V =3100 airports
1 E =17182 weighted edges

1wy #seats/ (different
otk sruchre time scales)

1 N; urban area population
(UN census, ...)

> 99% of total traffic




Directions.....

1 Appl

istorical data
Scenarios forecast #

1 Basic theoretical questions...
1 simple SIS, SIR model

1 features da




Propagation pattern

Epidemics starting in Hong Kong (SIR model)

.pmax
\\
% ‘
™ t=45 days -, t=65 days s

© t=145 days

Colizza, Barrat, Barthélemy, Vespignani, PNAS 103, 2015 (2006); Bull. Math. Bio. (2006)



Heterogeneity

Smaps heterogeneity epidemic spread
2
S appropriate measure ? ﬁz\?

S role of specific structural
properties: g
topology, traffic, population ?

S comparison with null hypothesis



Heterogenelty: quantitative measure

i ()= 1, prevalence in city j at time t
N .
J
i.(1) :
—_J normalized prevalence
p;(t) S () p
Entropy:
He [0,1]
H(t) = Z p;Inp, H=0 most het.
I 4 H=1 most hom.




.and: compare with null hypothesis!

Feaw! oo
*




Results: Heterogeneity

S global properties

§ average over initial
seed

§ central zone: H>0.9

SHETk = WAN

importance of P(k)

35




Prediction and predictability

1 Do we have consistent scenario with respect to
different stochastic realizations?

1 What are the network/disease features
determining the predictability of epidemic
outbreaks

1 Is it possible to have epidemic forecasts?

Colizza, Barrat, Barthélemy, Vespignani, PNAS 103, 2015 (2006); Bull. Math. Bio. (2006)



time

S

o

ok e
g J

shep 091=1 shep 091=1

One outbreak realization:

Predictability

4& i
< G

! {

sAep 99=1 Skep 9951

é.% | W

) y

SAERISESl shep gg=)

o

g
|

shep gp=}

R

P

shep gp=1

Another outbreak realization ?

LAgi

g
‘ 0

shep pz=} skep pz=1

§ containment strategies

§ epidemic forecast




Quantitative characterization of
epidemic predictability

Statistical similarity of two
outbreaks (7 and II) with
the same initial conditions
subject to different noise
realizations

Observable: infected
probability distribution

A




Quantitative characterization of
epidemic predictability

NB: The normalized
distribution similarity is the

same in the case of i(t)=i,1-i), i=X1,/3N,
different total prevalence B

Overlap function:

O(t)=sim(',i" )xsim@" 7" )




Quantitative characterization of

ﬁmmp%ctablllty

O(t) € [0,1]

O(t)=1 — 2 identical Outbreaksz

O(t)=0 — 2 distinct outbreaks j—»

%

time ¢t

time ¢t

time ¢t

time ¢t




Results: predictability
| |

»left: seed = airport hubs
] sright: seed = poorly
;. connected airports

- ——1 S HOM & HETw high overlap

1> HETk low overlap

HETK]

» WAN 1ncreased overlap !!




Results: predictability

HOM: kl z<k> — few channels
— high overlap

1 + degree heterog.

HETEk: broad P(k) — lots of channels!
— low overlap

1 + weight heterog.

' WAN: broad P(k),P(w) lots of channels, but...
— emergence of preferred channels
— increased overlap !!!

Wit
! l




Taking advantage of
complexity...

1 Two competing effects

1 Paths degeneracy (connectivity heterogeneity)

1 Traffic selection (heterogeneous accumulation of
traffic on specific paths)

1 Definition of epidemic pathways as a
backbone of dominant connections for
spreading



Applications

1 Historical data: SARS
1 more involved model
1 validation vs real data
1 Pandemic forecast
1 effect of travel limitations
1 Scenario evaluation



Historical data :
The SARS case...




Predictions...

Prob. outbreak

Narth Pacilic

Outbreak likelihood - July 11, 2003

g e
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Predictions...

SARS - July 11, 2003

North Atlantic
Ocean

North Pacific e
Ocean " North Pacific
Ocean

-

Ocean

South Atlantic
Ocean

South Pacific
Ocean

- correct prediction of outbreak

=] correct prediction of no outbreak

incorrect prediction

no airports ) = f —e—
——— % el ikl

e S S




Quantitatively speaking
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NB: populations of millions of individuals!!
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Very good results because...

SARS - March 21, 2003

% overlap

T0

SARS - April 18, 2003

SARS - May 30,

time {days since February 21)

2 Travel advice P
First global for Hong Kong
alert Issued and Guangdong|  Travel advice
— by WHO Provinge for Toronto 2
L J L ¥
i Emergency Travel advice Hong Kong removed
travel for other Provinces from list of areas with
e advisory In China local transmission _|
v
Screening measures
B for alr passengers b
1 I I 1 ] 1 ] L I ']
a 20 40 &0 &0 100 120

140

2003




