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Random walks in complex networks

N nodes, W walkers Node i => Wi walkers

W= ∑i Wi

Diffusion rate out of i along (i,j):

=>Total escape rate out of i : r



Random walks in complex networks

Hypothesis= statistical equivalence of nodes with the same degree

=fundamental hyp. of heterogeneous mean-field approach

Degree block variables

which evolve according to:



Random walks in complex networks

Uncorrelated random networks: 

Stationarity =>



Random walks in complex networks

An application: the PageRank algorithm

Definition:

Random jumps
Random walk

(on directed network)

PR (i) = stationary probability of being on node i



PageRank: heterogeneous MF

Class of nodes of degree



PageRank: heterogeneous MF

Mean-Field approximation:



PageRank: heterogeneous MF

Uncorrelated networks: 



PageRank: heterogeneous MF

NB: MF result, important fluctuations are present



Random walks: mobility patterns

edges => weighted!

Ex: airport network:  wkk’ ∼ w0 (k k’)θ , Traffic: Tk ∼ A kθ+1

In uncorrelated networks:

General evolution equation:



Random walks: mobility patterns

First case: total escape independent from k:

rk=r

a) Homogeneous diffusion dk’k = r/k’

=> Recover previous case

b) Movements prop. to traffic intensities

dk’k = r w0 (kk’)θ/ Tk’



Random walks: mobility patterns

Stationarity =>



Random walks: mobility patterns

A different perspective:

We want: 

Wi fixed

wij = number of travelers in a unit time, wij=wji

Each individual in subpopulation i has a diffusion rate ∑j wij /Wi

∂t Wi = ∑j Wj (wji/Wj ) – Wi ∑j (wij /Wi )=0

Any population distribution is stationary



Random walks: mobility patterns

Or, in the degree block approximation:

rk = Tk / Wk

dk’k = w0 (kk’)θ/ Wk’
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lBasic Epidemiology 

lOne population: network of contacts

leffect of heterogeneous topology

lMetapopulation models: transportation network

lpropagation pattern?

lepidemic forecasting?

lapplications



Epidemiology

Two levels:
•Microscopic: researchers try to disassemble and kill 

new viruses => quest for vaccines and medicines

•Macroscopic: statistical analysis and modeling of 

epidemiological data in order to find information and 

policies aimed at lowering epidemic outbreaks => 

macroscopic prophylaxis, vaccination campaigns...



t

Infected individuals => prevalence/incidence

Stages of an epidemic outbreak



R (removed)

S (susceptible)

Homogeneous mixing assumption (Mean-field)

t=1 t=2 t=4 t=8

Compartments: S, I, R...

Standard epidemic modeling

S (susceptible) I (infected)

β µ



The SI model
S (susceptible) I (infected)

β

N individuals

I(t)=number of infectious, S(t)=N-I(t) number of susceptible

i(t)=I(t)/N , s(t)=S(t)/N

Individual with k contacts, among which n infectious:

in the homogeneous mixing approximation, the probability to

get the infection in each time interval dt is:

1 – (1-βdt)n ≈ β k i dt (β dt << 1)

If k is the same for all individuals (homogeneous network): 



The SI model
S (susceptible) I (infected)

β

N individuals

I(t)=number of infectious, S(t)=N-I(t) number of susceptible

i(t)=I(t)/N , s(t)=S(t)/N



The SIS model

N individuals

I(t)=number of infectious, S(t)=N-I(t) number of susceptible

i(t)=I(t)/N , s(t)=S(t)/N

Homogeneous mixing

S (susceptible)S (susceptible) I (infected)

β µ

Competition of two time scales



The SIR model

N individuals

I(t)=number of infectious, S(t) number of susceptible, R(t) recovered

i(t)=I(t)/N , s(t)=S(t)/N, r(t)=R(t)/N=1-i(t)-s(t)

Homogeneous mixing:



SIS and SIR models: linear approximation

Short times, i(t) << 1  (and r(t)<<1 for the SIR)

Exponential evolution exp(t/τ), with

If β <k> > µ : exponential growth

If β <k> < µ : extinction

Epidemic threshold condition: β <k> = µ



Long time limit, SIS model

Stationary state: di/dt = 0

If β <k> < µ :

If β <k> > µ :

Epidemic threshold condition: β <k> = µ

Active phase
Absorbing

phase
Finite prevalence

Virus death

λ=β/µ1−
= kcλ

Phase diagram: 



Immunization

λ=β/µ1−
= kcλ

Fraction g of immunized (vaccined) individuals:

 β −> β (1−g)

 =>critical immunization threshold

 gc = 1 - µµµµ/(ββββ<k>)

g > gc



Wide spectrum of complications and 

complex features to include…

Simple Realistic

Ability to explain trends at a 
population level

Model realism looses in 
transparency. 
Validation is harder. 



Complex networks

Viruses propagate on networks:

l Social (contact) networks

l Technological networks:

l Internet, Web, P2P, e-mail...

...which are complex, heterogeneous networks



Epidemic spreading on 

heterogeneous networks

Number of contacts (degree) can vary a lot

huge fluctuations (〈 k2 〉 ≫ 〈 k 〉)

Heterogeneous mean-field: density of 

lSusceptible in the class of degree k, sk=Sk/Nk

l Infectious in the class of degree k, i
k
=Ik/Nk

lRecovered in the class of degree k, rk=Rk/Nk

s(t)=∑ P(k) sk , i(t)= ∑ P(k) ik , r(t)= ∑ P(k) rk



Epidemic spreading on 

heterogeneous networks

Relative density of infected nodes with given degree k: ik

Θk=Proba that any given link points to an infected node

SI model:

For the SI model:

P (k’| k)  = the probability that a link originated in a node 

with connectivity k points to a node with connectivity k’



SI model on heterogeneous networks

In uncorrelated networks:

Short times, ik(t) << 1

Exponential growth



SIS model on heterogeneous networks

In uncorrelated networks:

Short times, ik(t) << 1

Epidemic threshold condition



In uncorrelated networks:

Long time limit, SIS model on het. networks

Self-consistent equation of the form Θ=F(Θ)

with F(0)=0, F’ > 0, F’’ < 0 

Su
m

ov
er

 k



Graphical solution

Θ=F(Θ)
Θ=F(Θ)

Epidemic threshold: 

existence of a non-zero solution for Θ óóóó F’(0) > 1 :



Epidemic threshold in uncorrelated networks

Heterogeneous, infinite network:

Condition always satisfied

Finite prevalence for any spreading parameters ββββ,,,, µµµµ



Epidemic phase diagram in 

heterogeneous networks

•Wide range of spreading rate with low prevalence

•Lack of healthy phase = standard immunization cannot 

drive the system below threshold!!!



Immunization strategies

‘Usual’, uniform immunization:

Fraction g of randomly chosen immunized (vaccined) individuals:

 β −> β (1−g)

 => inefficient

Targeted immunization:

Vaccination of the most connected individuals

=> efficient

(cf resilience vs fragility to attacks)



Immunization

NB: when network’s topology unknown: acquaintance immunization



Wide spectrum of complications and 

complex features to include…

Simple Realistic

Ability to explain trends at a 
population level

Model realism looses in 
transparency. 
Validation is harder. 



General framework:

Bosonic reaction-diffusion processes

l Previous cases: (at most) one particle/individual per 

site

l In general: reaction-diffusion processes on networks

=> no restriction on the number of particles per site

“Particles”

•diffusing along edges

•reacting in the nodes



Example: Meta-population models

City a

City j

City i

Intra-population infection dynamics by 
stochastic compartmental modeling

Baroyan et al. (1969)

Ravchev, Longini (1985)



Bosonic RD processes

on complex networks

l Aα , α=1,…,S types of particles

l Diffusion coefficients Dα

l Reactions (r=1,…R):



Bosonic RD processes

on complex networks

Heterogeneous mean-field formalism:

Densities

Diffusion Reaction



Bosonic RD processes

on complex networks

Diffusion term:

For site i: 



Bosonic RD processes

on complex networks

Reaction term:

See Baronchelli et al, Phys. Rev. E 78, 016111 (2008) 

for various examples of further computations



A concrete example: 

epidemic meta-population models



Unprecedented amount of data…..

l Transportation infrastructures

l Behavioral Networks 

l Census data

l Commuting/traveling patterns

l Different scales:

l International

l Intra-nation (county/city/municipality)

l Intra-city (workplace/daily commuters/individuals behavior)



Meta-population models

City a

City j

City i

Intra-population infection dynamics by 
stochastic compartmental modeling

Baroyan et al. (1969)

Ravchev, Longini (1985)



Baroyan et al. (1969)

Ravchev, Longini (1985)

multi-level description :

§ intra-city 

epidemics

§ inter-city 

travel

Modeling of global epidemics 

propagation



S

I

R

§Homogeneous assumption

§β rate of transmission

§µ-1 average infectious period

Inside a city

β

µ



Global spread of epidemics on 

the airport infrastructure

Urban areas

+
Air traffic flows 

> 99% of total traffic

l complete IATA database

l V = 3100 airports

l E = 17182 weighted edges

l wij #seats / (different time scales)

l Nj urban area population

(UN census, …)

WorldWorld--wide airport networkwide airport network



Statistical distributions…

l Skewed 

l Heterogeneity and high 

variability 

l Very large fluctuations

(variance>>average)

Barrat, Barthélemy, Pastor-Satorras, Vespignani. PNAS (2004)

Colizza, Barrat, Barthélemy, Vespignani. PNAS (2006)



t
N

w
=p

PAR

FCOPAR,

FCOPAR,

Travel probability

from PAR to FCO: 

#  passengers 

from PAR to FCO:

Stochastic variable,

multinomial distr.

Stochastic model: travel term

ξξξξPAR,FCO

ξξξξPAR,FCO



Transport operator:Transport operator:

§ other source of noise:

§ two-legs travel:

ingoing outgoing

Stochastic model: travel term

ΩΩΩΩPAR ({X}) = ∑∑∑∑l (ξξξξl,PAR ({Xl}) - ξξξξPAR,l ({XPAR}))

Ωj({X})= Ωj
(1)({X})+ Ωj

(2)({X})

wjl
noise = wjl [α+η(1-α)]   α=70%



Susceptible

Infected

Recovered

compartmental model +  air transportation data

Stochastic large-scale model



Large-scale model

Stochastic evolution equations describing the disease

evolution at a mean-field level in each city

…

Coupled through transport operators

l complete IATA database

l V = 3100 airports

l E = 17182 weighted edges

l wij #seats / (different 
time scales)

l Nj urban area population

(UN census, …)

> 99% of total traffic



Directions…..

l Basic theoretical questions…
l simple SIS, SIR models

l features determining propagation pattern?

l issue of predictability, epidemic forecasting?

l Applications…
l Historical data

l Scenarios forecast 

l complicated, realistic disease models



Propagation pattern

Epidemics starting in Hong Kong (SIR model)

Colizza, Barrat, Barthélemy, Vespignani, PNAS 103, 2015 (2006);  Bull. Math. Bio. (2006)



Heterogeneity

§maps à heterogeneity epidemic spread

§appropriate measure ?

§ role of specific structural 

properties:

topology, traffic, population ?

§ comparison with null hypothesis
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Heterogeneity: quantitative measure



§HOM HOM 
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...and: compare with null hypothesis!



§ global properties

§ average over initial 

seed

§ central zone: H>0.9

§HETk    WAN  
à importance of P(k)

≅

Results: Heterogeneity



Prediction and predictability

l Do we have consistent scenario with  respect to 

different stochastic realizations?

l What are the network/disease features 

determining the predictability of epidemic 

outbreaks

l Is it possible to have epidemic forecasts?

Colizza, Barrat, Barthélemy, Vespignani, PNAS 103, 2015 (2006);  Bull. Math. Bio. (2006)
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§epidemic forecast

§containment strategies

One outbreak realization:

Predictability



Quantitative characterization of 

epidemic predictability

Statistical similarity of two 
outbreaks (I and II) with 

the same initial conditions
subject to different noise 

realizations 

(t),
r

∑
l

l

j

j
(t)I

(t)I
=(t)

Observable: infected 
probability distribution

∑
j

II

j

I

j

III
=),sim(
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Quantitative characterization of 

epidemic predictability

NB: The normalized 

distribution similarity is the 
same in the case of 

different total prevalence
( ),ii=(t)i −,1

r
∑∑

j

j

j

j NI=i /

Overlap function:Overlap function:

),sim()i,isim(=(t)
IIIIII rrrr

×



time t

time t

time t

time t

Quantitative characterization of 

epidemic predictability

ΘΘΘΘ((((t)=0 → → → → 2 distinct outbreaks

ΘΘΘΘ((((t)=1 → → → → 2 identical outbreaks

ΘΘΘΘ((((t) ∈∈∈∈ [0,1]



§ left: seed = airport hubs

§right: seed = poorly 

connected airports

§HOM & HETw high overlap

§HETk low overlap

§WAN increased overlap !!

Results: predictability



j

l
wjl

HOM:               → few channels

→ high overlap
kki ≈

HETk: broad P(k)→ lots of channels!

→ low overlap

WAN: broad P(k),P(w) lots of channels, but…

→ emergence of preferred channels

→→→→ increased overlap !!!

+ degree heterog.

+ weight heterog.

j

lwjl

Results: predictability



Taking advantage of 

complexity…

l Two competing effects
l Paths degeneracy (connectivity heterogeneity)

l Traffic selection (heterogeneous accumulation of 
traffic on specific paths)

l Definition of epidemic pathways as a 

backbone of dominant connections for 

spreading



Applications

lHistorical data: SARS

lmore involved model

lvalidation vs real data

lPandemic forecast

leffect of travel limitations

lscenario evaluation



Historical data :
The SARS case…



Predictions…



Predictions…



Quantitatively speaking

NB: populations of millions of individuals!!



Very good results because…


