
A molecular dynamics ‘Maxwell Demon’ experiment for
granular mixtures

ALAIN BARRAT and EMMANUEL TRIZAC*
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We report a series of molecular dynamics simulations and investigate the possibility to
separate a granular mixture of inelastic hard spheres by vigorously shaking it in a box made of
two connected compartments. As its one-component counterpart, the system exhibits a ‘left–
right’ symmetry breaking entirely due to the inelasticity of grain–grain collisions, and triggered
by increasing the number of particles. In the compartment where the density of grains is larger,
we observe a partial segregation with a predominance of heavy particles. However, this
compartment still has a higher density of light particles than the other one, which is light-rich.
The density, granular temperature and anisotropic pressure profiles are monitored. We also
discuss how to construct a relevant order parameter for this transition and show that the
resulting bifurcation diagram is dominated by large fluctuations.

1. Introduction

Although granular matter may exhibit similarities

with molecular fluids (such as pattern formation), it is

nevertheless intrinsically out of equilibrium: The inter-

particle collisions dissipate kinetic energy and a steady

state may only be achieved by a suitable energy supply.

As a result, such systems may display many phenomena

that are ‘forbidden’ by the laws of equilibrium statistical

mechanics. In the realm of granular gases (dilute systems

of macroscopic grains in rapid motion and colliding

inelastically), the tendency to form clusters [1–4], non-

Gaussian velocity distributions [5–13], long range

velocity correlations [12, 14–17] and breakdown of

kinetic energy equipartition in a mixture of dissimilar

grains [13, 18–21] have been reported.

Another interesting feature, at complete variance with

equilibrium phenomenology has been obtained with a

simple experiment [22–25]: a vibrated system of grains

confined in a box with two connected identical

compartments may exhibit a stationary state with

spontaneous symmetry breaking (non-equipartition of

grains between the two compartments). This clustering

phenomenon may be interpreted as a separation in a

‘hot’ and a ‘cold’ region, whilst considering that the

granular temperature is a direct measure of the mean

squared velocity of the particles. In the limit where the

exchange of particles between the two compartments

may be considered as an effusion process, Eggers [26]

has put forward an analytical approach to explain this

apparent intrusion of a ‘Maxwell Demon’. On the other

hand, Brey et al. [27] reported a hydrodynamic

mechanism for the symmetry breaking, which becomes

operational under some simplifying assumptions in the

opposite limit where the size of opening connecting the

two compartments is larger than the mean free path of

the gas in its vicinity.

In this contribution, we revisit numerically the

Maxwell Demon experiment in the latter case, and

consider the specific situation of a binary low-density

granular mixture, with the aim of investigating whether

such a set-up is able to achieve an efficient segregation of

the mixture. The model is defined in } 2. Making use of

molecular dynamics simulations, we discuss in } 3 how

to construct a relevant order parameter for the transi-

tion under study, and show that it is dominated by large

fluctuations (as also observed recently in a related

context [28]). The two components of the mixture are

found to behave differently: heavy particles display a

stronger (left–right) asymmetry than the light ones,

leading to a separation between a dense gas rich in heavy

particles and a dilute light-rich gas. The behaviour of

partial densities and granular temperatures are investi-

gated (} 4) from which we deduce the different compo-

nents of the pressure tensor making use of the general

equation of state derived in [13]; although the hypoth-

esis of an isotropic pressure given by the ideal gas

equation of state is clearly not verified, we show that the

no-convection hydrodynamic condition of a divergence-
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free pressure tensor (r � P ¼ 0) is obeyed, taking into

account anisotropies, boundaries and corrections to the

ideal gas equation of state. Conclusions are finally

drawn in } 5.

2. The model

The system is made of N inelastic hard discs evolving

in a S � L two-dimensional box, losing energy at inter-

particle collisions and gaining energy through collisions

with two vibrating walls situated at y ¼ 0 and y ¼ L

(figure 1). The particles have diameters �i and masses mi,

i ¼ 1; 2. A binary collision between grains of species i

and j is momentum conserving and dissipates kinetic

energy: the collision i–j is characterized by the coefficient

of normal restitution �ij . Accordingly, the pre-collisional

velocities (vi; vj) are transformed into the post-collisional

couple (v0i; v
0
j) such that

v0i ¼ vi �
mj

mi þmj
ð1þ �ijÞðbrr � vijÞbrr; ð1Þ

v0j ¼ vj þ
mi

mi þmj
ð1þ �ijÞðbrr � vijÞbrr; ð2Þ

where vij ¼ vi � vj and brr is the centre-to-centre unit

vector from particle i to j. Note that �ij ¼ �ji to ensure

the conservation of total linear momentum mivi þmjvj.

The total density is denoted �, and the partial densities

�i ¼ xi� (the number fractions xi are such thatP
i xi ¼ 1). The granular temperature of species i is Ti,

defined from the mean kinetic energy of subpopulation

i, by analogy with the usual temperature of elastic gases:

Ti ¼ hmiv
2
i i=d, where d is the space dimension (here

d ¼ 2). In the remainder of the paper this granular

temperature will be coined ‘temperature’ for simplicity.

The box is divided into two compartments of width

S=2 by a wall parallel to Oy starting at height y0. The

walls located at x ¼ 0 and x ¼ S are elastic, while those

at y ¼ 0 and y ¼ L are vibrating and thus inject energy

into the system. For simplicity, the two vibrating walls

are taken to move in a saw-tooth manner, so that a

colliding particle at y ¼ 0 (resp. y ¼ L) always finds the

wall to move ‘upwards’ (resp. ‘downwards’) with the

same velocity v0 (resp. �v0). In addition, the amplitude

of the vibration is considered to vanish (i.e. to be much

smaller than the local mean free path [26, 27]), so that

the walls are located at the fixed positions y ¼ 0 and

y ¼ L: the y-component velocity of a particle colliding

with the wall at y ¼ 0 (resp. y ¼ L) is therefore changed

according to v
0
y ¼ 2v0 � vy (resp. v

0
y ¼ �2v0 � vy). Since

we consider vigorous shakings, the gravitational field

has not been included in the analysis.

For simplicity, we have considered equimolar mix-

tures (N1 ¼ N2) of particles having the same diameter

(�1 ¼ �2) but different masses. Various mass ratios

m1=m2 2 ½1 :5� have been studied,y so that the species 1

is always the heavier particle. We have run molecular

dynamics simulations [29] changing N either at constant

packing fraction (equal to ���2=4 in two dimensions) or

at constant �i, with the same qualitative observations.

The numerical results we will present correspond to a

fixed low mean packing fraction �0 ¼ 0:015 (the inelastic

collapse [3] occurring if the mean density exceeds a low

threshold), and to equal coefficients of restitution

�ij ¼ 0:9, close to experimentally relevant values. We

have investigated other values of the restitution coeffi-

cients between 0:7 and 0:9, and two different aspect

ratios, L ¼ S and L ¼ 2S, with the same qualitative

results.

3. Bifurcation diagram and large fluctuations

For a one component system, it has been shown from

a hydrodynamic approach [27] that, as the number of

particles in the box (N) is increased, a transition occurs

at a certain threshold N�: for N < N�, the system is

symmetric, i.e. the mean number of particles in each

compartment is N=2 while, for N > N�, one of the

compartments becomes more populated and colder than

the other. This hydrodynamic study relies on the

assumption of an isotropic pressure given by the ideal

gas equation of state [27]. At a given inelasticity (i.e. at

y In the context of homogeneously heated binary granular

mixtures, it has been shown in [21] that the influence of size

asymmetry on the kinetic energy non-equipartition is much less

important than that of mass asymmetry. We therefore restrict our

study to the influence of the latter parameter.Figure 1. Schematic picture of the set-up.
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given values of the restitution coefficients), the control

parameter (governing the transition from the symmetric

to the asymmetric situation) is proportional to N�d�1=S,

where � is the particle diameter [27]. At fixed reduced

density n ¼ N�d=ðLSÞ the above parameter is propor-

tional to N1=d , while at fixed size � it scales like N.

The ‘order parameter’ of this transition was defined in

[26, 27] as the time average h�i of the asymmetry �:

�¼
N � 2N left

2N
; ð3Þ

where N left is the number of particles in the left

compartment. In addition to the global �, we may

introduce two relevant asymmetry parameters for each

type of particles

�i ¼
Ni � 2N left

i

2Ni
; i ¼ 1;2: ð4Þ

For a given simulation time, if one computes h�ii for the

binary mixture (or jh�iij to have a positive quantity), a

left–right symmetry breakdown is shown (see figure 2).

The asymmetry is more pronounced for heavy particles

(jh�1ij > jh�2ij), and jh�1ij increases with the mass ratio

m1=m2. On the other hand, the light particle asymmetry

decreases with m1=m2. At this point we conclude that the

compartment with larger global density is heavy-rich,

while the lighter particles are more uniformly distributed

and therefore the less populated compartment is richer

in light particles.

However, for symmetry reasons, one should expect

that the mean value h�i (and the h�ii) always vanish for

sufficiently long simulation times, so that these quan-

tities are arbitrary and do not provide relevant order

parameters. Inspection of the time behaviour of N left

confirms this picture (see figure 3(a)), which is made

more quantitative by computing the probability dis-

tribution function of � over very long runs and various

initial conditions (see figure 3(b)). At small N, �

fluctuates around 0 and its standard deviation increases

with N. As N increases, the asymmetric configurations

become stable but the system continuously jumps from

one of the possible asymmetric situations to the other,

still spending some time in between close to the

symmetric state. When N further increases, the residence

time spent in each of the asymmetric states increases and

may eventually overcome the simulation time: for

N � N�, starting from a symmetric situation, the

system quickly evolves into an asymmetric configura-

tion, in which one compartment is strongly over-

populated, and remains in this situation for all the

simulation time. For larger simulation times however

the symmetry would be restored. The situation is thus

analogous to that of a two-state system, in which the

energy barrier between two symmetric states increases

with system size. This behaviour is reminiscent of that

recently reported in [28]: in this study of a translational

symmetry breaking as the aspect ratio of the simulation

box is changed (without a separating wall), large

fluctuations have been shown to occur over a wide

region around a hydrodynamically predicted threshold

Figure 2. (a) Asymmetry parameters jh�ij and jh�iij versus number of particles for three different mass ratios and a given
simulation time, i.e. number of collisions per particle. Here, all the inelasticity parameters are taken equal:
�11 ¼ �12 ¼ �22 ¼ 0:9. The opening connecting both compartments is 40% of the total height of the simulation cell
(y0 ¼ 0:4L). (b) Asymmetry parameters versus mass ratio, at fixed number of particles N ¼ 1000 and �ij ¼ 0:9. As the mass
ratio increases the asymmetry increases for the heavy particles and decreases for the light ones. As emphasized in the text, these
figures depend on the simulation time available.

A molecular dynamics ‘Maxwell Demon’ experiment for granular mixtures 1715



value beyond which the homogeneous system becomes

unstable.

In any case, jh�ij vanishes for any N for long enough

simulations, and does not provide an acceptable order

parameter. There are then a priori two possibilities to

construct such a quantity: (a) by time averaging j�j or

(b) by extracting the most probable (say positive) value

�� of � from its probability distribution function (pdf,

see figure 3), averaged over the simulation time and over

various initial conditions. Note that this pdf, and thus

both possible definitions, are not sensitive to the length

of the simulations (except for very small simulation

times).y We compare in figure 4 these two definitions

with the previous one, jh�ij, computed again for a given

(large) simulation time. Since � fluctuates around 0 even

at small N, the hj�iji depend rather smoothly on N, and

therefore do not allow a clear definition of a critical

number of particles. On the other hand, the most

probable values ��i allow one to define a critical region,

being identically 0 at small N and taking positive values

above a certain threshold (see figure 4). When N is large

enough, the probability distribution functions of the �i
become sharply peaked around the ��i so that both

quantities ��i and hj�iji become close; moreover,

these pdfs take extremely small values in the vicinity

of �i ¼ 0: this corresponds to the fact that the system is

stuck for long times in one of its two most probable

states, so that the computation of jh�iij coincides with

that of hj�iji, or �
�
i .

yNote that similar definitions could also be used in the context

of [28] to construct order parameters.

Figure 3. (a) Number of particles of type 2 in the left compartment as a function of time (measured in number of collisions per
particle), for various values of N, and m1=m2 ¼ 3. In all cases, the horizontal lines correspond to the symmetric situation
N left ¼ Nright. (b) Probability distribution function of � for m2=m1 ¼ 3.

Figure 4. (a) Asymmetry parameters hj�iji and jh�iij versus number of particles for m1 ¼ 5m2. The inelasticity coefficients are the
same as in figure 2 (�ij ¼ 0:9). (b) Comparison of the most probable values ��i with hj�iji for the same parameters as in (a).
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4. Density profiles and pressure tensor

Instantaneous typical configurations are displayed in

figure 5 for various values of N and mass ratio m1=m2.

From the coarse grained local packing fractions �iðx; yÞ,

we define x-averaged quantities in each compartment:

�liðyÞ ¼
2

S

Z S=2

0

dx�iðx;yÞ;

�ri ðyÞ ¼
2

S

Z S

S=2

dx�iðx;yÞ; i ¼ 1;2: ð5Þ

These quantities are averaged over time for one run

between two successive ‘flips’ (see } 3), but not averaged

over various runs since the asymmetry would then be

lost. The corresponding density and temperature profiles

are shown in figure 6 for N ¼ 1000, well above the

bifurcation point. One may observe that in the asym-

metric situation, the densities are different even for

y < y0, i.e. not only where the compartments are

physically separated.

Two-dimensional plots of the coarse grained densities

�iðx; yÞ are displayed in figure 7 for two values of the

number of particles, well below and well above the

bifurcation. Below the transition, translational invar-

iance in x holds in the whole box, while above, the

densities and temperatures are almost independent of x

in each compartment, but are discontinuous at x ¼ S=2

for y > y0 because of the separating wall; at y < y0 but

close to y0 a quite sharp change is observed in the

vicinity of x ¼ S=2. At small y the x gradients are

smaller.

In the hydrodynamic study of [27], the ideal gas

form for the pressure constitutes a fundamental

hypothesis which allows for an analytic treatment;

moreover, the pressure is assumed to be isotropic.

However, anisotropic energy injection mechanisms

lead to anisotropic pressure tensors, especially near

vibrating walls [13, 30]. Knowing the density and

pressure profiles for our system, one may compute the

two components Pxx and Pyy of the pressure tensor

from a given equation of state. We consider the

generic expression derived in [13] within Enskog–

Boltzmann kinetic theory. For a homogeneous and

isotropic mixture with partial temperatures Ti, number

fractions xi and without any approximation on the

Figure 6. (a) Density and (b) temperature profiles for N ¼ 1000, m1 ¼ 2m2. The left compartment (0 < x < S=2) is denser and
colder than the right one. In the right compartment, the light particles are denser than the heavy ones. The mean packing
fraction, averaged over the whole system is �0 ¼ 0:015. The ratio �ðyÞ=�0 is also the ratio �ðyÞ=� of local density normalized by
the mean one. The separation between the two compartments is located at x ¼ S=2; 0:4 < y=L < 1.

Figure 5. Typical instantaneous snapshots. Heavy particles
(label 1) are denoted by a plus, and light particles (label 2)
by a circle. Top left: N ¼ 650, m1 ¼ 3m2; top right:
N ¼ 850, m1 ¼ 3m2; bottom left N ¼ 1000, m1 ¼ 2m2;

bottom right: N ¼ 1000, m1 ¼ 5m2.
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single particle velocity distribution, it was obtained

that

P¼
X

i

�iTi þ ��2d�1
X

i;j

xixj
mj

mi þmj
ð1þ �ijÞTi

�dij

h�di
�ij;

ð6Þ

where d denotes the space dimension, �ij ¼ ð�i þ �jÞ=2

and h�di ¼
P
i xi�

d
i . The �ij are the a priori unknown

pair distribution functions at contact; these quantities

embody the correction to the ideal gas equation of state,

and since we are considering a dilute system, it is

sufficiently accurate to assume �ij ¼ 1 (low density

limiting value). The values of Pxx and Pyy are finally

obtained by substituting Ti in (6) respectively by Tix and

Tiy (i.e. the mean square x or y components of the

particle velocities).

The results are summarized in figure 8, where we plot

Pxxðx; yÞ and Pyyðx; yÞ for N ¼ 600 and N ¼ 900. Below

the transition (N ¼ 600), the picture is similar to the one

without a separating wall, and the pressure tensor is x

independent. One therefore has @xPxx ¼ @xPyy ¼

@yPyy ¼ 0. However, for N ¼ 900 (above the transition),

the yy components are no longer equal in the left and

right sides, while the xx components are equal only for

y < y0 where the separation begins. One still observes

@xPxx ¼ @yPyy ¼ 0 in each compartment, except close to

the extremity of the separating wall (x ¼ S=2; y ¼ y0),

but for y > y0 the separating wall allows for different

values of the pressure components. Moreover @xPyy 6¼ 0

for y < y0 while for y > y0, @xPyy ¼ 0 in each compart-

ment (except close to x ¼ S=2), with a discontinuity at

Figure 8. Components of the pressure tensor Pxx (left) and Pyy (right), as given by the equation of state (equation (6)), for
N ¼ 600 (top) and N ¼ 900 (bottom). Here, m1=m2 ¼ 3 and �ij ¼ 0:9. For N ¼ 900, the right compartment (x > S=2) is more
populated, colder and at a lower pressure.

Figure 7. Averaged local density of the particles of type 2 (light component) for N ¼ 400 (left panel) and N ¼ 900 (right panel).
The separating wall is at x ¼ S=2, y > y0 ¼ 0:4L and m1 ¼ 3m2 in both cases.
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x ¼ S=2. It is worth noting that the denser compartment

is also the one where both components of the pressure

tensor are lower, since it is much ‘colder’ than the dilute

compartment.

This analysis shows that both above and below the

symmetry breaking, the (anisotropic) pressure tensor as

computed from equation (6) is divergence free:

@xPxx þ @yPyy ¼ 0. This ‘hydrostatic’ requirement fol-

lows from the condition of a vanishing flow field, and in

spite of the low mean densities considered here, would

not be fulfilled on restricting Pxx and Pyy to their ideal

parts.

5. Conclusions

For a one component granular gas enclosed in a box

made of two connected compartments, a vigorous

shaking is known to promote a symmetry breakdown

and separate the system into a cold and dense region on

the one hand, and a hot and dilute part on the other

hand (so called ‘Maxwell Demon’ experiment). In

addition, in a binary granular mixture, heavy and light

grains generically have different granular temperatures.

In this contribution, we have combined both aspects

(Maxwell Demon and mixture) to investigate the

possibility to separate the two components of the

mixture. Our molecular dynamics results show a

spontaneous symmetry breaking as the number of

particles is increased, all other parameters being kept

constant. The denser compartment then appears to be

rich in heavy particles, but this partial segregation is

such that this compartment is also richer in light

particles than the other half of the confining box

(which is however the light-rich one). It therefore

seems that such a set-up cannot achieve an efficient

segregation (although a possibility would be to isolate

the dense compartment and iterate the process with this

non-equimolar mixture).

The transition reported here is not stricto sensu a

phase transition, since the control parameter is the

system size. As a consequence, fluctuations can always

bring the system from one of the asymmetric states to

the other, as e.g. for a finite size Ising model below its

critical temperature. We have discussed the conse-

quences of this feature on the definition of a relevant

order parameter to characterize the bifurcation.

We finally note that the experimental realization of

the two-dimensional situation investigated here seems

feasible, for instance by adapting the configuration used

in [6] (friction with the walls confining the system in

a 2D slab might play a role, and has not been

considered here). The experimental signature of the

large fluctuations which invalidate hydrodynamic

approaches seems an interesting issue.
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