## **Supporting Information**

Gautreau et al. 10.1073/pnas.0811113106



**Fig. S1.** Time evolution of the number of nodes N(t) (*A*), the number of links L(t) (*B*), the average link weight  $\langle w \rangle(t)$  (*C*), and the average node strength  $\langle s \rangle(t)$  (*D*) in the US airport network from January 1990 to December 2000. Dashed lines are exponential fits.



**Fig. S2.** Distribution of the relative weights increments  $\eta = (w(t + 1) - w(t))/w(t)$ . The full line corresponds to the distribution obtained over the 11 years under study. Circles correspond to 1 month (May 1995). In the *Inset*, we show the tail of the distribution of  $\eta$ , with a power law fit  $P(\eta) \sim \eta^{-\nu}$ , giving  $\nu = 1.9 \pm 0.1$  (dashed line).



**Fig. S3.** Histogram of the number *d* of appearances and disappearances of a link. The line is an exponential fit of the form  $e^{-d/d_0}$  with  $d_0 \approx 5$  showing that most links appear/disappear less than 5 times in the 11 years period.



**Fig. 54.** Fraction  $f_a$  of appearing links in the USAN as a function of the ratio  $s_{max}/s_{min}$  of the strengths of their extremities. Circles, squares, and diamonds correspond to the data of 3 distinct years, whereas the pluses represent the data averaged over the whole 11-year time period. This figure clearly illustrates the stationarity of  $f_a$ .



**Fig. S5.** Fraction  $f_d$  (open circles) of disappearing links and  $f_a$  (pluses) of appearing links in the USAN as a function of their weight *w*. We also show the logarithmically binned reference distribution *P*(*w*) (line above the shaded area, scale on the right-hand *y* axis). Data are averaged over the whole 11-year time period.



Fig. S6. Fraction  $f_a$  (open circles) of disappearing links in the USAN as a function of the ratios  $w/s_{min}$  and  $w/s_{max}$ . We also show the logarithmically binned reference distributions  $P(w/s_{min})$  and  $P(w/s_{max})$  (line above the shaded area, scale on the right-hand y axis). Data are averaged over the whole 11-year time period.



**Fig. S7.** Model: evolution of the average degree of the network for the parameters  $\eta = 0.002$ ,  $\sigma = 0.05$ ,  $p_f = 0.1$ ,  $p_d = 0.005$ . (*Inset*) Zoom of the final part displaying small fluctuations of the average degree.



**Fig. S8.** Model: Fraction  $f_d$  (open circles) of disappearing links and  $f_a$  (pluses) of appearing links in the model as a function of the ratios  $w/s_{min}$  and  $w/s_{max}$ . We also show the logarithmically binned reference distributions  $P(w/s_{min})$  and  $P(w/s_{max})$  (line above the shaded area, scale on the right-hand y axis).