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Bootstrapping under constraint for the assessment of group behavior in human contact networks
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The increasing availability of time- and space-resolved data describing human activities and interactions gives
insights into both static and dynamic properties of human behavior. In practice, nevertheless, real-world data sets
can often be considered as only one realization of a particular event. This highlights a key issue in social network
analysis: the statistical significance of estimated properties. In this context, we focus here on the assessment
of quantitative features of specific subset of nodes in empirical networks. We present a method of statistical
resampling based on bootstrapping groups of nodes under constraints within the empirical network. The method
enables us to define acceptance intervals for various null hypotheses concerning relevant properties of the subset
of nodes under consideration in order to characterize by a statistical test its behavior as “normal” or not. We
apply this method to a high-resolution data set describing the face-to-face proximity of individuals during two
colocated scientific conferences. As a case study, we show how to probe whether colocating the two conferences
succeeded in bringing together the two corresponding groups of scientists.
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I. INTRODUCTION

High-resolution measurements of copresence and even
face-to-face interactions between individuals in different
social gatherings—such as scientific conferences, museums,
schools, or hospitals—were made possible in recent years by
the use of wearable sensors, using bluetooth, wireless, or radio
frequency identification (RFID) technology. These new data
paved the way to many empirical investigations [1–4] of human
contacts, both from the static (e.g., existence of communities,
clustering, heterogeneities in the number of contacts) and
dynamic (distribution of the durations of contacts, of the time
between contacts, or of the lifetime of groups of different sizes)
points of view.

A major issue regarding the analysis of these data sets is that
each one of them represents a single realization of a particular
event: In contrast to the study of ensembles of random
networks, it is not possible to generate multiple realizations of
the event. Associating a statistical significance to any measured
property of these data sets is thus a challenging issue. The
present work seeks to attribute statistical significance, in the
form of a statistical test and acceptance intervals, to observable
features in a network. More precisely, the features under study
will characterize a specific group of nodes within the graph,
and we discuss how to address the question whether this group
of nodes is normal as compared to other groups in the network.

Two data-driven methods have been widely used in the
general case to obtain acceptance intervals for observable
features: the jackknife and bootstrapping [5,6]. Both are based
on drawing random samples from the unique original data
recorded in an observation. Transposing the classical bootstrap
approach to the case of data represented by graphs is, however,
not straightforward. Only a few works have considered
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resampling of graphs, for instance, via the generation of
resampled versions of the empirical graph as a whole [7,8].
Classically, graph resampling methods aim at studying the
significance of the empirical graph structure and topology,
for instance, for phylogenetic trees [9] or Bayesian-induced
networks [10]. Another application concerns the significance
of community structures [11–13] in networks. Here, in contrast
with these works, we do not perform graph resampling as we
consider the whole network as a fixed input: Our aim is to use
statistical resampling techniques to design a statistical test and
acceptance intervals for observables pertaining to groups of
nodes in a given (empirical) network.

In this paper, focusing on features of groups of nodes, we
formulate a bootstrap protocol suited to complex networks.
To this aim, we focus on a specific group of nodes in the
graph, consider resampled versions of this group of interest
within the graph, and compare the studied group with its
resampled versions. A key point is that the resampled groups
have to take into account some dependencies or constraints
existing in the original group in order to constitute a relevant
bootstrap ensemble. We then choose specific group features
and compare these features in the original group and in the
resampled groups. This procedure provides a measure of the
statistical significance of the chosen features in the graph.
The developed method allows us to estimate whether a feature
deviates from a normal behavior of this feature in the bootstrap
ensemble (i.e., a null hypothesis of a statistical test for this
feature). By combining several features, it enables us to define
normal behaviors of groups of nodes in the graph and to assess
whether the specifically studied group’s behavior is normal or
anomalous and in which respect.

The paper is structured in the following way. We introduce
in Sec. II the bootstrapping of groups of nodes in complex
networks and how to use this procedure to devise statistical
tests; this part represents the methodological contribution of
this work. Then, in order to illustrate the possibilities offered
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by the proposed method for real data of complex networks,
we consider a data set describing the face-to-face interactions
of individuals collected in two colocated conferences of the
American Physical Society, involving two distinct scientific
groups: the Division of Plasma Physics Meeting and the
Gaseous Electronics Conference. We show in Sec. III how
the proposed method assesses to what extent both groups mix
together during these conferences. A conclusion is given in
Sec. IV. Details on the data set as well as on a validation
of our method on controlled benchmarks are provided in the
Appendices.

II. BOOTSTRAPPING AND STATISTICAL TEST FOR
COMPLEX NETWORKS

Our main objective is to provide statistical significance for
measured features associated to subsets of nodes (“groups”)
in networks. A standard way is to formulate a null hypothesis
for the normal behavior of a group and to perform a statistical
test to decide whether this null hypothesis has to be rejected.
In this section, we will propose in the context of weighted
networks a specific resampling method based on bootstrapping
constrained groups in the network and a way to perform
statistical tests using this bootstrapping method.

Bootstrapping [5,6] is a well-known data-driven method
that creates new random pseudosamples by using only one
empirical observation of the data. In order to adapt the boot-
strapping methodology to our goal, we propose here a specific
resampling method to draw replicates of groups with relevant
properties. The method is based on two main ingredients:
(1) to describe normal behavior, a null hypothesis is defined
that imposes constraints on the groups and we propose a
computational scheme to draw groups that correspond to
the proposed null hypothesis; (2) we build a bootstrap set
of many such constrained groups by randomly sampling
them independently and with replacement, as in classical
bootstrapping. Combining these two steps, we are then able to
propose a bootstrap test to decide whether the specific group
of interest is compatible with the proposed null hypothesis.
We detail the method in the next paragraphs.

The main advantage of using a bootstrap-inspired technique
is that it requires neither any additional information with
respect to the network itself, nor any model of the network’s
properties: It is fully data driven. Moreover, unlike other
data-driven resampling methods such as the jackknife, it is
possible to adjust the size of the drawn samples to the size of
the studied group.

However, a major and tricky issue arises when assessing
significance of some features of a specific group in a network:
Generally, neither the nodes nor the links are independent of
each other. Simple use of descriptive statistics of classical
bootstraps are not suited to deal with dependent data. A key
point of our work is to propose a protocol suited to networks
that takes into account some of the dependencies in the data.

A. Relevant observable features for groups in complex networks

Let G = (V,E) be the graph representation of the studied
complex network, with V its set of nodes and E its set of edges.

We call X0 ⊂ V the chosen subset of nodes whose behavior we
want to compare to the behavior of “normal” groups, obtained
as random bootstrap samples satisfying given constraints as
explained above. Let us call R0 ⊂ V the remaining nodes of
the network (R0 = V\X0).

We quantify X0’s “behavior” by looking at several ob-
servable features that are representative of how the group is
structured. In the context of social networks, relevant features
are, for instance, ones that quantify whether there are strong
contacts inside the group, possibly stronger than with other
nodes. For the use of the method in Sec. III, the following
observable features are used (generically referred to as Z0 in
the following), in addition to the cardinality M of the group
X0:

N0
XX: the total number of links of E between nodes of X0,

N0
RR: the total number of links of E between nodes of R0,

N0
XR: the total number of links of E connecting the two

groups of nodes,
T 0

XX: the total weight of the links of E between nodes of
X0,

T 0
RR: the total weight of the links of E between nodes of R0,

T 0
XR: the total weight of the links connecting the two groups,

and
Q0

X: the modularity computed when partitioning the nodes
of G in two groups X0 and R0.

For completeness, we recall that the modularity of a
partition of G is defined by Ref. [14]: Q = 1

2N

∑
i∈V,j∈V [Aij −

si sj

2N
]δ(ci,cj ), where A is the weighted adjacency matrix of

the graph G, si = ∑
j∈V Aij is the strength of node i, N =

1
2

∑
i∈V,j∈V Aij is the sum of all weights, and ci is the label of

the group of node i, so δ(ci,cj ) = 1 if nodes i and j are in the
same group and 0 otherwise. In the present case of a partition
in two groups, the modularity takes values between −0.5 and
0.5 and measures how well the partition separates the network
into distinct communities (a value close to 0.5 denotes two
strong communities) [15].

We thus consider overall F = 7 observables features (in
addition to the cardinality of the group). The chosen observ-
ables are not fully independent and one might question why we
consider so many. In particular, one of the most widely used
observables regarding the behavior of a group in a network
is the modularity [14], and one might argue that is enough to
consider cardinality and modularity; however, modularity is
neither a sufficient nor a unique way to discriminate among
different types of behaviors. Moreover, the studied groups
(i.e., of which one wants to know if they are normal or not)
might not necessarily form communities in the network. By
adding the six other observables that are admittedly not totally
independent from the modularity, we accept some level of
redundancy in the information we gather in order to yield a
more complete and discriminative description of groups.

Depending on the specific issue addressed and of the nature
of the complex network at hand, other observable features
could be considered as relevant to describe the behavior of a
group. We are here guided by the case study we will consider
later, consisting in networks of face-to-face contacts between
individuals (details on the data are given in the next section
and in Appendix C), but we emphasize that the proposed
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procedure of bootstrap under constraints is directly usable in
other contexts.

B. Bootstrapping protocol for statistical testing
of a group in a network

Once the F specific features Z are chosen (Z is used as a
generic notation for any one feature, while Z0 is the value taken
by this feature for the group of interest), the steps forming the
backbone of the bootstrapping procedure to test the normality
of a group in a network are as follows:

(1) First, we formulate a null hypothesis regarding what is
supposed to be a “normal” behavior of X0 in the network.
This null hypothesis is defined as a specific set of constraints
on the groups that obey this supposedly “normal” behavior.
More specifically, a relevant constraint will be that a given
feature Z takes the value Z0 for each of these groups. Let us
note f the number of features that are constrained by the null
hypothesis.

(2) Second, we create a bootstrap set of NB constrained
groups by sampling with replacement from the data groups
of nodes satisfying the constraints of the null hypothesis;
we use X as a generic notation for the bootstrap samples.
In some cases, in order to obtain enough different samples, we
will need to relax some constraints of the null hypothesis:
Such a relaxed constraint on a feature Z is then written
as Z0(1 − δ) � Z � Z0(1 + δ). The value of δ > 0 tunes
the strength of the constraint (the choice of δ is discussed
in Sec. II E). The sampling procedure, based on simulated
annealing, is described in detail in Appendix A.

(3) For large-enough NB , we estimate the distribution of
each feature for the groups in the bootstrap set. These
distributions describe in a fully data-driven way the “normal
behavior” of groups in the empirical network under the chosen
null hypothesis (i.e., under this particular set of f constraints).

(4) We select a significance level α for testing the null
hypothesis, i.e., the probability to reject the null hypothesis
even if it is true has to be less than or equal to α. α will
also be called the false alarm rate in the following. In the
literature, it is also called probability of false detection [17].
Because we are dealing with observable features Z’s that are
possibly dependent, the Bonferroni correction is employed: A
significance level α′ = α/(F − f ) is defined and used to test
the F − f individual features that are not constrained by the
null hypothesis (see Sec. II C).

(5) To decide whether we can reject the null hypothesis with
a significance level α, and how far from the null hypothesis
the group of interest is, a suitable divergence d (defined
in Sec. II C) is computed from the Z0’s and the empirical
distributions of the Z’s for the bootstraps. When d = 0, the
null hypothesis cannot be rejected with a significance level α;
when d is higher, it evaluates to what extent X0 deviates from
the bootstrap samples and from the formulated null hypothesis
and, hence, from the supposed “normal behavior.”

(6) As a final output, two indicators of the size of the
bootstrap space are computed (defined in Sec. II D) to check
whether the constraints with the relaxation factor δ remain
relevant enough for the null hypothesis to be tested, as further
discussed in Sec. II E.

C. Normalization of features, test of individual features, and
choice of the divergence d

Each observable Z is normalized into a dimensionless
quantity z known as the “Z score”: z = (Z − Z̄∗)/σ ∗

Z , where
Z̄∗ is the expected value and σ ∗

Z the standard deviation of
the observable Z in a random graph with the same weight
sequence as the empirical data. To estimate these values,
the following procedure is considered. Random graphs are
obtained by randomly reallocating the weights from the full
weight sequence (including the zero weights, corresponding
to absent links) within the ensemble of possible links (i.e.,
pairs of nodes). This randomizes the degree of the nodes as
well as their strengths (the strength is defined as the sum of
the weights of the links of a node) and the local topological
structures and only preserves the weight sequence. Z̄∗ and σ ∗

Z

are computed as the average and the standard deviation over
the ensemble of such random graphs. This normalization may
seem arbitrary, but this mode of representation is chosen for
its clarity (we can plot the results for all F = 7 observables on
the same scale) and, more importantly, it allows us to compare
the results between groups of different sizes.

For each normalized observable z, the empirical distribution
function D̂b

z is derived from the bootstrap set. As mentioned
above, a statistical test is then performed on X0 for the z’s
to decide if X0 appears as statistically far from the bootstrap
set of not. The significance level α of the test cannot be used
directly in this case, as we are in a situation of multiple tests
(the number of tests is F − f as f features are constrained by
the null hypothesis). As the tests against the various features
are not necessarily independent, the Bonferonni correction
is used: This correction states that if we test each feature
with a significance level α′ = α/(F − f ), the whole family of
tests (i.e., the combined test for all the features) holds under
a significance level α (which would be a pessimistic, higher
bound of the true false alarm rate). Hence, the null hypothesis is
rejected for a specific feature z if z0 (the actual measured value
for X0) is outside the 1 − α′ two-sided acceptance interval
for D̂b

z .
We finally define a divergence d quantifying if X0 is far

from the bootstrap set of not. For each observable feature
Z, we define dz as the minimum distance between z0 and
the 1 − α′ two-sided acceptance interval for D̂b

z . If z0 is in
the interval, dZ = 0. As this interval has the meaning of an
acceptance interval for the null hypothesis for this feature, dz

measures the deviation of the observed value Z0 for X0 from
the null hypothesis.

We then consider the sum d of the divergences dz as the
global divergence measuring to what extent we have to reject
the null hypothesis for X0: If d is larger than 0, the null
hypothesis is rejected for the group X0 with a significance
level α and the larger is d, the further away is the group X0

from the null hypothesis. If d equals 0, on the other hand, there
is no reason to reject the null hypothesis under the significance
level α.

D. Outputs of the constrained bootstrap method

In classical unconstrained bootstrap, the relevance of the
test relies on an unbiased randomness in the drawing of the
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samples [6]. In the present case, by imposing constraints
on the bootstrap samples, some randomness is lost and this
introduces possible dependencies: While the divergence d is
sufficient to summarize an unconstrained test’s outcome, we
need here to track the bias introduced by the constraints. In the
following, we propose a practical way to check the validity of
the procedure.

We consider two indicators to monitor the bias introduced
by the constraints. The first one is the standard deviation σu of
the distribution of the number of times each node is chosen in a
bootstrap sample. It measures how uniformly a node is chosen
in a bootstrap sample: the smaller is σu, the more the choice of
the nodes for the bootstrap set is uniform. The second indicator
measures if nodes in X0 are chosen more—or less—often
in the bootstrap samples than they would if there were no
constraints. To this aim, we compare the empirical distribution
of the number of nodes from X0 that are in a bootstrap
sample to the theoretical distribution that would emerge if there
were no constraints. This theoretical probability distribution
is the one of drawing k nodes from X0 after M = |X0| draws
without replacement in a set of V = |V| nodes: It is given by

the hypergeometric law P (k) = (M

k )(V −M

M−k)
(V

M) . We thus compute

the χ2 distance between the empirical distribution and the
theoretical hypergeometric distribution. In order to compare
different χ2 obtained from different bootstrap tests, each χ2

value is computed with 10 bins that contain at least five
realizations. An important point is that we do not use χ2 for a
goodness-of-fit test. We indeed expect χ2 to increase as soon as
we impose strong constraints on the bootstrap samples. Rather,
we use χ2 and σu as two control parameters of the “uniform
character” of the bootstrapping procedure, and check that they
stay reasonably small.

Overall, the final output of the proposed test is a triplet
(d,χ2,σu) that sums up the outcome of the test for X0, under
the two parameters given by the significance level α and the
relaxation factor δ for the constraints. The larger d is, the
further away the group is from the null hypothesis. The smaller
χ2 and σu, the less biased the choice of the bootstrap set.

E. Trade-off between the constraint(s) strength
and the statistical power of the test

The parameter δ tunes the “strength” of a given constraint:
The lower δ, the stronger the constraint. Consider a very strong
constraint (with a small parameter δ). In this case, the space
of possible bootstraps may be drastically reduced to the point
where the only possible bootstraps that verify the constraint
are very similar to the tested group X0. The test will then
naturally be unable to reject the null hypothesis (d = 0), even
if X0 is abnormal (i.e., the test has a low statistical power)! In
other words, consider an abnormal group X0. One can always
find a constraint (or a set of constraints) strong enough that
will classify X0 as normal. There is therefore a minimal value
of δ under which the test loses its power.

On the other hand, the point of developing a method of
bootstrapping under constraint is to test groups with highly
specific null hypotheses, and to be able to understand precisely
why a group is abnormal or not. We therefore want δ to be as

small as possible in order to have bootstraps as representative
of the null hypothesis as possible.

Hence, for each given constraint, there exists a trade-off
value δ∗ of δ that maximizes both the power and the precision
of the test. The existence of a threshold value δ∗ for δ transposes
in the existence of maximum authorized values χ2∗ and σ ∗

u .
In order to carry out the procedure outlined in this section,

we thus need to estimate δ∗, χ2∗, and σ ∗
u . A theoretical

estimation remains an open question [18]. We therefore use
a controlled graph model for different types of constraints
and different cardinality of groups and estimate in each case
the corresponding threshold values. Details and results are
exposed in Appendix B, and we will use in the following the
values of δ∗, χ2∗, and σ ∗

u obtained in this way.
To sum up the discussion, the test has three possible

outputs:
(1) d > 0,∀(χ2,σu). In this case, where d > 0, there is no

need to discuss the values of χ2 and σu. Indeed, even if χ2 >

χ2∗ and/or σu > σ ∗
u , i.e., even if the bootstraps seem too similar

to X0, X0’s behavior is still observed to differ from that of the
bootstraps: the null hypothesis is rejected.

(2) d = 0, χ2 < χ2∗, σu < σ ∗
u . The bootstrap space is large

enough, the test maintains its statistical power: The null
hypothesis is not rejected.

(3) d = 0, χ2 > χ2∗, and/or σu > σ ∗
u . In this case, we are in

the situation discussed above: The test is not powerful enough
and no conclusion can be made.

III. CASE STUDY: BOOTSTRAPPING UNDER
CONSTRAINTS FOR SPECIFIC GROUPS OF

ATTENDEES IN THE CONFERENCE

In order to illustrate our procedure, we consider a data set
describing the face-to-face proximity of individuals, collected
in Salt Lake City (SLC) in November 2011 during two colo-
cated scientific conferences lasting 5 days. These conferences
were jointly organized by the Division of Plasma Physics
(DPP) of the American Physical Society and the Gaseous
Electronics Conference (GEC) in an attempt to bring together
both groups—mainly academic researchers and engineers,
respectively. A description of the context, the data collection
procedure and the data set is provided in Appendix C. We
provide in Table I some basic statistics of the data. Note
that the sum of the total number of contacts (and the total
time of contact) within DPP and within GEC does not exactly
account for the interactions for the conference taken as a whole
(ALL), due to the interactions between DPP and GEC. We will
consider here the aggregated network of face-to-face proximity

TABLE I. Basic statistics concerning the data sets collected in the
colocated scientific conferences.

SLC

GEC DPP ALL

No. of tags 39 281 320
Sample rate 12% 16% 15%
No. of days 5
No. of contacts 1189 21 519 23 920
Total time of contact (hours) 18 306 339
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between individuals, in which each node represents an indi-
vidual and where the weight of a link between two individuals
gives the cumulated time they have spent in face-to-face
interaction during the conference. Moreover, we preprocess
the obtained contact network by deleting links between nodes
that correspond to an aggregated contact time of the two
corresponding individuals smaller than 1 min over the whole
conference. The threshold of 1 min is chosen because smaller
contact times can be considered as noise in the measurement,
associated to very short contacts. We have checked that our
results are robust with respect to the filtering threshold: similar
results are obtained when thresholding at 3 and 5 min.

The original question of interest for the organizers of the
SLC conferences is whether colocating both conferences was
worthwhile, i.e., whether the GEC and DPP groups mixed
together. In order to give a quantitative answer to the question,
one needs to compare the amount of interactions between GEC
and DPP to some reference. To this aim, the proposed bootstrap
method is a natural candidate.

A. Choosing the groups and the null hypotheses

The F = 7 chosen observable features that characterize
a group’s “behavior” include features measured within the
group (NXX and TXX), features measured within the rest of the
network (NRR and TRR), and features measuring the interaction
between the group and the rest of the network (NXR , TXR ,
and QX). The terminology “group’s behavior” is used for
simplicity, but the chosen features quantify also the behavior
of the group’s complementary as well as the interaction of
the group with the rest of the network. Quantifying, for
instance, “GEC’s behavior” represents therefore a possible
measurement of the mixing between both groups, as the
DPP individuals correspond precisely to the “rest” of the
network. The method previously exposed is a means not only
to quantify but also to validate statistically the normality—or
abnormality—of GEC’s behavior with respect to various null
hypotheses. We thus use this method for the group of GEC
individuals, taken as the specific subset of interest X0 in the
face-to-face contact network between the attendees of the SLC
conference. All the statistical tests reported afterwards are done
under a significance level α = 5%.

It is difficult to decide on only one specific null hypothesis
that should describe the expected behavior of a given group
during the conference. There are few models for the dynamics
of face-to-face contacts (e.g., Refs. [19–21]), and none have
been designed to account for all the possible features of groups
in a social network, so we cannot simply compare the results
of such models with our data. The proposed bootstrap method
allows here for an interesting approach: Instead of deciding

on an arbitrary null hypothesis, we can test the behavior of
the GEC group against various null hypotheses that can be
formulated. The objective of the study is not merely in knowing
if the GEC group differed from other groups in the conference
but in knowing in which respect GEC differs (or not) from
other groups in a statistically significant manner.

The different null hypotheses on which we will use the
bootstrap statistical tests are taken as constraints on the amount
of interaction involving nodes of X. We will consider several
different null hypotheses or sets of constraints: In each case,
the null hypothesis can be phrased as “X0 has a behavior
compatible with a random group X of nodes satisfying the
chosen set of constraints.” The considered sets of constraints
defining these null hypotheses are as follows:

(i) The size of the group is fixed, equal to the one of X0;
this constraint is always active, so there is no effect due to the
variation of the size of the group. As there are no constraints
on the chosen features, f = 0.

(ii) The modularity of the partition of the network between
the group and its complement is equal to the one of the partition
(X0,V\X0), up to a relaxing factor δ. Note that here f = 1 to
compute α′ = α/(F − f ).

(iii) Constraints are put on NXX or TXX, imposing that they
take the same values as respectively NX0X0 or TX0X0 (still
in addition to the cardinality constraint). These constraints
correspond to ways of imposing a certain number of links or
a certain amount of interaction within the group. Here again,
f = 1.

Moreover, it is possible that all groups with a community
behavior (as given quantitatively by the seven features) could
appear as abnormal. We thus investigate the case of three other
specific groups of individuals that might a priori present a
community behavior: the students from DPP, i.e., attendants
preparing a Ph.D. thesis (STP); the juniors from DPP, i.e.,
researchers with fewer than 10 years of professional experience
(JUP); and the seniors from DPP, i.e., researchers with more
than 10 years of experience (SEP). Table II summarizes the
measured features for the GEC, STP, JUP, and SEP. One could
expect each of these groups to form a community in the contact
network because of the similarities of their members in age and
professional status. When partitioning the network into one
of these groups and its complement, the modularity presents
indeed a high-enough value. It is therefore sound to compare
the tests’ outputs for GEC and for these other groups: if their
behavior is similar, it could be argued that the subgroup GEC
simply behaves as if it were a subgroup of interest of DPP, and
the conclusion would be that the colocation of the conference
was an efficient way to bring together GEC and DPP. If
instead GEC is significantly more abnormal than the three
other groups, one may doubt the efficiency of the colocation.

TABLE II. The cardinality and the other seven features of the four groups under study. The temporal quantities TXX , TXR , and TRR are
given in seconds.

Group Cardinality NXX NXR NRR TXX TXR TRR QX

GEC 39 101 120 1907 58 820 45 740 947 100 0.100
STP 106 384 850 894 252 900 356 220 442 540 0.145
JUP 73 183 766 1179 97 600 303 800 650 260 0.073
SEP 99 226 704 1198 124 280 310 740 616 640 0.095
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FIG. 1. (Color online) Outputs σu and χ 2 of the bootstrap method for X0 = GEC for (a) test with the same cardinality constraint (further
detailed in Appendix D), (b) test with the constraints of same cardinality and same modularity (with δ = 15%). Left: Histogram of the number
of occurrences of each node in the bootstrap samples and its standard deviation σu. Right: Histogram of the number of X0 nodes in a bootstrap
sample with its χ 2 distance from the theoretical hypergeometric histogram (dotted line).

Our approach is therefore to test those four groups (i.e., the
group noted X0 in the method will alternatively be GEC, STP,
JUP, or SEP) against the same null hypotheses and to compare
the degree with which the null hypotheses are rejected for each
group.

B. Results

We first consider the simple cardinality constraint. More
precisely, we test if GEC behaves like any random group of
M = 39 individuals in the conference. As could be expected,
the corresponding null hypothesis is rejected, which does not
come as a surprise given the quite large value of QX. In fact,
the null hypothesis is as well rejected for the three other groups
(SEP, JUP, STP), which means that this simple constraint does
not allow us to assert if GEC behaves differently from these
other groups. Details on the procedure and its outcome are
provided in Appendix D.

In order to better discriminate GEC’s behavior from the
behavior of other groups, we therefore turn to more refined
null hypotheses, i.e., with stronger constraints on the bootstrap
samples. As discussed in Sec. II E and Appendix B 3, the
parameter δ is set to the threshold value δ∗, corresponding
to the type of constraint considered (see Table IV). The first
refined null hypothesis that we consider accounts for the high
modularity of X0: Does X0 behave like any random group
of nodes of same cardinality and modularity as X0 (hence,
forming a community as strong as X0)? This latter constraint
on modularity is relaxed with δ∗ = 15%, according to the
simulations of Appendix B 3. Figure 1 displays, in Fig. 1(a)
for the simple cardinality constraint and in Fig. 1(b) for the
present case, the two histograms showing what the outputs
σu and χ2 aim at quantifying. In each case, the histogram
on the left-hand side shows the number of times each node is
chosen in the bootstrap set: the standard deviation σu quantifies
whether the choice is uniformly random. On the right-hand
side, the distribution of the number of nodes of X0 (GEC)
chosen in each bootstrap sample is displayed: the χ2 value
measures the distance between the theoretical hypergeometric
distribution and the actual one. Figure 1(b) shows the two same
histograms as in Fig. 1(a) but for the bootstrap samples under
this new constraint (for X0 = GEC). As expected, higher σu

and χ2 are obtained in Fig. 1(b), yet not too large and lower

than the maximal values for this cardinality (see Table IV-b)
σ ∗

u = 60 and χ2∗ = 950. The final outputs and results for the
four studied groups are summarized in Fig. 2. First, we see
that the acceptance intervals are not centered around zero;
they indeed need to be in accordance with a high modularity
(typically: high NXX, TXX, and low NXR and TXR). JUP’s
divergence is null, while the divergences for STP and SEP
are more then 10 times smaller than GEC’s. This shows that
GEC’s behavior is peculiar with respect to the other groups
considered, under the proposed null hypothesis.

Other null hypotheses, implying other constraints are
considered: imposing NXX = NX0X0 or TXX = TX0X0 . These
constraints are ways to impose the amount of interactions in-
volving nodes of each group, respectively, in terms of numbers
of contacts or of the cumulated duration of contacts inside the
group. Each constraint is implemented in a relaxed way, with
the corresponding δ∗ of Table IV-b. Results are summarized
in Table III for these two other constraints (combined in each
case with the cardinality constraint). All outputs correspond
to the type of output number 1 [d > 0,∀(χ2,σu)] or number 2
(d = 0,χ2 < χ2∗,σu < σ ∗

u ) discussed in Sec. II E. The result
is that the divergence from the bootstrap samples is always
much larger for GEC than for the other groups.

Even though the modularity constraint is the most suc-
cessful in discriminating GEC from the three other groups,
the other tests show corroborative evidence of GEC’s peculiar
behavior. The outputs of all the different tests are consistent,
and they show not only that GEC behaves in a peculiar
fashion but also in what ways GEC behaves differently.
For instance, under the constraint of fixed modularity, the
acceptance intervals for GEC show that it has particularly high
NXX,NRR,TRR while having very low NXR,TXR and slightly
low TXX features as compared to random groups of nodes
with the same modularity: the precise reasons for the rejection
of the null hypothesis are highlighted thanks to the proposed
methodology.

IV. CONCLUSION

We have proposed in this work a generic method to compare
the behavior of specific groups of nodes within a given
weighted complex network. The method is inherently flexible:
Depending on the issue addressed in the data at hand, some
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FIG. 2. Results of the test with the constraints of fixed cardinality and fixed modularity (with δ = 15%) for the four groups: GEC (top left),
STP (top right), JUP (bottom left), and SEP (bottom right). For each z, the two-sided acceptance interval with 1 − α′ significance level is in
black and the value z0 is shown as a black star. Here α = 5%, i.e., α′ = α

F−f
= 0.05

6 = 0.8%. For each group X0 = GEC, STP, JUP, and SEP,
the scalar d (bottom right hand corner of each figure) is the total divergence between the acceptance interval of the bootstrap samples and the
real data. χ 2 and σu are the two control parameters of the size of the bootstrap space.

observables and null hypotheses will be more appropriate than
others. We show via the construction of a controlled model
that our method is robust with respect to random fluctuations
of behavior and that it is able to detect abnormal ones with
statistical significance. We have shown on a new data set of
time-resolved face-to-face human contacts collected during
two colocated conferences that the group formed by the
participants to the smaller conference could be considered as
abnormal in a statistically significant way. It had fewer contact
numbers and interaction durations with people from the other
conference, even when accounting for its organization as a
group of high modularity. Another finding was that the mixing
was better in spaces that were shared by the two conferences.

More generally, the method we have proposed for boot-
strapping and statistical test in complex networks can be used
in a broader context: It can be applied to any type of data that
can be modelled by graphs. Future work includes applying
this method for data collected at various times of the day.
Another development would be to propose null hypotheses
that directly involve the dynamic behavior of groups and not
only their aggregated behavior over time.
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APPENDIX A: SAMPLING METHOD TO CREATE
CONSTRAINED BOOTSTRAPS

A key technical point is that the sampling method should
allow us to draw sets of nodes that satisfy the chosen
constraints. The simplest of the constraints is the cardinality
constraint that sets the size of the group under study. In this
case, the cardinality of all bootstrapped groups is simply set to
match X0’s so there is no discrepancy in the features because
of different sizes of the groups X. This constraint is trivially
achieved: for each bootstrap sample, we randomly draw nodes
from the network (without replacement) until the size of the
bootstrapped group reaches X0’s size.

TABLE III. Summarized results for various sets of constraints. Each entry of the table gives the corresponding triplet (d,χ2,σu).

Null hypothesis GEC STP JUP SEP

No constraint (only cardinality) (41, 5, 11) (15, 3, 15) (3, 13, 14) (9, 13, 15)
QX constraint with δ = 15% (24, 306, 40) (1, 52, 27) (0, 13, 23) (2, 19, 22)
NXX constraint with δ = 5% (69, 1960, 94) (15, 287, 97) (4, 110, 68) (21, 13, 23)
TXX constraint with δ = 5% (40, 277, 59) (7, 728, 121) (0, 7, 52) (15, 12, 30)
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Other null hypotheses lead us to impose stronger constraints
by requiring f observables to be the same in X as in X0. For
example, a possible constraint is to have the “same NXX,” in
which we impose in addition that each bootstrap sample has
the same number of internal links than X0. As mentioned in the
main text, each constraint on a feature Z can be implemented
sharply or with a relaxation factor δ, so the constrained feature
satisfies Z0(1 − δ) � Z � Z0(1 + δ).

Technically, a simulated annealing algorithm [23] is em-
ployed as follows in order to draw each bootstrap sample so
it satisfies the constraints. Let us start with a random set of
nodes X, with the same cardinality as X0. The cost C of X is
defined as the absolute difference between the value of Z in
the current group and Z0. An auxiliary “temperature” T is set
to start at a given value (here T = 0.5). At each step of the
simulated annealing procedure, we keep some of the nodes of
the current group X and change the rest (more precisely, we
attempt to change min(M × |r| × T ,M) nodes out of the M

nodes of the group, where r is a normally distributed random
variable of mean 0 and variance 1). If the cost C ′ of the new
group is lower than C, we accept the change. If instead C ′ > C,
we accept the change with probability p = min[exp(C−C ′

T
),1].

When the cost does not decrease during several attempts, we
lower the auxiliary temperature (T ← 0.85T ) and start the
whole process again. We stop the algorithm as soon as X

satisfies the constraint [as soon as C = 0 for a sharp constraint
or when Z is between Z0(1 − δ) and Z0(1 + δ) for a relaxed
constraint].

This process is repeated NB times to obtain the whole
bootstrap set.

APPENDIX B: CONTROLLED STUDY ON WEIGHTED
RANDOM GRAPHS

We perform here a validation of our methodology and the
tuning of the parameters using controlled graphs. We first
present the procedure used to generate weighted Chung-Lu
graphs in which we control the degree sequence as well as
the correlations between degrees and weights. We then use
such graphs to check whether the statistical test described in
Sec. II has the expected false alarm rate α. Then we empirically
estimate δ∗, χ2∗, and σ ∗

u for different types of constraints and
different cardinality of groups on this controlled model.

1. Weighted Chung-Lu graphs

A Chung-Lu graph [24,25] is a random graph with a given
expected degree sequence (ki)i=1,...,V . In such a graph, the
probability that a given edge (connecting nodes i and j )
exists is given by min(1,kikj /2W ), where W = 1

2

∑
i ki is

the expected total number of edges.
As we are here interested in weighted networks, we

introduce a weighted version of this model that takes into
account the fact that, in many real networks, weights and
topology are not independent [26]. This is in particular the
case in the networks of face-to-face contacts considered in
Appendix C and Sec. III, as illustrated in Fig. 3. Note that,
depending on the data at hand, other models could be used to
estimate δ∗, χ2∗, and σ ∗

u . In our case of weighted networks
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>
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SLC

w. Chung−Lu

FIG. 3. (Color online) Average strength versus degree of nodes
in three different scientific conferences (described in Appendix C 2).
The squares represent the same quantity for a weighted Chung-Lu
graph generated from the empirical distributions of the SLC contact
network.

with dependencies between weights and topology, we propose
the following variation to the classical Chung-Lu model.

We first compute the empirical distribution Pk(w) of the
weights of the links attached to nodes of degree k from the
real data of Appendix C for each degree k. We then create a
Chung-Lu graph with the same expected degree sequence as
the real data. For each node i (of degree ki) of this Chung-
Lu graph, we draw weights from the appropriate distribution
Pki

(w) and randomly allocate them to the links i − j whose
weights have not yet been specified (if i is linked to a node �

that has already been considered in the procedure, the weight
of link i − � has already been chosen by using Pk�

and it
does not need to be computed again). In this way, the weight
sequence will be similar to the empirical graph’s, if not exactly
the same. We thereby obtain a weighted Chung-Lu graph with
the same expected degree sequence, the same strength-degree
correlation and a similar weight sequence as the empirical
graph of Appendix C. Figure 3 shows that the strength-degree
correlation of such a weighted Chung-Lu graph is indeed in
agreement with the empirical data. Each Chung-Lu graph we
generate can be seen as a topologically randomized version of
the graph of contacts.

Note that this randomization concerns the whole graph and
is in no way related to the one proposed for the bootstrap
samples. Hence, there is no impediment to use these weighted
Chung-Lu graphs as a controlled input for validating the
statistical test discussed in Sec. II.

2. Validation of the bootstrap test

A Monte-Carlo approach is used to validate the proposed
method in the case of weighted Chung-Lu graphs. The
goal is here to check the false alarm rate (rate at which
normal groups are rejected) of the test. For this purpose, we
generate 1000 instances of weighted Chung-Lu graphs. The
null hypothesis selected is “having the same modularity and the
same cardinality” as X0 as it is one of the most representative
hypothesis to assess a group’s behavior with respect to human
social contacts. The described method is applied to 1000
random subgroups (one in each of the 1000 generated weighted
Chung-Lu graphs), with different significance levels α (from
1% to 10%) and relaxation factors δ for the modularity
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FIG. 4. Ratio of the obtained false alarm rate (probability of
rejecting the null hypothesis when it is true) divided by the maximum
(pessimistic) significance level α of the test, in the case of the
weighted Chung-Lu model, for the null hypothesis: “same cardinality
and same modularity.” The prescribed significance level α acts as
expected by the Bonferroni correction as a pessimistic bound to the
true false alarm rate (hence, the ratio is always lower than 1). The
results are displayed as function of α and δ. It shows that the larger
the α, the less tight the bound. When δ increases, the obtained false
alarm rate becomes closer to α.

constraint (from 0.03 to 1.0, with an additional case δ = ∞
that corresponds to no constraint on modularity). In general,
a random group in a weighted Chung-Lu graph should be
classified as normal and should not be rejected by the test.
This is what we verify here. Figure 4 shows the false alarm
rate (i.e., the frequency of rejection of the null hypothesis)
that is obtained in these simulations divided by the prescribed
significance level α. For the test to be sound, this value has to
always be bounded by 1. This is indeed the case. Moreover,
the value is often much lower than 1 (between 0.3 and 0.6).
This is a sign that the Bonferonni correction is pessimistic; it
conducts us to reject more often the null hypothesis than we
should when the group under study is drawn according to the
null hypothesis. This is not an actual problem in the study as
we are more interested in being certain that a group that is not
rejected is indeed normal—and this is the case.

3. Controlling the size of the bootstrap space
and the power of the test

In order to derive thresholds δ∗ and maximal values χ2∗ and
σ ∗

u for each given constraint, we take a different perspective
and use a notion of rarity: When a value is in the bulk
of a distribution it is considered as common enough and
when it is in the extreme tails, it is considered as too rare.
To illustrate the argumentation, we focus on the constraint
“same cardinality and same modularity,” where the strength
of the “same modularity” constraint is tuned by δ. Once more,
we consider 1000 weighted Chung-Lu graphs (computed
with the empirical distributions of the data of Appendix C)
and, within each Chung-Lu graph, 10 000 random groups of
cardinal M = 39 (one of the group sizes studied later). Figure 5
shows the histogram of the modularity for the partition of
the graph in such a group and its complementary. Typical
groups give a small modularity, the mode of the histogram
being between −0.03 and 0.03. We define as rare groups those
whose modularity are in the extreme tails of the distribution:
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FIG. 5. (Color online) Histogram of the modularity of a subgraph
of 39 nodes in a weighted Chung-Lu graph.

either larger than its 106 upper quantile or smaller than its
106 lower quantile (these quantiles are reasonably estimated
as we have 107 samples in the distribution). The choice of
these particular quantiles is somehow arbitrary but it can be
easily changed for the following study and does not influence
the general approach. This gives us two modularity boundaries,
Q∗

l = −0.050 and Q∗
u = 0.076, that separate common-enough

groups (having modularities in the bulk of the distribution)
from rare groups.

We take the point of view that the test should indicate
that the null hypothesis is true for all common groups (output
number 2 in the list of Sec. II E). Indeed, weighted Chung-
Lu graphs are random and random groups in these graphs
have in general no reason to be abnormal. Now, consider a
group X0 with modularity around −0.005 (the peak of the
distribution). For a given δ, the simulated annealing procedure
will draw bootstraps from this distribution: there is a high
chance that the bootstrap set’s modularities end up close to
−0.005. Hence, X0 is compared to very similar groups even for
high δ: The test will always output d = 0,χ2 < χ2∗,σu < σ ∗

u

(apart maybe for extremely small δ). But as one approaches
the modularity boundaries Q∗, the test will start to misclassify
X0 as abnormal for a large-enough δ. Indeed, consider a group
with a modularity close to or equal to one of the boundaries (for
instance Q∗

u). For a too-large δ, the bootstrap set’s modularities
will still tend towards the small modularities that have a higher
chance to be picked, and the test will be rejected. If we want
all common groups with high modularity to be classified as
normal, we need to have a small-enough δ: This defines a
first bound δu for δ: δ < δu. The same argumentation holds
for common groups with low modularity (close to Q∗

l ), giving
another bound δl for δ: δ < δl . Overall, we thus obtain an upper
bound for δ∗: min(δl,δu). In order to decide where in the range
[0,min(δl,δu)] we should choose δ∗, the trade-off discussion
of Sec. II E between precision of the null hypothesis and the
power of the test still holds. We give priority to the power of
the test and choose the maximum possible value of δ, equal
to the upper bound: δ∗ = min(δl,δu). In practice, as shown in
Table IV, δ∗ is between 5% and 15%: the null hypotheses are
still reasonably precise.

Figure 6 shows the false alarm rate obtained in simulations
for weighted Chung-Lu graphs as a function of δ for groups
of 39 nodes of varying modularities (both common and rare).
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TABLE IV. (a) (δ∗,σ ∗
u ,χ 2∗) for different constraints and cardinalities. (δ∗,σ ∗

u ,χ 2∗) for the QX constraint and M = 39 are read from Figs. 6
and 7 as explained in the text. Figures used to obtain the values for other constraints and other cardinalities are not shown. (b) For each
constraint, we decide to keep a unique δ∗: the minimum of the four δ∗ (one for each cardinality). We show here the corresponding (σ ∗

u ,χ 2∗) for
all cardinalities.

Null hypothesis M = 39 M = 73 M = 99 M = 106

(a)
QX constraint (0.15,950,60) (0.15,110,45) (0.15,40,35) (0.15,40,30)
NXX constraint (0.15,3500,85) (0.05,2700,115) (0.05,2600,125) (0.05,2200,125)
TXX constraint (0.15,3600,80) (0.1,2200,100) (0.05,3700,135) (0.05,2700,135)

(b)
QX constraint with δ∗ = 0.15 (950,60) (110,45) (40,35) (40,30)
NXX constraint with δ∗ = 0.05 (5200,95) (2700,115) (2600,125) (2200,125)
TXX constraint with δ∗ = 0.05 (4300,90) (3700,120) (3700,135) (2700,135)

As expected, for very common groups (like groups with Q =
0.02), the false alarm rate is constant with respect to δ. On the
contrary, the more we consider groups close to the boundaries
Q∗

l and Q∗
u, the faster the rate increases with δ. The simulations

were conducted on 100 different Chung-Lu graphs. To keep
the false alarm rate under the expected significance level α

(here equal to 5%) for all common groups, a maximum value
δ∗ for δ is obtained from this figure. For the lower quantile Q∗

l

one reads δl = 0.15 and for the upper quantile Q∗
u we obtain

δu = 0.20. The general bound for the modularity constraint
for groups of 39 nodes is then δ∗ = min(δl,δu) = 0.15. In fact,
if one chooses δ < δ∗, all normal common groups will be
correctly classified (with a tolerance of α = 5%).

The next step is to find thresholds in the acceptable values
for σu and χ2. On Fig. 7, these indicators are displayed as a
function of δ for groups of 39 nodes of varying modularities.
As expected, χ2 and σu increase monotonically with the rarity
of the considered groups (for a fixed value of δ). As we argued
that the test is designed to classify all common groups as
normal if one uses δ = δ∗, the maximum values σ ∗

u and χ2∗
that have to be tolerated for σu and χ2 are read from the
curves as the maximum expected values for these common
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FIG. 6. (Color online) False alarm rate as function of δ for groups
of 39 nodes of varying modularities (describing the rarity of the
groups) in weighted Chung-Lu graphs. Groups with modularity Q

outside the interval ([Q∗
l = −0.05,Q∗

u = 0.076]) are rare, and the
others are considered common enough. To keep the false alarm
rate under the expected significance level α (here equal to 5% and
represented by the horizontal dashed line) for all common groups,
maximum values δ∗

l = 0.15 and δ∗
u = 0.20 are read on the plot. This

in turn gives a general threshold δ∗ = min(δ∗
l ,δ

∗
u) = 0.15.

groups (we use the quantile at 95% to fix a reasonable max-
imum value). One reads the approximate values χ2∗(δ∗; Q =
Q∗

l ) = 950, σ ∗
u (δ∗; Q = Q∗

l ) = 60 and χ2∗(δ∗; Q = Q∗
u) =

250, σ ∗
u (δ∗; Q = Q∗

u) = 30. The general thresholds are
therefore χ2∗ = max[χ2∗(δ∗; Q = Q∗

l ),χ2∗(δ∗; Q = Q∗
u)] =

950 and σ ∗
u = max[σ ∗

u (δ∗; Q = Q∗
l ),σ ∗

u (δ∗; Q = Q∗
u)] = 60.

The final conclusion of this validation procedure is that,
once one has decided upon α, a type of constraint, the
cardinality of groups of interest, and a criterion to decide
what common enough (i.e., not too rare) means for groups,
it is possible to quantify the bootstrap approach presented here
and to propose a value δ∗ and thresholds σ ∗

u and χ2∗. We show
(δ∗,σ ∗

u ,χ2∗) for all the different constraints and all the different
cardinalities used in Sec. III in Table IV(a). In Appendix C
and Sec. III, we will compare the output of the test for four
different groups with different null hypotheses. To be able to
compare properly, we will use a unique value of δ∗ for each
null hypothesis. Therefore, of the four δ∗ proposed (one for
each cardinality), we keep the minimum one and obtain the
equivalent σ ∗

u and χ2∗ for each cardinality. We sum up these
values in Table IV(b).

For the study presented in this paper, we have therefore used
these values of δ∗, χ2∗, and σ ∗

u obtained with the weighted
Chung-Lu graphs used as surrogates of social networks.

APPENDIX C: PRESENTATION OF THE DATA SET OF
TWO COLOCATED CONFERENCES

1. Data and preprocessing

The data were collected in Salt Lake City (SLC) in
November 2011 during two colocated scientific conferences
lasting 5 days, using the SocioPatterns sensing infrastruc-
ture [1,22] to measure face-to-face proximity of individuals.
The conferences were jointly organized by the DPP of the
American Physical Society and the GEC. Figure 8 shows the
map of the conference venue in Salt Lake City.

Of the 2081 participants of the conference, 320 agreed to
participate in our study: 281 from DPP and 39 from GEC.
The participation was on a voluntary basis so there was no
specific sampling scheme. The face-to-face proximity of the
participants was measured using the SocioPatterns sensing
infrastructure [1,22] based on unobstrusive active RFID tags
that can be embedded in conference badges. Two tags exchange
radio packets only if the individuals wearing them face each
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FIG. 7. (Color online) χ 2 (a) and σu (b) as a function of δ for groups of varying modularities (describing the rarity of the groups) in weighted
Chung-Lu graphs. As the test is designed to be valid for all common-enough groups (i.e., with modularity Q ∈ [Q∗

l = −0.05,Q∗
u = 0.076]),

if one uses δ∗ = 0.15, the maximum values σ ∗
u and χ 2∗ that should be accepted for σu and χ 2 are read from the curves. This procedure gives

roughly χ 2∗ = 950 and σ ∗
u = 60.

other (the human body acts as a shield at the frequency and
power of the radio packets) within a distance of 1 to 1.5 m.
The detected proximity relations are reported by the tags to
RFID readers installed in the environment. At the end of the
conference, the raw data consists of a log of all the recorded
contacts. The log is a sequence of lines (t,r,i,j ), where t is
the time at which reader r received the information that the
individuals wearing tags i and j were in close face-to-face

proximity (“in contact”). Given the operating parameters of the
tags, proximity of two individuals wearing the RFID badges
can be assessed with a probability in excess of 99% over
an interval of 20 s [1], which is a fine-enough time scale to
resolve human mobility and proximity at social gatherings. We
therefore aggregate the raw data over time windows of 20 s: We
partition the five days of data gathering into 20-s periods, and
we associate to each of these periods t the adjacency matrix

FIG. 8. (Color online) General map of the conference venue with the three different general areas. Each black circle corresponds to 1 of
the 25 RFID readers used to measure the social interactions. The GEC area is isolated: It is 500 m away from the Poster Hall.
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TABLE V. Basic statistics concerning the data sets collected in
three different scientific conferences.

SLC

HTT09 SFHH GEC DPP ALL

No. of tags 113 418 39 281 320
Sample rate 75% 33% 12% 16% 15%
No. of days 2 2 5
No. of contacts 9582 27 434 1189 21 519 23 920
Total time of contact (hours) 102 414 18 306 339

At representing the aggregated graph over the 20 s: At
ij = 1 if

and only if vertices i and j have exchanged at least one radio
packet during the time window t , otherwise At

ij = 0.
Overall, the data define a temporal contact network in which

nodes represent individuals, and a link between two nodes at
time t denotes the fact that the corresponding individuals are in
face-to-face proximity. The temporal network can moreover be
aggregated over the total duration of the conference, defining
a weighted contact network where each node is an individual
and where the weight of a link between two individuals gives

the cumulated time they have spent in face-to-face interaction
during the conference.

2. Distributions of contact durations

We first compare briefly the gathered data with other data
sets collected in similar contexts using the same infrastructure.
We define a contact between two tags i and j as an unbroken
subsequence of 1’s within the sequence {At

ij }. Its duration is
the length of this subsequence. Table V presents basic statistics
of the present data, together with the ones collected during the
2009 ACM HyperText conference (HT09) [27] and during
a congress of the Société Française d’Hygiène Hospitalière
(SFHH) [1]. Note that the sum of the total number of contacts
(and the total time of contact) within DPP and within GEC
does not exactly account for the interactions for the conference
taken as a whole (ALL), due to the interactions between DPP
and GEC. The SLC data contain a relatively small number of
contacts, in comparison with the other conferences, taking into
account the number of participants and the duration: this is due
to the small sampling rate of the total population of the SLC
conferences. Figure 9, however, shows that various statistical

FIG. 9. (Color online) (a) Comparison of the distribution of the durations of contacts for three different data sets. (b) Distribution of the
duration of intercontact times. An intercontact interval is defined as the interval, for each node, between the starting times of two successive
contacts. (c) Distribution of the degrees in the aggregated network of the three conferences. The degree of a participant corresponds to the total
number of participants with whom she or he has been in contact during the conference. (d) Distribution of link weights. The weight of a link
between two nodes gives the total time in contact of the corresponding participants.
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FIG. 10. (Color online) Cumulative distributions of the durations
of contacts within the DPP conference, within the GEC conference,
and between both conferences of the SLC data set.

properties of the contact networks, such as the distribution
of the duration of contacts, the distribution of degrees, of the
intercontact times or of the weights of the links, are, however,
very similar in the three contexts. This confirms the robustness
of the main statistical properties of the networks of face-to-
face contacts between individuals observed in previous works
[2,3,27].

In the present data set, we can distinguish three categories of
contacts: within DPP, within GEC, and between both groups.
Figure 10 shows that even though the number of contacts is
much larger within DPP than within GEC (see Table V), the
corresponding duration distributions collapse remarkably well
upon one another. Hence, we do not observe any difference
in the statistical behavior of the three categories of contacts.
Let us also note that we are not interested here in modeling
these distributions (for instance, by power law or log-normal
functional forms), as the method we will use is data driven. It
is, however, of interest to remark that the broad shape of the
distributions implies that parametric statistical methods would
be hard to implement and that data-driven statistical methods
are expected to be more adequate.

3. Distributions of the durations of contacts taking
place in different areas

The conference venue is spatially heterogeneous, with in
particular three broadly defined areas: the GEC Area where
the GEC registration and coffee breaks took place; the Poster
Hall, where the poster sessions of both conferences took place;
and the Rest, which includes the DPP registration desk, two
coffee break areas, and corridors linking different parts of

the building. The GEC Area was situated 500 meters from
the Poster Hall (maps are shown in Fig. 8). It therefore took
time and energy to walk from one area to another, which
was an obstacle to interactions between both groups. As the
measuring infrastructure allows us to identify the area in which
each reported contact took place, it is interesting to investigate
if differences exist between the three types of contacts defined
above when the spatial information is taken into account.

To this aim, we show in Fig. 11 the histograms of contact
durations broken down by category of contact and area. For
the DPP contacts (left panel), the distributions measured in
the various areas have similar shapes, and the differences
come from the overall number of contacts measured in each
area (as members of the DPP did not go much to the GEC
area). On the other hand, for the contacts between both groups
(middle panel) and for the GEC contacts (right panel), different
slopes are observed depending on the area of interest. Broader
distributions are obtained in the Poster Hall, in particular for
the contacts between GEC and DPP attendees: The Poster
Hall was therefore a more favorable setting for long cross-
group contacts. This leads us to a somehow obvious remark:
Organizing activities in common physical spaces favors the
mixing between two groups.

APPENDIX D: COLOCATED CONFERENCES CASE
STUDY: CARDINALITY CONSTRAINT

We describe here the results of the test using only the car-
dinality constraint to test if the GEC group behaves normally.
We thus consider the following simple null hypothesis: GEC
behaves like any random group of M = 39 individuals in the
conference. For this first null hypothesis, the only constraint
we impose to the bootstrap samples is therefore to have a
cardinality equal to M .

Applying the protocol described in Sec. II B, we first pick
randomly with replacement NB = 1000 bootstraps samples of
39 nodes. For each sample, we compute the seven associated
observables and normalize them as proposed in Sec. II C. For
each observable Z, the empirical distribution function D̂b

z are
computed from the bootstrap samples: The 1 − α′ two-sided
acceptance interval for D̂b

z defines what we call the “normal
behavior” of a group under this constraint. We then obtain
the divergences dz for each feature and, finally, the triplet
(d,χ2,σu).

The top left plot of Fig. 12 summarizes the output of this test
for GEC: For each feature, the two-sided acceptance interval
with 1 − α′ significance level is shown by a black line (its
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FIG. 11. (Color online) Cumulative histograms of the durations of contacts in the three different areas within the SLC conference. Results
for (left) contacts within the DPP members, (middle) contacts between both conferences, and (right) contacts within the GEC members.
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FIG. 12. Results of the test with same cardinality constraint for the four groups: GEC (top left), STP (top right), JUP (bottom left), and SEP
(bottom right). For each z, the two-sided acceptance interval with 1 − α′ significance level are in black and the value z0 is the black star. Here,
α = 5%, i.e., α′ = α

F−f
= 0.05

7 = 0.7%. For each group X0 = GEC, STP, JUP, and SEP, the scalar d (bottom right hand corner of each figure)

is the total divergence between the acceptance interval of the bootstrap samples and the real data. χ2 and σu are the two control parameters of
the size of the bootstrap space.

median being the black cross) for the D̂b
z of the bootstrap

samples, and the measured value of z0 for GEC is figured by
black stars. Finally, the values of d, χ2, and σu are reported in
the bottom right-hand corner of the plot. Figure 1(a) displays
the two histograms yielding the two indicators σu and χ2 in
this case of cardinality constraint for X0 = GEC: They are both
small. The other three plots of Fig. 12 show the corresponding
results for the three other groups (SEP, JUP, STP).

The indicators χ2 and σu are small enough for the four
groups, indicating that the bootstrap sets are large enough and
that the test is fair according to the chosen null hypothesis, as

noted in Sec. II E and Appendix B 3. For all four groups, d is
non-null and the null hypothesis is rejected. In other words,
none of these groups of individuals behaves similarly to a
random group of nodes with the same cardinality. These results
do not come as a surprise since, as previously mentioned, these
groups are somehow expected to behave as communities and
behave indeed as such: Compared to the bootstrap samples,
they tend to have larger QX, NXX, NRR , TXX, and TRR and
smaller NXR , TXR . Interestingly, GEC’s divergence is clearly
larger than the others: This first test, even if somehow naı̈ve,
hints at some difference between GEC and the other groups.
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