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We introduce a model of negotiation dynamics whose aim is that of mimicking the mechanisms leading to
opinion and convention formation in a population of individuals. The negotiation process, as opposed to
“herdinglike” or “bounded confidence” driven processes, is based on a microscopic dynamics where memory
and feedback play a central role. Our model displays a nonequilibrium phase transition from an absorbing state
in which all agents reach a consensus to an active stationary state characterized either by polarization or
fragmentation in clusters of agents with different opinions. We show the existence of at least two different
universality classes, one for the case with two possible opinions and one for the case with an unlimited number
of opinions. The phase transition is studied analytically and numerically for various topologies of the agents’
interaction network. In both cases the universality classes do not seem to depend on the specific interaction
topology, the only relevant feature being the total number of different opinions ever present in the system.
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Statistical physics has recently proved to be a powerful
framework to address issues related to the characterization of
the collective social behavior of individuals, such as culture
dissemination, the spreading of linguistic conventions, and
the dynamics of opinion formation �1�.

According to the “herding behavior” described in sociol-
ogy �2�, processes of opinion formation are usually modeled
as simple collective dynamics in which the agents update
their opinions following local majority �3� or imitation rules
�4�. Starting from random initial conditions, the system self-
organizes through an ordering process eventually leading to
the emergence of a global consensus, in which all agents
share the same opinion. In analogy with kinetic Ising models
and contact processes �5�, the presence of noise can induce
nonequilibrium phase transitions from the consensus state to
disordered configurations, in which more than one opinion is
present.

The principle of “bounded confidence” �6,7�, on the other
hand, consists in enabling interactions only between agents
that share already some cultural features �defined as discrete
objects� �8� or with not too different opinions �in a continu-
ous space� �6,9�. By tuning some threshold parameter, tran-
sitions are observed concerning the number of opinions sur-
viving in the �frozen� final state �10�. This can be a situation
of consensus, in which all agents share the same opinion,
polarization, in which a finite number of groups with differ-
ent opinions survive, or fragmentation, with a final number
of opinions scaling with the system size.

In this paper, we propose a model of opinion dynamics in
which a consensus-polarization-fragmentation nonequilib-
rium phase transition is driven by external noise, intended as
an “irresolute attitude” of the agents in making decisions.
The primary attribute of the model is that it is based on a
negotiation process, in which memory and feedback play a
central role. Moreover, apart from the consensus state, no
configuration is frozen: the stationary states with several co-
existing opinions are still dynamical, in the sense that the

agents are still able to evolve, in contrast to the Axelrod
model �8�.

Let us consider a population of N agents, each one en-
dowed with a memory, in which an a priori undefined num-
ber of opinions can be stored. In the initial state, agents
memories are empty. At each time step, an ordered pair of
neighboring agents is randomly selected. This choice is con-
sistent with the idea of directed attachment in the sociopsy-
chological literature �see, for instance, Ref. �11��. The nego-
tiation process is described by a local pairwise interaction
rule: �a� the first agent selects randomly one of its opinions
�or creates a new opinion if its memory is empty� and con-
veys it to the second agent; �b� if the memory of the latter
contains such an opinion, with probability � the two agents
update their memories erasing all opinions except the one
involved in the interaction �agreement�, while with probabil-
ity 1−� nothing happens; �c� if the memory of the second
agent does not contain the uttered opinion, it adds such an
opinion to those already stored in its memory �learning�.
Note that in the special case �=1, the negotiation rule re-
duces to the naming game rule �12�, a model used to describe
the emergence of a communication system or a set of linguis-
tic conventions in a population of individuals. In our model-
ing the parameter � plays roughly the same role as the prob-
ability of acknowledged influence in the sociopsychological
literature �11�. Furthermore, as already stated for other mod-
els �13�, when the system is embedded in heterogeneous to-
pologies, different pair selection criteria influence the dy-
namics. In the direct strategy, the first agent is picked up
randomly in the population, and the second agent is ran-
domly selected among its neighbors. The opposite choice is
called reverse strategy; while the neutral strategy consists in
randomly choosing a link, assigning it an order with equal
probability. At the beginning of the dynamics, a large num-
ber of opinions is created, the total number of different opin-
ions growing rapidly up to O�N�. Then, if � is sufficiently
large, the number of opinions decreases until only one is left
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and the consensus state is reached �as for the naming game in
the case �=1�. In the opposite limit, when �=0, opinions are
never eliminated, therefore the only possible stationary state
is the trivial state in which every agent possesses all opin-
ions. Thus, a nonequilibrium phase transition is expected for
some critical value �c of the parameter � governing the up-
date efficiency. In order to find �c, we exploit the following
general stability argument. Let us consider the consensus
state, in which all agents possess the same unique opinion,
say A. Its stability may be tested by considering a situation in
which A and another opinion, say B, are present in the sys-
tem: each agent can have either only opinion A or B, or both
�AB state�. The critical value �c is provided by the threshold
value at which the perturbed configuration with these three
possible states does not converge back to consensus.

The simplest assumption in modeling a population of
agents is the homogeneous mixing �i.e., mean-field �MF� ap-
proximation�, where the behavior of the system is completely
described by the following evolution equations for the den-
sities ni of agents with the opinion i:

dnA/dt = − nAnB + �nAB
2 +

3� − 1

2
nAnAB,

dnB/dt = − nAnB + �nAB
2 +

3� − 1

2
nBnAB, �1�

and nAB=1−nA−nB. Imposing the steady state condition
ṅA= ṅB=0, we get three possible solutions: �1� nA=1, nB=0,
nAB=0; �2� nA=0, nB=1, nAB=0; and �3� nA=nB=b���,
nAB=1−2b��� with b���= 1+5�−�1+10�+17�2

4� �and b�0�=0�. The
study of the solutions’ stability predicts a phase transition at
�c=1/3. The maximum nonzero eigenvalue of the linearized
system around the consensus solution becomes indeed posi-
tive for ��1/3, i.e., the consensus becomes unstable, and
the population polarizes in the nA=nB state, with a finite
density of undecided agents nAB. The model therefore dis-
plays a first order nonequilibrium transition between the fro-
zen absorbing consensus state and an active polarized state,
in which global observables are stationary on average, but
not frozen, i.e., the population is split in three dynamically
evolving parts �with opinions A, B, and AB�, whose densities
fluctuate around the average values b��� and 1−2b���.

We have checked the predictions of Eqs. �1� by numerical
simulations of N agents interacting on a complete graph. Fig-
ure 1 shows that the convergence time tconv required by the
system to reach the consensus state indeed diverges at
�c=1/3, with a power-law behavior ��−�c�−a, a�0.3 �18�.
Very interestingly however, the analytical and numerical
analysis of Eqs. �1� predicts that the relaxation time diverges
instead as ��−�c�−1. This apparent discrepancy arises in fact
because Eqs. �1� consider that the agents have at most two
different opinions at the same time, while this number is
unlimited in the original model �and in fact diverges with N�.
Numerical simulations reproducing the two opinions case al-
low us to recover the behavior of tconv predicted from Eq. �1�
�see Fig. 1�. We have also investigated the case of a finite
number m of opinions available to the agents. The analytical
result a=1 holds also for m=3 �but analytical analysis for

larger m becomes out of reach�, whereas preliminary numeri-
cal simulations performed for m=3,10 with the largest
reachable population size �N=106� lead to an exponent
a�0.74–0.8 �see Fig. 1�. More extensive and systematic
simulations are in order to determine the possible existence
of a series of universality classes varying the memory size
for the agents. In any case, the models with finite �m opin-
ions� or unlimited memory define at least two clearly differ-
ent universality classes for this nonequilibrium phase transi-
tion between consensus and polarized states �see Ref. �14�
for similar findings in the framework of nonequilibrium
q-state systems�.

Figure 2 moreover shows that the transition at �c is only
the first of a series of transitions: when decreasing ���c, a
system starting from empty initial conditions self-organizes
into a fragmented state with an increasing number of opin-
ions. In principle, this can be shown analytically considering
the mean-field evolution equations for the partial densities
when m�2 opinions are present, and studying, as a function
of �, the sign of the eigenvalues of a �2m−1�� �2m−1� sta-
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FIG. 1. �Color online� Convergence time tconv of the model as a
function of �−�c �with �c=1/3� in the case of a fully connected
population of N agents. We show data for the original model
�circles� with unlimited number of opinions per agent, and for mod-
els with a finite number m of different opinions. Increasing m, the
power-law fits give exponents that differ considerably from the
value −1.
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FIG. 2. �Color online� Time tm required to a population on a
fully-connected graph to reach a �fragmented� active stationary state
with m different opinions. For every m�2, the time tm diverges at
some critical value �c�m���c.
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bility matrix for the stationary state with m opinions. For
increasing values of m, such a calculation becomes rapidly
very demanding, thus we limit our analysis to the numerical
insights of Fig. 2, from which we also get that the number of
residual opinions in the fragmented state follows the expo-
nential law m����exp���c−�� /C�, where C is a constant
depending on the initial conditions �not shown�.

We now extend our analysis to more general interactions
topologies, in which agents are placed on the vertices of a
network, and the edges define the possible interaction pat-
terns. When the network is a homogeneous random one
�Erdös-Rényi �ER� graph �15��, the degree distribution is
peaked around a typical value �k�, and the evolution equa-
tions for the densities when only two opinions are present
provide the same transition value �c=1/3 and the same ex-
ponent −1 for the divergence of tconv as in MF. Figure 3 also
shows that the exponent is also the MF one when the number
of opinions is not limited.

Since any real negotiation process takes place on social
groups, whose topology is generally far from being homoge-
neous, we have simulated the model on various uncorrelated
heterogeneous networks �using the uncorrelated configura-
tion model �UCM� �16��, with power-law degree distribu-
tions P�k�	k−� with exponents �=2.5 and �=3.

Very interestingly, the model still presents a consensus-
polarization transition, in contrast with other opinion-
dynamics models, such as for instance, the Axelrod model
�17�, for which the transition disappears for heterogeneous
networks in the thermodynamic limit. Moreover, Fig. 3 re-
ports the convergence time tconv vs ��−�c�−a, showing that at
least two different universality classes are again present, one
for the case with a finite �m=2� number of opinions �a=1�
and one for the case with unlimited memory �a�0.3�. The
exponents measured are in each case compatible �up to the
numerical precision� with the corresponding MF exponents
�see Fig. 3�.

To understand these numerical results, we analyze, as for
the fully connected case, the evolution equations for the case

of two possible opinions. Such equations can be written for
general correlated complex networks whose topology is
completely defined by the degree distribution P�k�, i.e., the
probability that a node has degree k, and by the degree-
degree conditional probability P�k� 
k� that a node of degree
k� is connected to a node of degree k �Markovian networks�.
Using partial densities nA

k =NA
k /Nk, nB

k =NB
k /Nk, and

nAB
k =NAB

k /Nk, i.e., the densities on classes of degree k, one
derives mean-field type equations in analogy with epidemic
models. Let us consider for definiteness the neutral pair se-
lection strategy, the equation for nA

k is in this case

dnA
k

dt
= −

knA
k

�k� �
k�

P�k�
k�nB
k� −

knA
k

2�k��
k�

P�k�
k�nAB
k�

+
3�knAB

k

2�k� �
k�

P�k�
k�nA
k� +

�knAB
k

�k� �
k�

P�k�
k�nAB
k� ,

�2�

and similar equations hold for nB
k and nAB

k . The first term
corresponds to the situation in which an agent of degree k�
and opinion B chooses as second actor an agent of degree k
with opinion A. The second term corresponds to the case in
which an agent of degree k� with opinions A and B chooses
the opinion B, interacting with an agent of degree k and
opinion A. The third term is the sum of two contributions
coming from the complementary interaction; while the last
term accounts for the increase of agents of degree k and
opinion A due to the interaction of pairs of agents with AB
opinion in which the first agent chooses the opinion A.

Let us define �i=�k�P�k� 
k�ni
k�, for i=A ,B ,AB. Under

the uncorrelation hypothesis for the degrees of neighboring
nodes, i.e. P�k� 
k�=k�P�k�� / �k�, we get the following rela-
tion for the total densities ni=�kP�k�ni

k,

d�nA − nB�
dt

=
3� − 1

2
�AB��A − �B� . �3�

If we consider a small perturbation around the consensus
state nA=1, with nA

k �nB
k for all k, we can argue that

�A−�B=�kkP�k��nA
k −nB

k � / �k� is still positive, i.e., the con-
sensus state is stable only for ��1/3. In other words, the
transition point does not change in heterogeneous topologies
when the neutral strategy is assumed. This is in agreement
with our numerical simulations, and in contrast with the
other selection strategies. Figure 4 displays indeed the values
of the critical parameter �c��� as a function of the exponent
� as computed from the evolution equations of the densities
ni

k �that can be derived similarly to Eqs. �2��, and as obtained
from numerical simulations. In such topologies, the phase
transition is shifted towards lower values of �, both for direct
and reverse strategies, revealing that a preferential bias in the
choice of the role played by hubs has a strong effect on the
negotiation process. Reducing the skewness of P�k� �increas-
ing ��, the critical value of � converges to 1/3.

In conclusion, we have proposed a new model of opinion
dynamics based on agents negotiation in which instead
memory and feedback are the essential ingredients. We have
shown that a nontrivial consensus-polarization-fragmentation
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FIG. 3. �Color online� Convergence time tconv of the model as a
function of �−�c on networks with different topological properties:
the UCM networks with degree distributions P�k�	k−�, �=2.5, and
�=3, and the ER homogeneous random graphs. Simulations are
shown for networks of N=105 nodes and average degree �k�=10,
both for m=2 �“2w,” open symbols� and the original model with
unlimited memory �filled symbols�. The numerical integration of
Eqs. �2� is in good agreement with the simulations.
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phase transition is observed in terms of a control parameter
representing the efficiency of the negotiation process. We
have elucidated the mean-field dynamics, on the fully con-
nected graph as well as on homogeneous and heterogeneous
complex networks, using a simple continuous approach. We

have shown that the model presents a discontinuous phase
transition between consensus and polarized states featuring
at least two different universality classes, one for the case
with m=2 opinions and one for the case with an unlimited
number of opinions. In both cases we have measured the
critical exponent describing the divergence of the conver-
gence time and shown that they do not seem to depend on
the specific interaction topology. We argue that systems with
any finite number m of opinions should fall in the m=2 class.
Although this point clearly deserves a deeper numerical in-
vestigation, we expect that the behavior of the model with
initial invention �unlimited memory� may be due to the dif-
ferent spatial and temporal organization of opinions in the
inventories. It would also be interesting to study the more
realistic scenario in which the “irresolute attitude” of the
agents is modeled as a quenched disorder rather than a global
external parameter.
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