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We investigate different opinion formation models on adaptive network topologies. Depending on the
dynamical process, rewiring can either (i) lead to the elimination of interactions between agents in
different states, and accelerate the convergence to a consensus state or break the network in noninteracting
groups or (ii), counterintuitively, favor the existence of diverse interacting groups for exponentially long
times. The mean-field analysis allows us to elucidate the mechanisms at play. Strikingly, allowing the
interacting agents to bear more than one opinion at the same time drastically changes the model’s behavior
and leads to fast consensus.
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In recent years, agent based models have been used more
and more in the area of social sciences. Through a rather
simple modeling approach for the individual processes of
social influence, these models focus on the emergence of
social behavior at the global population level. Statistical
physics models and tools provide therefore a natural frame-
work for such studies, and have been widely applied,
leading to the appearance of the field called sociophysics
(see [1] for a recent review on the application of statistical
physics models to social dynamics).

The growing field of complex networks [2–4] has al-
lowed us to obtain a better knowledge of social networks
[5,6], and, in particular, to show that their typical topology
is not regular. Many studies have since considered the
evolution of models of interacting agents embedded on
more realistic networks, and studied the influence of com-
plex topologies on their dynamical behavior [7]. An addi-
tional feature of networks, that may have a strong impact
on the model’s behavior, lies in their dynamical nature on
various time scales. The evolution of the topology and the
dynamical processes can then drive each other with com-
plex feedback effects. Studies of this coevolution are more
recent and still limited [8–16].

In this Letter, we provide new insights into such feed-
back effects by an investigation of Voter-like models (VM),
in which agents update their opinions by imitating their
neighbors, and can also break and establish connections
with other agents. More precisely, we show how apparently
slight modifications in the evolution rule, which have
minor consequences if the topology of interactions is
kept fixed, can change drastically the model’s behavior
as soon as the topology can evolve on the same time scale
as the agents’ opinions. On the other hand, the simple fact
of allowing agents to have several opinions at the same
time, in the spirit of the Naming Game [17] or of the
AB model [18], leads to more robust behavior.

The Voter model [19] considers a population of N
individuals, each carrying an opinion s � �1; only two
opposite opinions are allowed here (for example a political

choice between two parties) [20]. Starting from a random
configuration of opinions, the dynamical evolution of the
direct VM (d VM) is the following: at each elementary
step, an agent (i) is randomly selected, chooses one of its
neighbors (j) at random and adopts its opinion; i.e., si is set
equal to sj (one time step consists of N such updates). In
the reverse case (r VM), the first agent i instead convinces
its neighbor j (sj is set equal to si). The distinction between
d and r VM is necessary since the two interacting nodes do
not play the same role. Moreover, the degrees of the first
and the second chosen nodes have different distributions,
and the second is a large-degree node with larger proba-
bility [2]. The asymmetry in the opinion update between
the two interacting nodes can then couple to the asymmetry
between a randomly chosen node and its randomly chosen
neighbor, leading to different dynamical properties. No
important difference is expected on homogeneous net-
works but, on heterogeneous networks, the probability
for a hub to update its state will vary strongly from one
rule to the other. The basic imitation process of the VM
mimics the homogenization of opinions but, since inter-
actions are binary and random, do not guarantee the con-
vergence to a uniform state. Since a consensus in which all
individuals share the same opinion is an absorbing state of
the dynamics, any finite population reaches a consensus,
but the time needed tc�N� depends on its size N and on the
topology of interactions, and diverges as N ! 1. On static
networks, tc�N� grows as a power-law of N, with an
exponent depending on the degree distribution, and on
the updating rule [21–23]. On homogeneous networks, in
particular, tc�N� / N for both d and r VM.

In this Letter, we consider the scenario in which agents
can rewire their ‘‘unsatisfied’’ connections. More precisely,
the initial configuration is given by a random homogeneous
network of interacting agents, with average number of
neighbors hki and random opinions. At each time step, an
agent i and one of its neighbors j are chosen. With proba-
bility �, an attempt to rewire the link is made, if si � sj. A
new agent k is then chosen at random and the link (i, j) is
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rewired to (i, k) [24]. With probability 1��, an opinion
update takes place instead. The rewiring, which conserves
the total number of links, is made at random: the new link
is established without prior knowledge of the new neigh-
bor’s opinion [25].

If the frequency of rewirings is small (�! 0), the
system still reaches a global consensus and the network
remains connected. For fast rewiring rates on the other
hand, (�! 1) the network breaks into (typically two for
the VM) separate connected components, each one with a
local consensus. These two regimes are separated by a
nonequilibrium phase transition at a critical value �c of
the rewiring probability. Similar transitions have already
been reported in coevolving models of opinion formation
[12,15,16] and we will not focus on this aspect here.

A more surprising aspect of the dynamics is revealed by
the behavior of the convergence time tc�N�, which grows
linearly with N on a static network for both the d and the r
VM [22,23]. Strikingly, the network’s adaptivity has com-
pletely opposed effects in these models (Fig. 1). Consensus
is strongly favored in the d VM, for which tc�N� becomes
/ lnN [26]; in contrast, for the r VM tc�N� grows expo-
nentially with the system size. The system therefore re-
mains for exponentially long times in a state in which two
groups of different opinions coexist and remain connected
to each other. It is noteworthy that the system therefore is
not frozen, with agents continuously updating their links
and opinions.

In order to understand the different behavior of the d and
r VM on adaptive networks, we note that the state of the
system is characterized by three independent quantities:
(i) the density n� of agents with opinion �1, or equiva-
lently the magnetization m � n� � n� (n� � 1� n� is
the density of agents with opinion �1); (ii) the number of
links joining agents in the � opinion, Nl��; and (iii) the
number of links joining agents of opposite opinions, i.e., of
active links Nl�� � Nl�� (since the total number of links
is preserved, hki=2 � l�� � l�� � l��). At the mean-

field (MF) level, we can derive the evolution equation of
these quantities. Let us first consider the magnetization: it
changes of�2=N when an agent changes its states from�
to�, and of�2=N in the opposite case. For the d VM, the
probability of the first event is proportional to the density
n� of agents in the � state, times the probability that it
chooses to interact with a neighbor that has� opinion, i.e.
k��=k� where k� is the average degree of a � node, and
k�� � l��=n� is the average number of� neighbors of a
� node. The probability of the second event (� ! �) is
obtained in the same way, and, finally,
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In the case of the r VM, the probabilities of the two
processes are simply interchanged: hdm=dtirVM �
�hdm=dtidVM. On an adaptive network, it is essential to
distinguish k� from k�: as shown in Fig. 2, one has indeed
k� > hki> k� if n� > n�. In other words, the nodes of the
majority opinion have more neighbors. This is a simple
consequence of the rewiring dynamics: if m> 0, any
rewiring event �i; j� ! �i; k� has a higher chance to ran-
domly pick a � node as a new neighbor due to their larger
number. Therefore, nodes of the larger group gain new
links with larger probability. Equation (1) then immedi-
ately shows that for m> 0, hdm=dtidVM > 0 and
hdm=dtirVM < 0. In summary, the coevolution of opinions
and topology generates a positive feedback for the d VM
driving the system to a consensus state,mstable � �1, and a
negative feedback for the r VM resulting in mstable � 0.
This readily explains the strong differences between these
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FIG. 1 (color online). Convergence time for the r VM vs N, for
various rewiring probabilities. In all figures, the simulations are
averaged over 100 realizations. Inset: d VM.
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FIG. 2 (color online). Top: k�=hki vs m for the VM. Symbols:
averages obtained from numerical simulations with N � 1000,
hki � 10. Continuous lines: numerical solution of the MF equa-
tions for the evolution of x � �m; l��; l���, starting from initial
conditions with m close to 0. Bottom: l�� and l�� vs m. The
continuous black lines correspond to the numerical solution of
the MF equations. The black symbols and the gray and brown
lines correspond to single runs of the d and r VM, respectively,
(N � 500, hki � 10, � � 0:4). The inset shows the evolution of
m for the same runs (symbols for d VM and dashed line for
r VM).
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models. For the dVM the adaptivity leads to an accelerated
consensus, while it hinders the convergence for the r VM
and keeps the system in a dynamically evolving state with
zero average magnetization.

It is moreover possible to write the evolution equations
for the various types of links. It is easy to understand that,
according to the model’s definition, the vector x �
�m; l��; l��� can evolve in 4 ways at each elementary
update: x! x� va, a � 1; � � � ; 4, with respective proba-
bilities wa. Let us start with the d VM. The displacement
vectors and the associated probabilities read then: Nv1 �
�2; k�� � k��; k���, w1 � �1���n�k��=k�; Nv2 �
��2; k�� � k��;�k���, w2 � �1���n�k��=k�;
Nv3 � �0;�1; 0�, w3 � �n2

�k��=k�; Nv4 �
�0;�1;�1�, w4 � �n2

�k��=k�. v1 and v2 correspond to
opinion changes, for which the change in magnetization
(� 2=N) is associated with changes in the densities of
links. For example, when a � node is transformed to �,
its �� links become �� and its �� links become ��
ones (hence l�� varies of �k�� � k���=N). The corre-
sponding probabilities w1 and w2 are obtained as for
Eq. (1). v3 and v4 correspond to rewiring events: when a
�� link is rewired it can be either transformed to�� (v3)
or to �� (v4). For the r VM, the displacement vectors are
exactly the same as for the d VM, but the transition
probabilities w1 and w2 are interchanged. w3 and w4

remain the same since the rewiring rules are the same for
both models. Figure 2 shows the result of the numerical
integration of the evolution equations dx=dt �

P
avawa,

compared with numerical simulations of the models. It is
clear that these equations correctly account for the differ-
ence between k� and k� and for the system’s evolution in
the phase space. Of course, the real systems are moreover
submitted to fluctuations that are not taken into account in
the MF description. In particular, looking at single runs
(Fig. 2) shows clearly the difference between the d and
r VM. For the d VM, the density of active links decreases
rapidly to 0 and the system is driven to one of the con-
sensus states. For the r VM on the contrary, the system
performs a random walk in a sort of potential well around
m � 0 with a nonzero density of active links, which ends
only because of a finite-size fluctuation which leads it into
one of the absorbing boundaries at m � �1.

Let us now consider that agents cannot pass directly
from one opinion to another, but can keep both opinions
in their ‘‘memory’’, being then in an intermediate state that
we call 0. This is the case in the Naming Game (NG)
model, in which agents try to agree on the name to assign
to a given object [17], or also of the AB model [18]. If only
two names are available (that we can call � and � for
simplicity), the dynamical rules of the direct NG (d NG)
are the following: at each time step, an agent i and one of
its neighbors, j, are chosen at random to be, respectively,
the hearer (H) and Speaker (S). S proposes a name to H. If
S has both names in memory, it chooses one at random. Let
us suppose for instance that S proposes �. If H does not
know the name uttered (i.e., it is in state �), it absorbs this

possibility by changing to the intermediate state, 0. If H
instead has the name in memory (i.e., it is in state � or 0),
the interaction is successful and bothH and S agree on this
particular name and set in state � after the interaction. In
the reverse case (rNG), the first randomly selected agent is
S and its neighbor is H, and the update rules remain the
same [27]. When agents interact on a static topology, these
dynamical rules lead to a global consensus. On homoge-
neous networks, we obtain tc�N� � lnN (while tc�N� � N
for the VM). The difference between the two models is due
to the fact that in the VM, consensus is reached by a finite-
size fluctuation of the average magnetization while in the
NG, consensus is reached due to the surface-tension intro-
duced by the 0 states, which tends to minimize the inter-
face between the agents of different opinions and hence
drive the system to a homogeneous consensus state
[18,28]. For adaptive networks, Fig. 3 clearly shows that
the convergence time remains logarithmic for both the
direct and reverse version, even if the r NG is slower.
The MF analysis allows to understand this strong differ-
ence with the VM. We can indeed write the evolution
equation for the magnetization n� � n�, by introducing
the average degree of 0 nodes k0 and the density of�0 and
�0 links, as
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The first terms on the right-hand side represent the change
in the magnetization mediated by the l�� links. The factor
1=2 stems from the fact that � and � nodes are not trans-
formed instantly to their opposite counterpart but to the
intermediate state 0. The remaining terms correspond to
the transformation of the 0 nodes to � ones. For example,
in the d NG, the second term on the right-hand side is
generated by the process when a 0 node is converted to �
by first picking a 0 node, with probability n0, then one of its
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FIG. 3 (color online). Convergence time for the direct (filled
symbols) and reverse (open symbols) NG.
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� neighbors, with probability k0�=k0. Even though the
first terms in Eqs. (2) and (3) change sign for the d and the
r variants of the NG just as for the VM, this effect is
suppressed by the terms associated with the transitions
(0! �) which will always generate a positive feedback
to the change of magnetization. As shown in Fig. 4 indeed,
l�0 � l�0 is of the sign of m, which is expected since then
n� > n�. This effect overcomes the difference between k�
and k�, and hdm=dti remains ofm’s sign even in the r NG,
leading to logarithmic convergence times. Thus, the pos-
sibility for agents to remain in an intermediate state before
updating their opinion strongly enhances the trend towards
consensus.

In summary, we have shown how modifications of the
interaction rules, which could seem minor at first sight, can
in fact have drastic effects on the behavior of opinion
formation models in the case of dynamically evolving
networks, due to the coupling of the asymmetry between
the interacting agents to the asymmetry in their degrees.
Such coupling is known to change the scaling of the
convergence time in heterogeneous static networks
[22,23], but is not crucial in homogeneous networks. In
strong contrast, and even if the adaptive network remains
globally homogeneous, with no divergence of the moments
of the degree distribution, the fact that the majority has a
slightly larger average degree suffices to change from a
very fast convergence in logarithmic time for the dVM to a
dynamical state surviving for exponentially long times for
the r VM. Interestingly, if the agents cannot change opin-
ion so easily, and have to go through an intermediate state,
such as in the NG or AB models, convergence to consensus
is enhanced also for adaptive networks, and irrespective of
the order of interactions (d NG vs r NG). The connections
with nodes in the intermediate state determine then the
dominant evolution of the magnetization, leading to a more
robust behavior.

It is a pleasure to thank A. Baronchelli and L. Dall’Asta
for a careful reading of the manuscript.
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FIG. 4. hdm=dti vs m (symbols) for the r NG. According to
Eq. (3), changes in the magnetization come from r VM-like
interactions (dashed line) and those mediated by the 0-links, l�0

and l�0 (dash-dotted line). The upper inset gives l�0 and l�0, the
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