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We consider a vertically shaken granular system interacting elastically with the vibrating
boundary, so that the energy injected vertically is transferred to the horizontal degrees
of freedom through inter-particle collisions only. This leads to collisions which, once
projected onto the horizontal plane, become essentially stochastic and may have an
effective restitution coefficient larger than unity. We therefore introduce the model of
inelastic hard spheres with random restitution coefficient o (larger or smaller than unity)
to describe granular systems heated by vibrations. In the non-equilibrium steady state,
we focus in particular on the single particle velocity distribution f(v) in the horizontal
plane, and on its deviation from a Maxwellian. We use Molecular Dynamics simulations
and Direct Simulation Monte Carlo (DSMC) to show that, depending on the distribution
of a, different shapes of f(v) can be obtained, with very different high energy tails.
Moreover, the fourth cumulant of the velocity distribution (which quantifies the devia-
tions from Gaussian statistics) is obtained analytically from the Boltzmann equation
and successfully tested against the simulations.

Keywords: Granular gases; non-equilibrium steady-states; kinetic theory; velocity distri-
butions.

1. Introduction

Granular matter can exist in many very different states, all of which are currently
the subject of much interest [9]. On the one hand, dense granular matter can be
studied at rest, and in particular many open problems concern the transmission
of forces through a sandpile. On the other hand, since thermal energy is negligible
with respect to gravitational or kinetic energy, any dynamical behaviour has to
be a response to a certain external energy input; for example, tapping leads to
compaction [10], while a strong, continuous energy input by vibrations produces
granular gases in continuous motion, for which kinetic energy is much larger than
the gravitational one [6, 11, 13, 16, 19, 22]. These vibrated systems are out of
equilibrium but the energy input can compensate the dissipation due to inelastic
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Fig. 1. Schematic view of the system under consideration. The grains are subject to gravity, and
submitted to the vibration of an horizontal plate.

collisions between grains and therefore lead to stationarity. While many experiments
study the appearance of patterns or inhomogeneities, others, on which we will
concentrate here, focus on the velocity distributions and its deviations from the
Maxwell-Boltzmann distribution (which would correspond to a system with neither
dissipation nor energy injection, i.e. with elastic collisions).

2. System Studied and Modelisation

We want to study a three-dimensional system of grains on a plate, which is shaken
vertically (i.e. along the z direction); the energy is therefore injected by a vibrating
elastic boundary only in the z direction (Fig. 1). It is partly transferred to the other
degrees of freedom, and also dissipated, through the inelastic collisions between
grains. The velocities and their distribution are then studied in the horizontal (zy)
plane.

2.1. Usual theoretical approach

The grains are modeled as smooth inelastic hard spheres (IHS) undergoing binary
momentum-conserving collisions with a constant normal restitution coeflicient o <
1; a collision between two spheres 1 and 2, with velocities v; and vg, dissipates
a fraction (1 — a) of the component of the relative velocity vis = v; — vy along
the center-to-center direction &. Once the dissipation has been described in this
way, the problem is how to represent the energy injection. A possibility, used and
studied by various authors [5, 18, 20, 21, 23], consists of submitting the spheres
to a random force, i.e. to random “kicks” at a given frequency between collisions.
Energy input then acts in all space directions.

2.2. A new model

However, as previously noted, the real energy input occurs only in the vertical
direction, and is not transferred between but through collisions to the horizontal
plane. Indeed, a three-dimensional inelastic collision between two spheres globally
dissipates energy, but its projection onto the xy plane can in fact gain energy. Such
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Fig. 2. Example of a globally dissipative collision leading to an energy increase in the horizontal
plane. Before collision, the relative velocity in the horizontal plane is almost zero; after collision,
it is finite.

an example is schematized in Fig. 2. Before collision, the kinetic energy in the
plane is almost zero; it is, however, finite after the collision, so that an effective
restitution coefficient defined by the ratio of the relative velocities in the horizontal
plane before and after collision would be much larger than one.

In general, therefore, the effective restitution coefficient of the projected colli-
sion can be either smaller or larger than unity. This observation (which is also
supported by experimental data [15]) leads to the following effective (projected)
simple model [3]:

e two-dimensional hard spheres (of diameter o) in the zy-plane

e binary momentum-conserving collisions

e random normal restitution coefficient @ (< 1 or > 1) with distribution p(a) (the
means over p(a) will be denoted by an overline), uncorrelated with the velocities
of the particles. At each collision, the coefficient of restitution is randomly drawn
from p(a).

Since, in a binary collision with restitution coefficient «, the energy change is
proportional to (a? — 1), we shall consider distributions with a? = 1 in order to
ensure a stationary, constant temperature regime (at each collision, energy changes,
but it is conserved on average). Since the average energy is constant, the granu-
lar temperature is also a constant determined by the initial velocity distribution.
We will therefore study the distribution of rescaled velocities, using analytical and
numerical tools.
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3. Kinetic Theory

The Molecular chaos approximation factorizes the two-point distribution function:

f(2)(V1,V2, |I‘12| = th) = Xf(Vl,t)f(VQ,t) ) (31)
——
contact
where x accounts for excluded volume effects (for elastic hard spheres, x coincides
with the density dependent pair correlation function at contact). We are then able
to write the (Enskog—)Boltzmann equation in the steady state, averaged over the
distribution of restitution coefficients:

/ dvadoda(vis - )p(a){a™ f(v)f(v3) — f(v1)f(v2)} = 0. (3.2)

The prime on the integration symbol is a shortcut for [do©(vi - &) (6 is the
center-to-center direction and © is the Heavyside function), and we consider colli-
sions which yield (v, v2) as post-collisional velocities, for pre-collisional velocities

(vi,v3):

(3.3)
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From now on, we will be concerned with the study of the rescaled velocities
¢ = v/vg and of their distribution:

)6 . (3.4)

Q>

f(V,t) = %

where n is the density and the thermal velocity vy is by definition related to the
temperature T'(t) through ZoZ(t) = T(t) = 2 [dvZv?f(v,t) (d is the space
dimension).

It is usual to look for solutions in the form of a Sonine expansion [12] around
the Maxwell-Boltzmann distribution ®(c) = 7~ %2 exp(—c?):

P(c), (3.5)

P(c) = ®(c) ) (3.6)

1+ a,S,(c?)
p=1

where the polynomials {S,} are orthogonal for the Gaussian weight .

Using the methods exposed in Ref. 20, we obtain the leading non-Gaussian
correction (a1 = 0 from the definition of temperature) as, which is related to the
fourth cumulant:

CoORE 16(1 — 302 + 2a4)
as = —1= — — .
2T (e 9+24d + 32(d — 1)a + (8d — 11)a2 — 30a*

We will compare this result to numerical simulations in the next section, for
d = 2. For the high energy tail, no analytical results have been obtained and we
will investigate this issue numerically.

(3.7)



January 3, 2002 13:49 WSPC/169-ACS 00036

Inelastic Hard Spheres with Random Restitution Coefficient 303

4. Numerical Simulations
4.1. Methods

We use two complementary approaches:

e The Direct Monte Carlo Simulation method (DSMC) [4] generates a Markov
chain with the same probabilities of transition as the Boltzmann equation; it
produces therefore an “exact” numerical solution of the Boltzmann equation.

Molecular Dynamics (MD) integrate the ezact equations of motion of the hard
spheres, with no reference to the Boltzmann equation; we consider N spheres of
diameter o, in a box of linear size L in dimension d (here d = 2), with periodic
boundary conditions [1, 8]; the comparison with DSMC allows us to test the

molecular chaos approximation.

4.2. Results

The first results show the validity of the Sonine expansion and of the theoreti-
cal values for ay. Figure 3 shows a comparison between DSMC results and the
theoretical expansion; the agreement is perfect at small as, and satisfying at low
velocities (note that the truncated Sonine expansion is a low-velocities expansion)

for larger as.
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Fig. 3.

and flat distribution of a? € [0,2] (a2 = 0.18).

Comparison of the P(c)/®(c) measured in DSMC (symbols) with the Sonine expansion
with the calculated as (lines), for two different p(a): flat distribution of a2 € [0.5,1.5] (a2 = 0.04),
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Fig. 4. Velocity distribution P(c), for a flat distribution of a2 € [0,2], for MD and DSMC. MD:
50103 particles (30% packing fraction); DSMC: 500 10% particles. A Gaussian is also shown for
comparison. Inset: distribution of normalized impact parameters in MD.

Moreover, Fig. 4 shows that MD and DSMC simulations are in perfect agree-
ment (shown only for a particular choice of p(a), but checked for other choices of
p(a)). Moreover, the curves obtained in MD simulations with small or large pack-
ing fractions (up to 40%) are indistinguishable (not shown). Important deviations
from the Maxwell-Boltzmann distribution are obtained, but the inset shows that
the distribution of impact parameters in Molecular Dynamics simulations is flat;
this is a hint that no violation of molecular chaos is observed and that the factor-
ization of the 2-particle correlation function Eq. (3.1) holds. In MD simulations,
inhomogeneities and/or violations of molecular chaos could a priori appear, con-
trarily to DSMC. The fact that no such phenomenon is observed [24] is in contrast
with the phenomenology at constant « [14] or with randomly driven IHS [17]; for
a constant dissipative restitution parameter, colliding particles emerge with more
parallel velocities than in the elastic case a« = 1 and, when they recollide, their
velocities are still more parallel. The possibility of having a > 1 seems to have re-
moved this mechanism for the creation of velocity correlations violating molecular
chaos, and to produce an efficient randomization of the velocities. This validates
the theoretical approach based on the Boltzmann equation.

Let us now turn to the study of the large velocity tails. Figure 5 shows fits to
stretched exponentials (over 6 orders of magnitude):

P(c) x exp(—c?P)
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Fig. 5. Fits to stretched exponential forms exp(—cB) of the velocity distributions, for a flat
distribution of a2 € [0, 2] and € [0.5, 1.5].

with a wide range of possible values for B. In particular, a convenient choice of p(«)
is compatible with B = 1.6, which has been found in some experiments [13, 19]
(close to B = 3/2 obtained in Ref. 20 for randomly driven IHS fluids). The pos-
sibility of obtaining such different values of B may question the relevance of this
exponent as an intrinsic quantity for granular gases in steady states.

5. Conclusions and Perspectives

We have introduced the idea of a random restitution coefficient in the IHS model, in
order to account for the fact that, for a vertically vibrated layer of granular material,
the energy is injected only along the vertical axis, and transferred through collisions
in the horizontal directions; the projection in two dimensions of a three-dimensional
collision can correspond to a gain in the two-dimensional energy, and therefore to an
effective restitution coefficient larger than unity, even if the genuine « is necessarily
smaller than unity, i.e. corresponds to a dissipative collision.

We have subsequently studied this model in two dimensions, with a probability
distribution p(ce) for the restitution coefficient. We have focused on the velocity
distributions, and in particular on the deviation from the Maxwellian:

e At low velocities, the Sonine expansion technique is used. We obtained analyt-
ically the expression of the fourth cumulant a; and tested it against Molecular
Dynamics (MD) and Monte Carlo Direct Simulations (DSMC). The theoretical
predictions for as are quite accurate, with a slight overestimation for as that
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probably corresponds to the approximations made during the calculation (non-
linear terms O(a3) and higher order Sonine polynomials neglected). Moreover,
the comparison between numerical data and the second order Sonine expansion
shows a remarkable agreement for small values of as.

e The high energy tails, studied with DSMC simulations, can be fitted by func-
tions of the form exp(—AcP), with B < 2 depending on p(a). It would certainly
be interesting to have theoretical predictions concerning B. Note that once a
functional form has been chosen for p(a), very different tails can be observed de-
pending on the range of variation for a.. This feature might question the relevance
of the exponent B as an intrinsic quantity for granular gases in steady states.

The comparison of MD and DSMC results shows a remarkable agreement (even
with a packing fraction as high as 40% in MD), and the study of the impact param-
eter in MD shows no violation of molecular chaos [24]. This is to be compared
with the situation of free cooling [14] but also with MD results on heated inelastic
hard spheres with constant restitution coefficient [17], in which microscopic pre-
collisional velocity correlations develop and molecular chaos is violated. A thorough
investigation of short scale velocity correlations would require the computation of
various pre-collisional averages involving moments of the relative velocities, and has
not been performed. Our results, however, suggest that the dynamical correlations
inducing recollisions [7] and responsible for the violation of molecular chaos may not
be a generic feature of driven granular gases exhibiting a non-equilibrium stationary
state, at least at low densities.

In the model introduced here, the random restitution coefficient is uncorre-
lated with the relative velocities of the particles; this somehow unrealistic feature
could be improved in more refined models. Such correlations, which seem diffi-
cult to quantify from first principles, might affect the high energy tail or induce
pre-collisional velocity correlations. It would be very interesting to be able to link
a realistic energy injection mechanism with a precise distribution of restitution
coefficients. Two-dimensional collisions, projected in one-dimension, are currently
being investigated with analytical, numerical and experimental [15] tools in order
to quantify these correlations and study the random restitution coefficient model
with correlations [2], and apply it to the experimental observations of Ref. 19.

Finally, a hydrodynamic study of the present random « model, in which the
conservation of the energy is valid on average only, while density and momentum
are conserved locally, is left for future investigations.
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