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Abstract The global spread of emergent diseases is inevitably entangled with
the structure of the population flows among different geographical regions. The
airline transportation network in particular shrinks the geographical space by re-
ducing travel time between the world’s most populated areas and defines the main
channels along which emergent diseases will spread. In this paper, we investigate
the role of the large-scale properties of the airline transportation network in de-
termining the global propagation pattern of emerging diseases. We put forward a
stochastic computational framework for the modeling of the global spreading of in-
fectious diseases that takes advantage of the complete International Air Transport
Association 2002 database complemented with census population data. The model
is analyzed by using for the first time an information theory approach that allows
the quantitative characterization of the heterogeneity level and the predictability
of the spreading pattern in presence of stochastic fluctuations. In particular we
are able to assess the reliability of numerical forecast with respect to the intrinsic
stochastic nature of the disease transmission and travel flows. The epidemic pat-
tern predictability is quantitatively determined and traced back to the occurrence
of epidemic pathways defining a backbone of dominant connections for the disease
spreading. The presented results provide a general computational framework for
the analysis of containment policies and risk forecast of global epidemic outbreaks.

Keywords Complex networks · Epidemiology

1. Introduction

Real-world populations often show a complicated age/social structure as well
as heterogeneous patterns in the contact networks determining the transmission
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dynamics (Anderson and May, 1992; Hethcote and Yorke, 1984; Kretzschmar
and Morris, 1996; Keeling, 1999; Pastor-Satorras and Vespignani, 2001; Lloyd
and May, 2001). All these factors have led to sophisticate modeling ap-
proaches including social structures, heterogeneous connectivity patterns, meta-
population grouping, stochasticity and, more recently, to numerical approaches
relying on agent based modeling that recreate entire populations and their
dynamics at the scale of the single individual (Chowell et al., 2003; Eubank
et al., 2004). In many cases, however, system complexity is not the same as
the mere addition of complicated elements accounted for in sophisticate epi-
demic modeling (Ferguson et al., 2003). Complex features often imply a vir-
tual infinite heterogeneity of the system and large-scale statistical fluctuations
(Albert and Barabási, 2000; Amaral et al., 2000; Dorogovtsev and Mendes, 2003;
Pastor-Satorras and Vespignani, 2003), which generally call for new theoretical
frameworks and models (Pastor-Satorras and Vespignani, 2001; Lloyd and May,
2001; Meyers et al., 2005).

These considerations are particularly relevant in the study of the geographical
spread of epidemics where the various long-range connections typical of mod-
ern transportation networks naturally give rise to a very complicated evolution
of epidemics characterized by heterogeneous and seemingly erratic outbreaks (In-
stitute of Medicine, 1992; Cohen, 2000; Cliff and Haggett, 2004) as recently doc-
umented for the SARS outbreak.1 In this context, air-transportation represents a
major channel of epidemic propagation, as put forward in the seminal work on
global epidemic diffusion by Rvachev and Longini (1985) capitalizing on previ-
ous studies of the Russian airline network (Baroyan et al., 1969). Similar mod-
eling approaches, even if limited by a very partial knowledge of the world-wide
transportation network, have been used to reproduce specific outbreaks such as
pandemic influenza (Longini, 1988; Grais et al., 2003, 2004), HIV (Flahault and
Valleron, 1991), and very recently SARS (Hufnagel et al., 2004), with results in
reasonable agreement with experimental data. The availability of the complete
world-wide airport network dataset (WAN) and the recent extensive studies of its
topology (Barrat et al., 2004; Guimerà et al., 2005) are finally allowing a full-scale
computational study of global epidemics. In particular we are now in the position
to rationalize the role of the large-scale properties of the airline transportation
network in the heterogeneity and predictability of the epidemic pattern.

In the following we will consider a stochastic modeling and a computational
framework for the study of global epidemics. A first input in the computa-
tional approach is the complete International Air Transport Association (IATA)2

database, allowing an unprecedented level of detail in the study of the evolution
of the spatiotemporal pattern of the epidemics. A second important input is given
by the populations obtained from various sources and census of all cities associ-
ated to airports. The main result of the network analysis is that the WAN is highly
heterogeneous both in the connectivity pattern and the traffic capacities. In par-
ticular the presence of broad statistical distributions and non-linear associations
among the various quantities, contrary to linear relations used so far, might have

1http://www.who.int/csr/sars/en.
2http://www.iata.org.
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a major impact in the ensuing disease spreading pattern. While previous studies
have in general focused on the simulation and reproduction of case studies of real
epidemics, the large-scale modeling allowed by the IATA database enables us to
address more general theoretical issues such as (i) the spatiotemporal statistical
properties of the epidemic pattern, (ii) their relation with the complex features
of the underlying transportation network and (iii) the predictability of the epi-
demic evolution with respect to the inherent stochastic dynamics of the disease
transmission.

The paper is organized as follows. In Section 2, we introduce the general mod-
eling framework. We define the basic compartmental assumption used to describe
the populations and the stochastic Langevin formulation of the epidemic dynam-
ics within each city. We also define the stochastic transport operator defining the
traveling of individuals among cities. In Section 3 we derive the set of formal equa-
tions describing the evolution of the global epidemic outbreaks by coupling the
infection dynamics within cities with the action of the transport operator. The
various sources of stochasticity, the general integration procedure and the input
provided by the IATA network and population data are explained in detail, yield-
ing the computational framework used to obtain the epidemic outbreak forecast.
In Section 4 we implement the developed computational approach to the specific
case of a susceptible-infected-removed (SIR) infection dynamics. We show how it
is possible to obtain a detailed study of the quantities customarily tracked in epi-
demiological studies and provide a global analysis of the spatiotemporal evolution
of the epidemic pattern. The rather heterogeneous spatiotemporal pattern emerg-
ing during the epidemic evolution might find its origin in one or more features of
the underlying network as well as in the inherent stochastic dynamics of the disease
transmission. In order to discriminate the various effects we introduce in Section
5 an entropic measure of the spatial disorder of the epidemic prevalence. In par-
ticular the key role of the transportation network is evidenced by comparing the
results obtained in the WAN with those generated in network models represent-
ing different null hypotheses. The network structure appears to have a major effect
in driving the epidemic evolution, therefore allowing the possibility of predicting
an overall epidemic pattern on top of the stochastic fluctuations. Motivated by
these findings, in Section 6 we investigate the predictability of the epidemic spread
through the analysis of the statistical overlap of the epidemic pattern generated in
different stochastic realizations of the spreading process. This overlap is quantita-
tively defined by using a statistical similarity analysis of the global distribution of
infected individuals. Also in this case the comparison of different null hypothesis
for the network topology and the real-world IATA network allows the determi-
nation of the main structural features affecting the predictability of the epidemic
scenario. Finally, we conclude in Section 7 by providing an outlook on further
open questions and the possible implementation of the presented framework for
epidemic forecast and the assessment of containment policies.

2. Methods

In the following, we use a stochastic modeling of the epidemics based on the stan-
dard compartmentalization of the population into a few classes of individuals such
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as susceptible (S), infected (I), latent (L), permanently recovered (R), etc. In each
city j the population is Nj and X[m]

j (t) is the number of individuals in the class [m]

at time t . By definition it follows that Nj = ∑
m X[m]

j (t). The dynamics of individ-
uals in each class is determined by two elements. Individuals may move from city
j to city � by means of the airline transportation network and can change com-
partment because of the infection dynamics, similarly to the models in Rvachev
and Longini (1985), Flahault and Valleron (1991), and Grais et al. (2003) and to
the stochastic generalization of Hufnagel et al. (2004). More generally, this model
can thus be used for the description of the effect of human flows between different
locations on the spread of an epidemics.

2.1. Transport operator

The dynamics of individuals due to (air) travel between cities is described by the
transport operator � j ({X[m]}) representing the net balance of individuals in a given
class X[m] that entered and left each city j . In each city j the transport operator
reads as

� j ({X[m]}) =
∑

�

(
ξ�j

(
X[m]

�

) − ξ j�
(
X[m]

j

))
, (1)

where ξ j�(X[m]
j ) are stochastic variables representing the numbers of individuals in

the class X[m] traveling on each connection j → � at time t . In the case of air travel,
this operator is a function of the passenger traffic flows and the city populations Nj ,
and might also include transit passengers on connecting flights. If we neglect mul-
tiple legs travels and if we assume the population homogeneity inside the cities,
the probability that any individual travels from city j to city � during a time in-
terval �t is given by pj� = w j�

Nj
�t , where w j� is the airplane passenger traffic per

unit time. The stochastic variables ξ j�(X[m]
j ) will therefore follow the multinomial

distribution
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, (2)

where (X[m]
j − ∑

� ξ j�) identifies the number of non-traveling individuals of class
[m] staying in city j . The mean and variance of the stochastic variables are
〈ξ j�(X[m]

j )〉 = pj� X[m]
j and Var(ξ j�(X[m]

j )) = pj�(1 − pj�)X[m]
j , respectively. These

expressions allow to recover the average transport operator

〈
� j

({
X[m]})〉 =

∑

�

(
p�j X[m]

� − pj� X[m]
j

)
, (3)

used in previous approaches (Rvachev and Longini, 1985). If the corresponding
traveling fluxes are large, the fluctuations around the expected value are small and
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one can indeed use this average expression. When dealing with a small number of
individuals in a given class X[m], such as the number of infectious at the early stage
of an epidemic, expression (3) is not valid and it is necessary to use the stochastic
operator defined by Eqs. (1) and (2).

In many cases since the traffic flows are expressed as the number of available
seats on a given connection, we have to consider that the transport operator is
in general affected by fluctuations due to an occupancy rate of the airplanes not
equal to 1. This introduces a further source of noise since we have to consider
that on each connection ( j, �) the flux of passengers at each time t is given by a
stochastic variable

w̃ j� = w j�[α + η(1 − α)], (4)

where α = 0.7 corresponds to the average occupancy rate of 70% provided by of-
ficial statistics and η is a random number drawn uniformly in the interval [−1, 1] at
each time step.

A final note concerns the inclusion of traffic due to transit passengers in the
transport operator. It is possible to obtain a full expression of the transport op-
erator that considers up to two legs travels. This is obtained by including data on
traffic passengers in the main airports. This result is a further technical complica-
tion whose detailed calculation is reported in the Appendix. It is worth remarking
that the results obtained by including transit passenger flows are not qualitatively
dissimilar to those presented here.

2.2. The epidemic Langevin equation

The dynamics of the individuals X[m] between the different compartments depends
on the specific disease considered. In general, the transition from a compartment
to the other is specified by a specific rate that depends on the disease etiology, such
as the infection transmission rate or the recovery or cure rate. In compartmental
models there are two possible elementary processes ruling the disease dynamics.
The first class of process refers to the spontaneous transition of one individual
from one compartment [m] to another compartment [h]

X[m] → X[m] − 1, (5)

X[h] → X[h] + 1. (6)

Processes of this kind are the spontaneous recovery of infected individuals (I →
R) or the passage from a latent condition to an infectious one (L → I) after the
incubation period. In this case the variation in the number of individuals X[m] is
simply given by

∑
h νm

h ah X[h], where ah is the rate of transition from the class [h]
and νm

h ∈ {−1, 0, 1} is the change in the number of X[m] due to the spontaneous
process from or to the compartment [h].

The second class of processes refers to binary interaction among individuals such
as the contagion of one susceptible in interaction with an infectious (S + I → 2I).
In the homogeneous assumption, the rate of variation of individuals X[m] is given
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by
∑

h,g νm
h,gah,g N−1 X[h] X[g], where ah,g is the rate of transition rate of the process

and νm
h,g ∈ {−1, 0, 1} the change in the number of X[m] due to the interaction. The

factor N−1, where N is the number of individuals, stems from the fact that the
above expression considers the homogeneous approximation in which the proba-
bility for each individual of class [h] to interact with an individual of class [g] is
simply proportional to the density X[g]/N of such individuals (note that it is how-
ever possible to consider other cases (Anderson and May, 1992)). If we neglect
fluctuations and use the above expression, it is possible to derive the usual de-
terministic reaction rate equations for the average number of individuals in the
compartment [m] in each city j as

∂t
〈
X[m]

j

〉 =
∑

h,g

νm
h,gah,g N−1

j

〈
X[h]

j

〉〈
X[g]

j

〉 +
∑

h

νm
h ah

〈
X[h]

j

〉
. (7)

If the total number of individuals is assumed to be constant (which is a realistic
assumption if the disease spreads over a time-scale small compared to the typical
time needed for a significative total population change), these equations must sat-
isfy the conservation equation

∑
m ∂t 〈X[m]〉 = 0. In order to go beyond the usual

deterministic approximations, it is possible to work directly with the master equa-
tion for the processes described above and under the assumption of large popu-
lations, we obtain the Langevin equations in which we associate to each reaction
process a noise term with amplitude proportional to the square root of the reac-
tion term (Gardiner, 2004; Gillespie, 2000). The general Langevin equation for the
evolution of X[m]

j is

∂t X[m]
j =

∑

h,g

N−1
j νm

h,gah,g X[h]
j X[g]

j +
∑

h

νm
h ah X[h]

j

+
∑

h,g

νm
h,g

√

ah,g N−1
j X[h]

j X[g]
j ηh,g +

∑

h

νm
h

√

ah X[h]
j ηh, (8)

where ηh,g and ηh are statistically independent Gaussian noises. The Langevin for-
mulation takes into account fluctuations and is widely used in chemical and reac-
tion diffusion processes (Gillespie, 2000). It is worth remarking that the Langevin
formulation is an approximation to the general master equations approach whose
complete solution is computationally very expensive in the case of a large number
of compartments. In the next section, we will see that the global epidemic spread-
ing model which we are going to consider takes into account a total number of
compartments equal to the number of urban areas (3100) times the number of
states needed to describe the infection dynamics. At the cost of introducing an ap-
proximated treatment in the case of areas with a small population, the Langevin
equation thus represents a viable approach to the evolution of the system.

3. Computational framework for the modeling of global epidemics

In this section we report the general computational approach that we use to model
and simulate the spread of global epidemics. In particular we discuss the numerical
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integration scheme of the epidemic Langevin equations in each city j in presence
of the coupling induced by the transport operator. In addition, we review the prop-
erties of the worldwide airport network dataset that is used as the basic input in
defining the structure and parameters of the computational approach.

3.1. Stochastic formulation of the global epidemic model

The dynamical evolution of the epidemic outbreak is specified by the changes in
the population of the various classes in each city j . The epidemic Langevin equa-
tions are coupled among them by the transport operator that describes movements
of individuals from one city to another and can be numerically solved (Hufnagel
et al., 2004; Gardiner, 2004; Gillespie, 2000; Marro and Dickman, 1998) by consid-
ering the small time steps �t discretization

X[m]
j (t + �t) − X[m]

j (t) =
∑

h,g

N−1
j νm

h,gah,g X[h]
j (t)X[g]

j (t)�t

+
∑

h

νm
h ah X[h]

j (t)�t +
∑

h,g

νm
h,g

√

ah,g N−1
j X[h]

j X[g]
j �t ηh,g

+
∑

h

νm
h

√

ah X[h]
j �t ηh + � j

({
X[m]}), (9)

where ηh,g and ηh are now statistically independent Gaussian random variables
with zero mean and unit variance. The stochastic transport operator � is deter-
mined by the expressions (1) and (2) calculated with the time interval �t . This sim-
ple discretization (9) leads to a well-known technical problem, in particular at the
beginning of the spreading when some of the X[m]

j are small so that a negative value
of the noise term could produce an unphysical negative value of infected individ-
uals. Various possibilities exist to avoid this problem and a first naive approach
would consist in setting X[m]

j to exactly zero whenever the numerical integration

yields X[m]
j (t + dt) ≤ 0. This however corresponds to an asymmetric truncation of

the noise and might introduce uncontrolled biases. An interesting alternative has
been put forward by Dickman (1994) and consists in separating each variable X[m]

j

into its integer part [X[m]
j ] and its non-integer remaining X̃[m]

j and to write the cor-
responding time evolution equations for these variables. This method used with a
sufficiently small time-step for the numerical integration ensures that X[m]

j always
remain positive. Note also that this treatment is fully consistent with the stochastic
procedure used for the transport term, in which the fields X[m]

j are directly treated
as integers.

3.2. The world-wide air transportation network and population data

The basic ingredient of the present computational approach is the dataset provid-
ing travel flows among urban areas. The flows w j� indeed determine the structure
of the dynamical equations by defining the couplings among the various cities and
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determining the large-scale spread of the epidemics. In the following we use the
IATA database containing the world list of airport pairs connected by direct flights
and the number of available seats on any given connection for the year 2002. More
precisely, each direct flight connection between airports j and � has a weight w j�

which is the number of available seats. The resulting world-wide air-transportation
network (WAN) is therefore a weighted graph comprising V = 3880 vertices de-
noting airports and E = 18810 weighted edges accounting for the presence of a
direct flight connection. The average degree (number of connections of each air-
port) of the network is 〈k〉 = 2E/V = 9.70, while the maximal degree is 318. This
dataset has been complemented by the population Nj of the large metropolitan
area served by the airports as obtained by publicly available census databases on
the WWW (such as the United Nations census3 or the US census.4) The obtained
network displays high levels of heterogeneity both in the connectivity pattern and
in the traffic capacities, where the traffic Tj of a node j is defined as the sum of the
weights of the links starting from j

Tj =
∑

�∈V( j)

w j� (10)

where V( j) denotes the set of neighbors of node j . In Fig. 1 we show the be-
havior of the basic quantities characterizing the world-wide network . The degree
probability distribution P(k) = n(k)/V, where n(k) is the number of airports with
k connections (i.e. of degree k), is broadly distributed with a degree range cov-
ering almost two decades, and can be approximated (Guimerà et al., 2005) by a
power-law with exponent close to 2. Moreover, weights and traffic display a strong
heterogeneity revealed by very broad distributions P(w) and P(T) spanning more
than 5 orders of magnitude. It is clear that such large heterogeneities will have
a strong impact on any dynamical process—in particular spread of epidemics—
taking place on the considered network. Finally, to each airport corresponds a city
whose population N is heavy-tailed distributed in agreement with the general re-
sult of Zipf’s (1949) law for city size. Strikingly, these quantities appear to have
non-linear relations among them. The traffic T handled by each airport varies with
the corresponding number of connections k as a power law T ∼ kβ with exponent
β 	 1.5 (Barrat et al., 2004). The city population and the traffic handled by the
corresponding airport obey the non-linear relation N ∼ Tα with α 	 0.5 in con-
trast with the linear behavior assumed in previous studies (Hufnagel et al., 2004).
Numerical simulations will consider the 3100 airports with highest traffic T, which
are complemented by population data of the corresponding urban area. This frac-
tion corresponds to 80% of the total number of airports and carries more than 99%
of the total traffic. It is worth noticing that in such a heterogeneous frame, it is very
important to take into account as much as possible the fluctuations and large-scale
variability of the world-wide airport network. Considering small subsets of the net-
work leads to serious approximations on the structure of the network.5

3http://unstats.un.org/.
4http://www.census.gov.
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Fig. 1 Properties of the world-wide airport network. Statistical fluctuations are observed over
a broad range of length scales. (A) The degree distribution P(k) follows a power-law behavior
on almost two decades with exponent 1.8 ± 0.2. (B) The distribution of the weights (fluxes) is
skewed and heavy-tailed. (C) The distribution of populations is power-law distributed, follow-
ing Zipf’s law (Zipf, 1949). (D) The traffic T displays large fluctuations with a distribution P(T)
spanning more than 6 orders of magnitude. (E) The city population varies with the traffic of the
corresponding airport as N ∼ Tα with α 	 0.5, in contrast with the linear behavior postulated in
previous works (Hufnagel et al., 2004). (F) The traffic T varies with connectivity as a power law
with exponent 1.5 ± 0.1.

4. Spatiotemporal pattern of global epidemic outbreaks

Global epidemic forecast would be extremely relevant in the case of the emer-
gence of a new pandemic influenza. Indeed, pandemic influenza killed millions of
people world-wide throughout this century (1918, 1957 and 1968) and the occur-
rence of a new outbreak has to be expected. Pandemic influenza spreads rapidly
and substantial transmission occurs before the onset of case-defining symptoms.
In the following we adopt a minimal model for a pandemic spread with the aim

5Smaller fractions of the network used in earlier studies such as the 50 (resp. 500) largest airports
correspond to only 2% (resp. 12%) of the total network in terms of number of nodes and carry
20% (resp. 80%) of the total traffic, according to the 2002 IATA database.
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of understanding the effect of the underlying air-transportation network structure
on the general properties of the spatiotemporal outbreak pattern. We use the very
simplistic approximation of the SIR dynamics in which a fully mixed population
is assumed within each city. A refined modeling would include additional aspects
such as detailed information about contact networks, age structure, seasonal ef-
fects, stages of infection of the specific disease. However, our study aims at the
discussion of the general statistical properties of the global spreading and the role
of the transportation network heterogeneity in the disease spreading. From this
point of view, while we provide the most possible details on the transportation
network, we make use of the minimal SIR model in order to provide a general
discussion that is not hindered by the use of very complicate disease transmission
mechanisms. Specific results of the present computational approach in the case
of realistic disease transmission and the comparison with real case studies will be
reported elsewhere.

4.1. The SIR case

In the basic standard compartmentalization of the SIR, each individual can only
exist in one of the discrete states such as susceptible (S), infected (I) or per-
manently recovered (R). In each city j the population Nj is given by Nj =
Sj (t) + Ij (t) + Rj (t), where Sj (t), Ij (t) and Rj (t) represent the number of sus-
ceptible, infected and recovered individuals at time t , respectively (in the fol-
lowing we replace for simplicity the general notation X[m]

j by Sj , Ij , Rj ). The
epidemic evolution is governed by the basic dynamical evolution of the SIR
model where the probability of a susceptible individual acquiring the infection
from any given infected individual in the time interval dt is proportional to
βdt . Here β is the transmission parameter that captures the aetiology of the
infection process. At the same time, infected individuals recover with a prob-
ability µdt , where µ−1 is the average duration of the infection. The relevant
parameter describing the epidemic is the basic reproduction number R0 = β/µ

(Anderson and May, 1992) given by the average number of secondary cases
that each infected individual generates in a susceptible population. If R0 > 1
and the initial density of susceptibles is larger than R−1

0 , then an epidemic will
develop in the city. Using the scheme presented in Section 3 and writing the
discretized epidemic Langevin equation for each class of the SIR model we
obtain

Sj (t + �t) − Sj (t) = −β
Ij (t)Sj (t)

Nj
�t +

√

β
Ij Sj

Nj
�t η j,1(t) + � j ({S}) (11)

Ij (t + �t) − Ij (t) = +β
Ij (t)Sj (t)

Nj
�t − µIj (t)�t −

√

β
Ij Sj

Nj
�t η j,1(t)

+ √
µIj�t η j,2(t) + � j ({I}) (12)

Rj (t + �t) − Rj (t) = +µIj (t)�t − √
µIj�t η j,2(t) + � j ({R}) , (13)
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where η j,1 and η j,2 are statistically independent Gaussian random variables with
zero mean and unit variance, and � j ({X}) is the stochastic travel operator (de-
fined in Section 2.1) depending on the traveling probabilities (obtained from
the IATA dataset) pj� = w j��t/Nj of any individual to travel from city j to
city �.

The model is thus a compartmental system of 3100 × 3 differential equations
whose integration provides the disease evolution in every urban area correspond-
ing to an airport. The system can be solved numerically by using standard Cauchy–
Euler discretization methods for small time steps �t . In the limit of making the
step size small, this procedure represents a good approximation to the underlying
differential equations. In order to avoid un-physical negative values of infected
individuals, specific numerical techniques must be used, as those illustrated in
Section 3.1.

The presented computational framework may be used to obtain detailed fore-
cast of the geographic spread of an emerging disease starting in differential initial
seeds. At first instance, it is possible to monitor standard epidemiological quanti-
ties such as the level of infected individuals, the morbidity and the prevalence at
different granularity levels; i.e. country, state or administrative regions. The val-
ues of the disease parameters β and µ have been chosen according to (Grais et al.,
2004) to ensure biologically sound values and kept constant during the evolution.
This amounts to assume that no restrictions on traveling and targeted prophylaxis
measure are implemented during the outbreak. In this perspective, it is worth re-
marking that the presented results have to be considered just in a theoretical per-
spective. We performed several different realizations of the noise for an epidemic
outbreak starting from a given initially infected city. A sensitivity analysis of the
model respect to the initial conditions has been performed by specifying different
origins of the pandemic outbreak, namely Hong Kong, New York, Los Angeles,
San Francisco and London. Moreover, global properties have been studied by av-
eraging over different initially infected cities.

Figure 2 shows the profiles of the prevalence, defined as the fraction of in-
fected individuals, restricted to the World continents (with America split in North
America and Latin America) for an epidemics starting in Hong Kong. The max-
imal dispersion as obtained with different realizations of the noise is shown for
each continent. Differences can be noted in the time evolution of the epidemics
in different regions of the World. Figure 3 A shows the arrival time of the infec-
tion for each continent. Starting from Asia, the infection is very soon detected
in Europe, North America and Oceania, which are connected to the initially in-
fected city through direct flight connections carrying a large traffic, and much later
in Africa and Latin America. The epidemic peak is first reached in Oceania (see
Fig. 3B) followed by North America, Europe, Asia and Africa. The maximum of
the prevalence is much more delayed in Latin America with respect to other con-
tinents since it is the last one to be infected.

The prevalence profiles shown in Fig. 2 give only a global measure of the time
evolution of the epidemics in a certain region. Further insight in the geographic
spread of an emerging disease can be obtained by representing the level of infected
individuals at the different granularity levels through the use of maps. In Figs. 4
and 5 we present the dynamical evolution in the United States and in Europe,
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Fig. 2 Prevalence profiles for each continent for an epidemics starting in Hong Kong. The shaded
area represents the maximal dispersion of the prevalence profile obtained with different realiza-
tions of the noise.

respectively, of a pandemic starting in Hong Kong. The evolution of epidemic out-
breaks is monitored by recording at each time step (1 day) the density of individu-
als in each class (S, I, R) present in each city. We group the US states in the nine

Fig. 3 Arrival time (A) and epidemic peak delay (B) restricted to the World continents for an
epidemics originated in Hong Kong. Starting from Asia, the epidemics quickly infects cities in
Europe, North America and Oceania, then reaches Africa and much later Latin America. The
time evolution of the epidemics is faster in Oceania where the maximum of the prevalence is first
reached, followed by North America, Europe, Asia and Africa. The last continent which experi-
ences the outbreak of the epidemics is Latin America, which is also the last one to be infected.



Bulletin of Mathematical Biology (2006) 68: 1893–1921 1905

Fig. 4 Geographical representation of the evolution in the US of the SIR epidemic specified
in the text with Hong Kong as initial seed. States are grouped according to the nine influenza
surveillance regions. The color code corresponds to the prevalence in each region, from 0 to the
maximum value reached (ρmax). The first set of maps provides the original US maps, while the
second shows the corresponding cartograms obtained by rescaling each region according to its
population (Gastner and Newman, 2004). Three representations of the airport network restricted
to the United States are also shown, corresponding to three different snapshots of the epidemic
diffusion. For the sake of visualization, only the 100 airports with largest traffic in the US are
shown, however the data have been obtained by using the full data set including 3100 airports.
The color code is the same adopted for the maps.

influenza surveillance regions6 which are identical to the nine divisions of the US
census. Two different visualization strategies are used for both the US and Europe.
In the first set of maps, regions are drawn with their original size and a color code
gives the prevalence of the infection in each region. This representation readily
shows the high heterogeneity of the pandemic evolution. While useful, such a vi-
sualization might be misleading, since the same prevalence obtained in different
regions might correspond to very different values in the number of infected indi-
viduals if the two regions are very differently populated. Moreover, it is common to

6http://www.cdc.gov/flu/.
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Fig. 5 Geographical representation of the evolution in Europe of the SIR epidemics starting in
Hong Kong. The color code corresponds to the prevalence in each European country, from 0 to
the maximum value reached (ρmax). The first set of maps provides the original maps of Europe,
while the second shows the corresponding cartograms obtained by rescaling each country accord-
ing to its population (Gastner and Newman, 2004). Three representations of the airport network
restricted to Europe are also shown, corresponding to three different snapshots of the epidemic
diffusion. For the sake of visualization, only the 100 airports with largest traffic in Europe are
shown, however the data have been obtained by using the full data set including 3100 airports.
The color code is the same adopted for the maps.

find strong heterogeneities in the population density, and it is not easy to detect vi-
sually a large level of contamination in a small but densely populated geographical
area. In order to obtain a geographical representation which is able to carry at the
same time information both on the level of infection and on the number of infec-
tion cases in each region, we have constructed the corresponding cartograms of the
original maps in which the size of each geographic region—influenza surveillance
regions in the US and countries in Europe—is rescaled according to its population.
Several methods for constructing cartograms have been developed (see Gastner
and Newman, 2004, and references therein); here we adopt the diffusion-based
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method (Gastner and Newman, 2004), which produces cartograms by equalizing
the population density through a linear diffusion process. This method depicts
simultaneously both the prevalence and the total number of cases and conveys
properly the impact in terms of infection cases despite the strong heterogeneities
in population density. The obtained maps strengthen the evidence of a very het-
erogeneous pattern of the epidemic evolution. Countries and states show different
levels of prevalence following a diverse temporal pattern. The differences in the
epidemic peaks that we observe at the continental granularity are present at the
country and state level. While the visual inspection provides a very intuitive evi-
dence for the complex evolution of the epidemics, we still lack a quantitative anal-
ysis of the epidemic pattern. This is particularly relevant if we aim at connecting
the observed epidemic evolution with the underlying transport network structure
and the stochasticity of the infection transmission.

4.2. Deterministic approximation

In order to gain some analytical understanding on the time evolution of the epi-
demics it is convenient to consider the deterministic versions of the stochastic
equations (11), (12), (13) that read as

dSj

dt
= −β

Ij Sj

Nj
+ 〈� j ({S})〉 (14)

dIj

dt
= β

Ij Sj

Nj
− µIj + 〈� j ({I})〉 (15)

dRj

dt
= µIj + 〈� j ({R})〉. (16)

These equations correspond to the average behavior and contain only the aver-
aged expression of the transport operator. At the early stage of the epidemics, the
number of infected individuals is relatively small in all cities and it is possible to
linearize the evolution equations for the number Ij (t) of infected (Sj 	 Nj ) as

∂t Ij = � j Ij +
∑

�

w�j

N�

I� (17)

where � j = β − µ − Tj/Nj . The solution of this partial differential equation can
be written as the solution of the following integral equation

Ij (t) = Ij (0)e� j t +
∑

�

w�j

N�

∫ t

0
dτ I�(τ )e� j (t−τ ). (18)

This shows in particular that the ratio Tj/Nj is a relevant variable in the determi-
nation of the time behavior of Ij and in differentiating among the epidemics evo-
lution in different cities. The underlying network structure affects the epidemics
evolution also by the heterogeneity of the connectivity pattern and the weight dis-
tribution through the second term of the above equation. This term contains the
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ratios w�j/N�, thus determining the number of the couplings of Ij with the infec-
tion of other cities and the strength of these couplings. A heterogeneous behavior
for the infection behavior might therefore find its origin both in a heterogeneous
connectivity pattern as well as in a heterogeneous traffic flows distribution. This is
a striking evidence of the intricate nature of the interplay between the various lev-
els of heterogeneity in the system, that contribute simultaneously to the dynamical
behavior of the epidemic.

5. Epidemic heterogeneity and network structure

While the analysis of the deterministic equations provides a qualitative insight on
the role of the network structure on the heterogeneity of the epidemic pattern, we
aim at a more quantitative analysis able to discriminate the effect of the specific
structural properties of the WAN. Indeed, this heterogeneity might find its ori-
gin just in the stochastic nature of the infectious process or be determined by the
structural properties of the transportation network. In the latter case, it is possi-
ble to envision the possibility of a larger predictability of the epidemic behavior
that would reflect the underlying network structure. In order to quantify the het-
erogeneity of the epidemic spread at a global level, we monitor for the V cities
the behavior of the prevalence in time, i j (t) = Ij (t)/Nj , and define the normalized
vector 
ρ(t) with components ρ j (t) = i j (t)/

∑
� i�(t) which contains the relevant in-

formation on the epidemic pattern at time t . The level of heterogeneity of the
disease prevalence is then measured by quantifying the disorder encoded in the
vector 
ρ(t). In order to do that, we use for the first time the normalized entropy
function

H(t) = − 1
log V

∑

j

ρ j (t) log ρ j (t) (19)

that is customarily used in information theory to quantify the level of disorder of
a signal or system. If the epidemics is homogeneously distributed among all nodes
(i.e. all cities have the same value of prevalence at the same time), the entropy
is H = 1. On the other hand, the most heterogeneous situation corresponds to
only one city being infected while all the others are not infected, thus leading to
an entropy equal to zero, H = 0. It is important to stress that in the present con-
text the entropy does not have any thermodynamical implications. It must be just
considered as the appropriate mathematical tool able to quantify the statistical dis-
order of a complicate spatiotemporal signal. Without being related to any specific
biological meaning, this quantity is able to provide a measure of the geographic
heterogeneity of the disease pattern at any given time t .

To uncover the effect of the network structure, we will compare the results ob-
tained on the actual network with those obtained on three different network mod-
els, which we will denote by HOM, HETw and HETk. The first one (HOM) is
a homogeneous Erdös-Rényi random graph with the same number of vertices V
as the WAN, and is obtained as follows: for each pair of vertices ( j, �), an edge is
drawn independently, with uniform probability p = 〈k〉/V where 〈k〉 is the average
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degree of the WAN. A typical instance of a random graph is thus obtained, char-
acterized by a Poissonian degree distribution, peaked around the average value
〈k〉 and decreasing faster than exponentially at large degree values, in strong con-
trast with the true degree distribution of the WAN. Moreover, the weights of the
links and the city populations are taken as uniform and equal to their average val-
ues in the WAN. The second network model (HETw) is again characterized by a
homogeneous connectivity pattern, but has heterogeneous traffic values between
airports. In particular, the weights are distributed according to the same skewed
distribution P(w) as in the real case. To the urban area surrounding each airport
we assign a population value as obtained from the non-linear relation found in
the WAN between the traffic T handled by each airport and its population N, i.e.
T ∝ Nα with α 	 0.5. Finally, for the third model (HETk), we consider the real
topology of the WAN, but weights and populations are taken uniform and equal
to the average values 〈w〉 and 〈N〉 obtained from the distributions of the WAN,
P(w) and P(N), respectively. A schematic representation of the probability distri-
butions of degrees, weights and population values adopted for each network model
is shown in Fig. 6.

Comparisons between the actual air-transportation network and the three null
models yield insight on the role distinctly played by each level of heterogeneity.
Starting from the complete absence of heterogeneity both in the topology and in
the flux/population data in HOM, the various levels of heterogeneity are inves-
tigated separately: HETw incorporates only the large fluctuations of weights and
populations, while HETk allows to study the role of a broad degree distribution
in the epidemic spread pattern. The real network WAN contains finally all hetero-
geneities.

We show in Fig. 7 the results obtained on the actual network and those obtained
on the three different network models. Differences in the behavior observed in
the null cases and in the real case provide striking evidence for a direct relation
between the network structure and the epidemic pattern. The completely homo-
geneous network HOM displays a homogeneous evolution (with H ≈ 1) of the

Fig. 6 Schematic representation of the probability distributions characterizing the network mod-
els considered. For each network model P(k), P(w) and P(N) are shown.
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Fig. 7 Analysis of the heterogeneity of the epidemic pattern in the actual network (WAN) com-
pared with the three network models HOM, HETw and HETk. (A) Entropy H(t) averaged over
distinct initial infected cities and over noise realizations. Each profile is divided into three dif-
ferent phases each represented by different patterns, the central one corresponding to H > 0.9,
i.e. to a homogeneous geographical spread of the disease. This phase is much longer for the net-
work models characterized by a homogeneous degree distribution—HOM and HETw—than for
the real airport network. The behavior observed in HETk is strikingly close to the real case, thus
meaning that the connectivity pattern plays a crucial role in the epidemic behavior. (B) Average
value of the entropy, with the maximal dispersion (shaded area) obtained from 2 × 102 noise re-
alizations of an epidemics starting in a given city (Hong Kong for the WAN). Fluctuations have a
mild effect in all cases.

epidemics during a long time window, with sharp changes at the beginning and at
the end of the spread. A similar picture is obtained when considering HETw, i.e.
a network characterized by a homogeneous connectivity pattern, but with traffic
capacities and populations which are broadly distributed. We observe a different
scenario for topologically heterogeneous networks where H is significantly smaller
than one for most of the time, with long tails signaling a long lasting heterogene-
ity of the epidemic behavior. The previous analytical inspection of the determin-
istic epidemic equations has shown that the broad variability of the contact pat-
tern (degree distribution) and w j�/Nj play an important role in the heterogeneity
of the spreading pattern. Strikingly, networks sharing the same connectivity pat-
tern, but with remarkably different traffic and population distributions (such as
HOM/HETw or HETk/WAN), display very similar entropic profiles. Moreover,
differences in the nature of the degree distribution of the underlying network lead
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Fig. 8 Percentage Ninf of infected cities as a function of time. The HOM and the HETw cases
display a large interval in which all cities are infected. The HETk and the real case show a
smoother profile with long tails, signature of a long lasting geographical heterogeneity of the epi-
demic diffusion.

to clearly different results in the spatiotemporal heterogeneity of the spreading
pattern, thus pointing out that the broad distribution of degrees of the airport net-
work represents a crucial feature in determining the overall properties of the epi-
demic pattern.

In Fig. 7B we also show the results obtained for the spreading starting from a
given city, by reporting the average entropy profile together with the maximal dis-
persion obtained from different realizations of the noise. It is clear that the noise
has a mild effect and that the average behavior of the entropy is very representa-
tive of the behavior obtained in each realization.

Figure 8 displays the evolution of the percentage Ninf of infected cities as a func-
tion of time. For the HOM and the HETw case, a large interval in which all cities
are infected is observed, confirming the occurence of a long lasting homogeneous
infection pattern. In contrast, the HETk and the real case show a smoother pro-
file with long tails, corresponding to a geographical heterogeneity of the epidemic
diffusion.

We have investigated different values of the parameters β and µ and different
initial conditions in order to test the reliability of the results obtained concerning
the heterogeneity level of the spreading pattern. In Fig. 9 we show the entropy pro-
file for two epidemic diseases starting in a given city, namely Hong Kong for the
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Fig. 9 Reliability of entropic profiles with respect to changes in R0. Entropy profiles for two
different disease strains starting in a given city (Hong Kong for the WAN) characterized by two
different values of the reproductive number R0. Values are those estimated for the SARS out-
break in Hong Kong: A, R0 = 3.7; B, R0 = 2.2. From top to bottom: HOM, HETw, HETk, WAN.

WAN, and characterized by two different values of the reproductive number R0.
We consider low to moderate transmissibility, as estimated for the early epidemic
stage of the SARS outbreak in Hong Kong (Lipsitch et al., 2003), with values equal
to 2.2 and 3.7. For each value, the three null models—HOM, HETw, and HETk—
and the real case (WAN) are shown. Changes in the parameter values clearly
leads to different time scales for the global spread, but do not affect the over-
all conclusions regarding the geographical heterogeneity of the epidemic diffusion
pattern.

We have also studied the effect of different initial conditions, such as different
initial infected cities and several different initial fractions of susceptible popula-
tion. In the following, we compare results obtained with two different values of
the initial percentage of susceptibles in each city, namely 80% and 60%. The prop-
agation time scales are affected, but the entropy profiles display the same features
already discussed for the absence of initial immunity (S(t = 0) = N), as shown in
Fig. 10. In all cases, HOM and HETw display a strong homogeneity and sharp
transitions at the early and final stages of the epidemics, while HETk and WAN
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Fig. 10 Reliability of entropic profiles with respect to the initial immunity. Entropy profiles of
an epidemics starting in a given city (Hong Kong in the WAN case), where the initial percentage
of susceptible population in each city is assumed to be equal to 80% or 60%. Susceptible fraction
values are chosen in agreement with the estimates provided by rsearch studies on different strains
of influenza disease: A, Sj (t = 0) = 0.8 · Nj for all j ; B, Sj (t = 0) = 0.6 · Nj for all j . From top to
bottom: HOM, HETw, HETk, WAN.

profiles are characterized by long tails and shorter homogeneous phases (H ≈ 1),
thus confirming the overall results discussed previously.

The entropy profiles shown in Figs. 7, 9 and 10 give a quantitative characteriza-
tion of the level of heterogeneity of the epidemic pattern observed by considering
the complete world-wide airport network. It is also possible to investigate the het-
erogeneity of the spread on a smaller scale by restricting the sums in Eq. (19) to
the cities j belonging to a given region G

HG(t) = − 1
log VG

∑

j∈G

ρ j (t) log ρ j (t), (20)

where VG is the number of cities in the region G. As an example, in Fig. 11 we
plot the entropy profile restricted to the World continents for a pandemic start-
ing in Hong Kong. The entropic profiles relative to North America and Europe
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Fig. 11 Evolution of the entropy restricted to the World continents—North America, Latin
America, Europe, Asia, Africa and Oceania—for an epidemics starting in Hong Kong. Shaded
areas show the maximal dispersion obtained for various realizations of the noise. The dotted line
corresponds to the maximum value of the entropy reached in each region, thus representing the
most homogeneous distribution of prevalence among cities belonging to that region.

correspond to the spatiotemporal spread of the disease illustrated in the maps of
Figs. 4 and 5, respectively. It is interesting to note that all continents show essen-
tially the same behavior, displaying very similar entropic profiles. There are how-
ever small differences and the evolution towards the most homogeneous phase
(indicated by the dotted line in Fig. 11) is faster in Oceania, North America, Asia
and Europe with respect to Africa and Latin America. Figure 12 shows the en-
tropy peak delay of each continent, i.e. the time period after which the maximum
value of their entropic profile is reached since the first entropy peak observed in
Oceania. When the epidemic pattern reaches its maximum level of homogeneity
in Africa and Latin America, the other continents are already experiencing an in-
crease in the heterogeneity of the epidemic prevalence distribution.

6. Predictability and epidemic forecast

A major issue in the modeling of global epidemics is represented by the reliabil-
ity of the obtained forecasts. In other words it is crucial to answer the question
“are epidemics predictable?.” A positive answer to this question amounts to state
that stochastic fluctuations are less important than the constraints imposed by the
transport network structure that impose an overall pattern to the epidemic evolu-
tion. In this respect, global properties provide insights on the general features of
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Fig. 12 Time delay at which each continent reaches the most homogenous phase correspond-
ing to the maximum entropy (dotted line in Fig. 11). The first entropy peak is here observed in
Oceania and serves as the initial time t = 0. Continents are ranked according to their entropy
peak delay.

the epidemic spreading in relation with the underlying network but do not provide
adequate information on the predictability of the resulting pattern. Indeed, even
when global quantities have small fluctuations from one stochastic realization to
another, the infected cities might be very different, thus resulting in a very differ-
ent epidemic scenario. This is a basic issue of global epidemic modeling since the
reliability of any epidemic forecast depends on the fact that any given stochastic
realization is reasonably similar to the average prediction or, in other words, that
any two given stochastic realizations follow similar evolutions.

A quantitative measure of the predictability of the epidemic pattern is therefore
given by the statistical similarity of the history of epidemics outbreaks starting with
the same initial conditions and subject to different noise realizations. A convenient
quantity to monitor in this case is the vector 
π(t) whose components are π j (t) =
Ij (t)/

∑
l Il ; i.e the normalized probability that an infected individual is in city j .

The similarity between two outbreaks realizations is quantitatively measured by
the statistical similarity of two realizations (denoted by I and I I) of the global
epidemic characterized by the vectors 
π I and 
π I I respectively. There are many
possible measures of distributional similarity and we consider here the Hellinger
affinity which leads to the similarity

simH(
π I , 
π I I) =
∑

j

√
π I

j π
I I
j . (21)

This measure has the appealing property of belonging to the interval [0, 1] and
to take the value sim(
π I , 
π I I) = 1 when the two distributions are identical and
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the lowest value sim(
π I , 
π I I) = 0 when there is no overlap at all. While in the
following we will report results obtained with the Hellinger distance, we have
measured for completeness also another similarity based on the Jensen–Shannon
entropy (Wong and Yao, 1987; Lee, 1999) which leads to nearly identical results
confirming the independence of our results with respect to the choice of the sim-
ilarity measure. These normalized similarities measures do not however account
for the difference in the total epidemic prevalence. Indeed, normalized partition
of infected individuals differing only of a multiplicative factor will generate the
same vector 
π . It is thus necessary to consider as well the quantity sim(
i I , 
i I I)
where 
i = (i, 1 − i) and i(t) is the worldwide epidemic prevalence

∑
j Ij (t)/N ,

with N = ∑
j Nj . This vector takes into account the similarity of the global preva-

lence in two stochastic realizations. The overlap function between two different
stochastic realizations of an epidemic with the same starting initial conditions and
disease parameters is therefore defined as

�(t) = simH(
i I(t), 
i I I(t)) × simH(
π I(t), 
π I I(t)). (22)

This overlap is maximal (�(t) = 1) when the very same cities have the very same
number of infectious individuals in both realizations, and �(t) = 0 if the two real-
izations do not have any common infected cities at time t .

The evolution of the overlap during the epidemic spread is shown in Fig. 13 for
the various null models and for the WAN. In the HOM and HETw case, we find an
impressively large overlap (� > 80%) even at the early stage of the epidemics—
the most relevant phase for early detection. The picture is different if we consider
the HETk and the real airport network where two distinct behaviors emerge de-
pending on the degree of the initial infected city. In the case of poorly connected
initial cities the overlap is above 80% and decreases only at the very end of the
epidemics reflecting the fact that the epidemic behavior is initially constrained to
move along the few connections of the starting city, providing an imprint of the
outbreak evolution. On the contrary, initial cities with a hub airport generate re-
alizations whose overlap initially decreases to 50–60% (up to 20% in the HETk):
the possibility of a wider range of possible channels for the epidemic diffusion
results in a larger differentiation of the epidemic history in each stochastic real-
ization. By comparing HETk with the real case—i.e. networks which share the
same connectivity pattern but have different traffic distributions—we observe a
higher predictability at the early stage of the epidemics in the WAN than in the
null model with homogeneous traffic. The comparison of the overlap results ob-
tained for networks with connectivity pattern of different nature but with same
traffic capacities—HOM/HETk or HETw/WAN—clearly shows the effect of large
degree fluctuations in decreasing the predictability of the epidemic pattern, while
the emergence of a backbone of dominant connections given by highly heteroge-
neous weights is evident in the increase of the overlap values obtained for WAN
and HETw compared to HETk and HOM, respectively. We can thus conclude at
this stage that the observed behaviors are the result of the balance between two
competitive trends. On the one hand, the topological heterogeneity tends to lower
the predictability of the global spread of a disease by providing several possible
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Fig. 13 Predictability of the epidemics spread as measured by the average overlap and corre-
sponding standard deviations (obtained with 5 × 103 couples of different realizations) versus time.
We observe two different behaviors depending on the degree of the initially infected city. The ini-
tial decrease of the overlap is larger in the case of airport hubs (left column) compared to poorly
connected cities (right column) where few spreading channels are available. We also report the
prevalence profile as a function of time showing that the maximum predictability corresponds to
the prevalence peak.

channels for the travels of infected individuals. On the other hand, the heterogene-
ity in the traffic handled by each airport contributes to increase the predictability
of the epidemic diffusion by identifying emerging epidemic pathways, i.e. main
spreading channels for the spreading disease.

It is important to stress that other factors contribute to the effective predictabil-
ity of the epidemic evolution. For instance, epidemics that reach a large value of
infected individuals are less prone to fluctuations and have a large predictability.
For the same reason, it is possible to see that the overlap peak is usually associated
with the prevalence peak. On the other hand, the initial and late stage of the epi-
demics are naturally less predictable and prone to stochastic effects. Finally, the
time variability of epidemic parameters due to vaccination and control measure
are obviously important factor that might change the overall predictability. The
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mathematical tools developed here are therefore providing a probe to assess the
epidemic forecast reliability that may be used on each case and specific infection
scenario.

7. Conclusions and perspectives

From our study, it emerges that the air transportation network properties are re-
sponsible for the global pattern of emerging disease. In this perspective, the com-
plex features characterizing this network are the sources of the heterogeneous
and seemingly erratic spreading on a global scale of diseases such as SARS. We
have also shown that it is possible to obtain quantitative measurements of the pre-
dictability of epidemic patterns by providing a tool that might be used to obtain
confidence intervals in epidemic forecast and in the risk analysis of containment
scenarios. In addition, we were able to relate different levels of predictability with
two conflicting effects: on the one hand, the dominant traffic flows which define
the main channels of epidemic spreading—the “epidemic pathways”; on the other
hand, the underlying heterogeneous connectivity pattern leading to a multiplicity
of possible channels. Obviously, in order to make the forecast more realistic, it is
necessary to introduce more details in the disease dynamics. Moreover, seasonal
effects and geographical heterogeneity in the basic transmission rate (due to differ-
ent hygienic conditions and health care systems in different countries) should be
addressed. Finally, the interrelation of the air transportation network with other
transportation systems such as railways and highways could be very useful for fore-
cast on longer time scales. We believe that large-scale mathematical models that
take fully into account the complexity of the transportation matrix can be used
to obtain detailed forecast of emergent disease outbreaks. This first general and
theoretical study thus opens the path to further works including historical case
studies of specific diseases such as the SARS, the influenza, etc, and the detailed
forecast of future epidemic scenarios. Both the historical and future forecasts may
represent a valuable tool to test and optimize traveling restrictions and vaccination
policies in the case of new pandemic events.
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Appendix: Transport operator including transit passengers

Here we want to provide an expression for the transport operator that con-
tains also transit passengers. Considering only two-legs travel, and neglecting the
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fraction of passengers with more than one stop, we can rewrite the total flux w j�

of passengers traveling from city j to city � as a sum of different contributions
(see Fig. A.1): the first one, denoted w

(1)
j� , corresponds to passengers taking a one

leg flight from j to �; another contribution, w
(2)
j� , comes from passengers departing

from j and transiting in � for a connecting flight towards another final destination
m′; finally, a last term has to take into account passengers departing from an airport
m neighbor of j , transiting in j and finally reaching their destination �. For each
m neighbor of j , this last term is thus proportional to w

(2)
mj and to the probability

w j�/Tj that passengers from m take in j a flight towards �. Finally we obtain

w j� = w
(1)
j� + w

(2)
j� +

∑

m∈V( j),m�=�

w
(2)
mj

w j�

Tj
. (A.1)

We can assume that the number of passengers in transit in � is a small fraction α of
the total traffic between j and �: w

(2)
j� = αw j�. We then obtain the expression for

one leg travel passengers from j to �:

w
(1)
j� 	 (1 − α)w j� −

∑

m∈V( j),m�=�

αwmj
w j�

Tj
. (A.2)

We now derive the expression for the transport operator with the inclusion of
two legs traveling. For the sake of simplicity we will present the derivation for
the average transport operator. for a given city j , passengers of a category X can
leave j either through one-leg or two-leg traveling, with respective probabilities
p(1)

j� = w
(1)
j� /Nj and p(2)

j� = w
(2)
j� /Nj . This gives an average outflow

∑

�∈V( j)

p(1)
j� Xj +

∑

�∈V( j)

p(2)
j� Xj . (A.3)

On the other hand, passengers of category X arriving to j can come either directly
from neighbors � of j , with probability p(1)

�j , or arrive from farther nodes m after a
transit through these neighbors. The average influx can thus be written as

∑

�∈V( j)

p(1)
�j X� +

∑

�∈V( j)

∑

m∈V(�),m�= j

p(2)
m�

w�j

T�

Xm. (A.4)

Finally the average full transport operator for city j , including two-leg travels,
reads

〈� j ({X})〉 =
∑

�∈V( j)

(
p(1)

�j X� − p(1)
j� Xj

)

+
∑

�∈V( j)

∑

m∈V(�),m�= j

p(2)
m�

w�j

T�

Xm −
∑

�∈V( j)

p(2)
j� Xj . (A.5)
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Fig. A.1 Transit term. There are three different contributions to the travel from j to �: Some
individuals travel only from j to � (black line), while others make a two-leg travel from either m
to � (red line) or from j to m′ (yellow line).

A stochastic version of the two leg transport operator consists in a straightforward
generalization of the multinomial stochastic process in which the probabilities for
single leg and two legs traveling are separated.
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