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Abstract 
Despite their importance for the spread of zoonotic diseases, our understanding of the 

dynamical aspects characterizing the movements of farmed animal populations remains 

limited as these systems are traditionally studied as static objects and through simplified 

approximations.  By leveraging on the network science approach, here we are able for the 

first time to fully analyze the longitudinal dataset of Italian cattle movements that reports 

the mobility of individual animals among farms on a daily basis. The complexity and 

inter-relations between topology, function and dynamical nature of the system are 

characterized at different spatial and time resolutions, in order to uncover patterns and 

vulnerabilities fundamental for the definition of targeted prevention and control measures 

for zoonotic diseases. Results show how the stationarity of statistical distributions 

coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, 

on all timescales. Traditional static views of the displacement network hide important 

patterns of structural changes affecting nodes’ centrality and farms’ spreading potential, 

thus limiting the efficiency of interventions based on partial longitudinal information. By 

fully taking into account the longitudinal dimension, we propose a novel definition of 

dynamical motifs that is able to uncover the presence of a temporal arrow describing the 



evolution of the system and the causality patterns of its displacements, shedding light on 

mechanisms that may play a crucial role in the definition of preventive actions. 

Introduction 

Animal movements represent a crucial aspect for the trading and marketing of livestock, 

though they may offer an easy mean for rapid dissemination of zoonotic infectious 

diseases among animal holdings, with a spatial extent covering large geographical 

distances, as shown for example by the 2001 Foot-and-Mouth disease epidemic in the 

UK [1]. Animal diseases may compromise livestock welfare and reduce productivity, 

and may in addition represent a threat to human health, since the emergence of human 

diseases is dominated by zoonotic pathogens [2]. Disease management and control is 

thus very important in order to reduce such risks and prevent large economical losses [3]. 

This can be achieved for example through controlling animal movements and mixing, 

controlling entry to farm lots, quarantining animals, or imposing standstill periods that 

prevent further movements of animals off premises. To correctly evaluate such 

preventive and control measures, a detailed knowledge and regulation of animal 

movements is needed. A crucial step into addressing this issue has been taken in Europe 

by establishing the implementation of a digital framework for the identification and 

registration of bovine animals [4], and similar cattle identification and tracing systems 

have also been implemented in other countries [5]. Detailed data on the movement of 

individual cattle at the national level have thus become available that trace each bovine 

along its movements among premises on a daily basis.  

Such monitoring efforts have led to a unique opportunity of studying animal movements 

in a detailed way, characterizing their behavior in time and space, and identifying 

patterns that may become relevant for the spread of a potential disease in the cattle 

population. A natural description of these systems is offered by the network 

representation in terms of nodes (the elements of the system, i.e., the premises in the 

cattle flow case) and links (the interactions among its elements, i.e., the cattle movements 

among premises) [6-11]. Much research has been done in the analysis of networked 

systems available from similar empirical datasets. The study of biological networks and 
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transportation infrastructures, technological networks, human communication and 

mobility patterns [12-24] has unveiled the presence of unexpectedly similar properties, 

shared by these systems independently of their function, origin and scope. Besides the 

small world property, which consists in the co-existence of high local interconnectedness 

and small distances across any two nodes in the network compared to the system size 

[25], the components of such systems are found to be wired in a non-homogeneous way, 

with the number of connections per node showing very large fluctuations in contrast with 

the random Poissonian hypothesis [6]. The ubiquitous nature of this so-called scale-free 

property – found across natural, societal, and artificial systems – has spurred more than a 

decade of research aimed at characterizing and understanding complex systems drawn 

from different disciplines through the common paradigm of networks science [26]. 

The application of network approaches to veterinary medicine is however rather new. As 

reviewed recently by Dubé et al. [27] and by Martinez-López et al. [28], few papers have 

been published that analyze livestock movements by constructing the network of 

displacements and studying the relations between nodes with a systemic approach, thus 

going beyond the simple characterization of single-node properties (as e.g. the amount or 

frequency of displacements on and off single farms). The availability of datasets of cattle 

flows in several countries has opened the possibility to explore systematically and in 

great detail these contact structures that represent the key driver of disease spread through 

infected animals moving from farm to farm or through other livestock operations such as 

markets and dealers. Research in this context can be divided into descriptive analysis of 

the datasets in order to assess the implications for disease control [29-36], and 

epidemiological studies aimed at reproducing historical epidemics through models, 

estimating epidemiologically relevant parameters from the contact structures, and 

realistically modeling disease spreading based on the movements data [34,37-42]. 

However, while zoonotic disease modeling counts today a variety of different approaches 

(see e.g. the review of Ref. [42]), analogous developments are not observed in the 

characterization of cattle movements, with research efforts so far limited to a very basic 

understanding of the system [29-35,37,40,41,43].  



Most of the veterinary studies are indeed based on static representations of cattle flows – 

where the temporal information of the displacements is collapsed into few successive 

snapshots of the datasets [30-35,40,41,43], or explored through the time series analysis of 

simple global quantities [29,31,32,35,40] – or focus on the results of spreading 

simulations based on the dynamical network and on its static counterparts [37]. In the 

analyses performed so far, results have shown a large heterogeneity in the connectivity 

patterns among premises, with probability distributions for the number of incoming and 

outgoing connections (in-degree and out-degree, respectively) characterized by broad 

tails [30-32,34,35]. While the majority of premises have a small number of connections 

through animal movements to other premises, this feature indicates the presence of a 

small but non-negligible fraction of premises that instead are recipients or senders of 

animal movements from/to a large number of holdings [6]. Such results are typically 

obtained from the investigation of a static network obtained by aggregating data on the 

full available time window [30,31,34], and few examples of structures extracted from 

shorter aggregation times (such as e.g. monthly and weekly networks) have been 

investigated [32,35], without, however, exploring in a systematic way the stability of this 

feature across time. Fits to the power-law behavior of the degree distributions yield 

values around 2.1 for both in- and out-degree for the 2002 UK cattle movement data 

obtained for a specific 4-weeks time window [35]. However these results cannot be easily 

compared to the values of 2.5–2.6 obtained for the total degree distribution of monthly 

and weekly snapshots of 2005 French data [32], and 2.1–2.2 obtained for the annual 

network of the 2005 French data [32] and 2007 Italian data [30], given that in-degree and 

out-degree are not considered separately. Broad distributions have also been found in the 

annual number of movement events to/from single premises, and in the annual number of 

animals displaced [30,34,35], along with asymmetries showing larger fluctuations in the 

quantities describing the annual incoming fluxes with respect to those measuring annual 

outgoing fluxes [34]. However the robustness of these properties at shorter timescales, 

comparable to the typical timescales of some zoonotic diseases, has not been assessed.  

From the point of view of single animals, several studies have shown that the number of 

movements per bovine is typically very low, reaching at most 7-10 displacements 

[31,44], with the majority of them occurring on short distances, though a non-negligible 
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fraction cover very long distances [31,35], thus highlighting the possibility for rapid 

dissemination across the country. Investigations into the dynamics of individual bovines 

displacements has however not been analyzed with the aim of uncovering the presence of 

specific paths, motifs or cycles that may be relevant in spreading a disease or in creating 

recurrent patterns favoring the virus propagation from one farm to another.  

Overall, the dynamical information has only been partially considered, through time 

series analysis of global quantities, such as the number of premises involved in the flows 

or the total mass of movements [29,31,32,35,40], whereas much attention has focused on 

the role of different premises in the structure and flows management on the annual scale 

[30,31,45]. With the aim of assessing the spreading potential induced by the complex 

structures hidden in the data, much work has been dedicated to the analysis of the 

components of the network (giant component, weakly and strongly connected 

components, etc.) in order to estimate the upper bounds of the epidemic size 

[29,30,32,34,35,45], and to the ranking of nodes in terms of various measures of 

centrality defined a priori, such as degree, betweenness, and others [30,33,45], that in 

other systems were found to impact the behavior of dynamical processes taking place on 

top of them [11,46-58]. The aim is to compare the efficacy of prevention and control 

measures based on this information [30,32], though no assessment of the stability of these 

features in time is provided, thus affecting the applicability of the same measures in 

different points in time, due to the time evolution of the network. A recent example to 

overcome this limitation is provided by Ref. [36] that integrates flows dynamics and 

centrality measures to assess farms’ vulnerabilities. 

While network analysis has become increasingly important in the study of data describing 

livestock movements, a time lag is clearly observed between the developments of 

network analysis tools and the knowledge reached so far in the context of veterinary 

epidemiology. As described above, only basic network analysis has been considered, 

often disregarding the longitudinal dimension and focusing on single node properties of 

the cattle flow networks. Network science, on the other hand, offers nowadays a body of 

sophisticate and very advanced techniques and methodologies that are able to uncover 

higher order topological correlations, non-trivial correlations between topology and 



flows, backbone structures carrying the most relevant information contained in the 

system, motifs, recurrent patterns and communities, and other features [6-11]. Moreover, 

the recent availability of large-scale longitudinal datasets  [19,20,22,24,59-64] has 

opened a new set of issues and challenges to deal with intrinsically dynamical systems 

(see e.g. [65-68]), and spurred an intense research activity aimed at the inclusion of 

dynamical aspects through a newly defined set of analysis tools and frameworks. 

Similarly to cell-phone data [20,22], cattle flow data represents a rare example of high 

resolution dataset where fully identified displacements are described at the agent level 

with a daily resolution spanning one or several years, and are associated to multiple 

possible definitions of weight for the connections and to additional metadata describing 

e.g. the type and location of premises. By leveraging on the network approach, we are 

able for the first time to fully characterize the dynamical patterns of cattle trade flows, by 

investigating snapshots properties and assessing their stability across time and the role of 

the chosen aggregating time window, characterizing the rules describing the evolution 

dynamics of the individual agents movements and of the activity of the system on a larger 

scale, exploring stationary properties and identifying recurrent patterns where causality 

relations between displacements emerge. Going beyond the analyses performed so far on 

livestock movement datasets, we aim at unraveling the hidden complexity of these 

systems at the topological, functional and dynamical levels, in order to identify patterns 

and properties relevant for the identification of vulnerabilities of the system to an 

epidemic and thus build upon this information to develop preventive and control 

measures. In addition, our analysis uncovers important limitations of the approximations 

generally used in modeling approaches for zoonotic disease spreading. While the present 

work focuses on the dataset of the Italian cattle trade movements, the general approach 

formulated here can be directly applicable to the study of other livestock movements 

datasets to uncover differences and similarities across countries, and the impact of 

diverse preventive measures or tracing systems adopted at the national level.  

The paper is organized as follows. After the description of the dataset under study, we 

characterize the system in terms of successive snapshots obtained from aggregating the 

data on different time windows. This allows us to study the emergence and robustness of 
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network properties across time and the role of the timescale of aggregation, in view of its 

interplay with typical disease timescales. We then analyze the dynamical evolution of the 

network, both at the agent level and at the system level, and explore its impact on the 

structural backbone of the system and the efficacy of control measures against the spread 

of a disease. Finally, we introduce a novel definition of dynamical motifs for a time 

dependent evolving network, able to uncover causal recurrent paths in the bovine 

movements. 

 

Methods 

Data 

Data on cattle trade movements were obtained from the Italian National Bovine database, 

which is administered by the Italian National Animal Identification and Registration 

Database [68]. The database details the movement of the entire Italian population of 

bovines among animal holdings, providing a comprehensive picture of where cattle have 

been kept and moved within the country. Each movement record reports the unique 

identifier of the animal, the codes of the holdings of origin and destination, and the date 

of the movement. Such tracking system allows us to easily reconstruct the path of each 

bovine and to build the corresponding overall network, minimizing the problems related 

to data accuracy that are found in other tracking systems that do not provide both origin 

and destination of the displacements [34,35]. Additional information was provided for the 

animal holdings, including the type of premises (i.e. fattening farm, dairy farm, pasture, 

slaughterhouse, assembly center, market, genetic material center, and other), and their 

georeferenced metadata in terms of the geographic coordinates of the centroids of the 

municipality where the premises were located. 

Here we examine the records for the year 2007 [30]. A total of 4,946,201 bovines were 

tracked, counting for 7,177,825 recorded displacements of individual animals and 

1,592,332 distinct batches movements. There were 173,139 active premises during the 

year (i.e. they either received a batch or moved it), of which 49.9% were fattening farms, 



26.1% were dairy farms, 1.7% were pasture, 1.1% were slaughterhouses, 0.4% were 

assembly centers, 0.06% were markets, 0.04% were genetic material centers, and the 

remaining 20.7% were labeled as other premises. Active premises are located on almost 

the entire territory of the country, covering 96% of the Italian municipalities, though their 

distribution is not uniform – a single municipality can indeed contain a number of 

holdings varying from few units to hundreds.  A total of 365 days of activity was 

recorded, from January 1st to December 31st of 2007, signaling that at least one 

displacement per day took place in the year under study. The dataset also contains 

information on the importation and exportation of cattle; these movements, representing 

less than 1% of the total number of movements in the database, were however excluded 

from the analysis as the focus of our study is on the full set of displacements within 

national boundaries. Table 1 summarizes some basic properties of the dataset. 

Construction of daily and aggregated networks 

The system of cattle trade movements can be represented in terms of a network, similarly 

to other mobility datasets and transportation systems [13-15,18,19,21,22,69-72]. The 

simplest representation is obtained when nodes correspond to premises, and a directed 

edge is drawn between two nodes whenever a displacement of bovines occurs between 

the corresponding premises. Since data on cattle movements is provided on a daily basis 

by the original dataset, it is thus possible to construct 365 daily networks, each containing 

the activity of nodes and links for one day. It is also useful to construct static snapshots of 

the system by aggregating the observed activity over various time windows tΔ . This 

static view partially looses the intrinsic dynamical nature of the system within the given 

time window, however it allows to study the static snapshots with the usual techniques of 

network theory [7-11,30-35,40,41,43]. Given a specific choice of 

€ 

Δt , we can construct 

365 !t  such consecutive snapshots, corresponding to the time windows n!t, (n+1)!t[ ] , 

with n going from 0 to 365 !t "1. In addition to the intrinsic time resolution of the 

system, !t =1 day, we also consider time windows of !t = 7  days, !t = 28  days (we 

avoid aggregating over calendar months to avoid fluctuations due to the different duration 

of the months during one year), and !t = 365  days. These choices give rise to 365 daily 

networks, 52 weekly networks, 13 monthly networks, and one annual network, 
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respectively, the latter aggregating the whole activity reported in the dataset. While in the 

literature annual and monthly networks have been typically analyzed (with the exception 

of Ref. [32] that studied the weekly networks of French data), here we consider different 

values of !t  in order to systematically explore the dynamical features of the networks on 

a variety of timescales, comparable to the timescales of different diseases of interest. 

Given that the aggregation on a time window!t  is a commonly used approximation to 

describe an epidemic process occurring at timescales much slower than !t , this study 

allows us to assess the role of the aggregation under changes of !t , and verify whether 

similar conditions and properties are observed by changing that value.  

As the networks are directed, each node i is characterized by both its out-degree 

€ 

ki,out  

(i.e., the number of premises to which a movement is registered within the given time 

window) and in-degree ki,in  (i.e., the number of premises from which the node receives 

an incoming flux of animals within 

€ 

Δt ). For each snapshot, we consider only nodes with 

€ 

ki,in + ki,out > 0 , defining them as active nodes since they correspond to premises that have 

registered at least one incoming or outgoing displacement during the aggregation time 

window. Moreover, the links of these networks can be weighted according to two distinct 

definitions, measuring either the number of cattle batches moved or the total number of 

animals moved [34]. More specifically, we denote by wij
B  the amount of cattle batches 

movements recorded within the given time window !t  from the holding i to the holding 

j. The weight 

€ 

wij
A  instead indicates the total number of bovines moved from i to j during 

!t . The first quantity provides a binary information on a daily basis, and counts the 

number of movements occurring in the time window !t  under consideration; the second 

measures the magnitude of the movements. The introduction of two different definitions 

of the weight is useful in order to explore whether there are any trivial correlations 

among the two quantities, and to assess the limits of the approximation that uses less 

detailed data such as the number of movement batches, which are usually more readily 

available than the detailed movements of animals at the individual level [37]. This would 

be very important in the framework of modeling approaches based on real data. By 

following the usual definition of strength of a node in a weighted network [14], we 



denote by si,in
B(A) = wji

B(A)

j!  and ∑= j
AB

ij
AB
outi ws )()(
,  the in-strength and out-strength of node 

i, respectively, quantifying the total numbers of incoming and outgoing batch (B) and 

animal (A) movements of the corresponding premises during tΔ .  

Dynamical properties 

The dynamical nature of the dataset we consider allows us to go beyond the analysis of 

successive static snapshots. The dynamical aspects concern both the bovines that are 

moved along the displacement network, and the network’s structure. In the next sections, 

we will start by using standard measures such as the study of the evolution of sizes of the 

snapshots, or the statistical analysis of the properties of the bovines displacements. We 

will also study how the properties of the network’s elements fluctuate over time.   

Moreover, we will introduce specific new tools and methods specifically tailored towards 

highlighting the consequences of dynamical aspects of the displacement networks.  

 

Results and Discussion 

Daily and aggregated networks 

We first focus on the analysis of the networks aggregated at different scales, as described 

in the previous section. The analysis of these various static snapshots gives access to a 

first characterization of the system under consideration, investigating both its structural 

and dynamical properties. This allows for the first time the comparison of the features 

obtained at different timescales, and, for each timescale, the possible emergence of 

properties that remain stable or change across time, as the activity captured in each 

snapshot may indeed vary from one snapshot to another. Even the very basic features of 

the network, such as e.g. the number of nodes (noted N) and of edges, depend both on the 

time of the year at which we observe the system and on the duration of the aggregation 

€ 

Δt  [32]. Table 2 summarizes the basic properties of the aggregated networks for the 

various !t  values considered.  
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At the smallest possible aggregation scale, !t =1 day, the networks are small and very 

sparse, including an average number of nodes of the order of few thousands (to be 

compared to the total of about 105 nodes active across the whole year), and they are 

typically composed of small disconnected components, similarly to what was observed in 

the UK cattle data [44]. For larger values of !t , i.e. longer aggregation times, an 

increasing number of nodes and links are present in the networks, since more and more 

distinct displacement events are registered during the time window. The average number 

of nodes of the weekly and monthly networks increases of one order of magnitude with 

respect to the daily case, as observed in the weekly and monthly snapshots of the French 

cattle data [32]. This number does not show great variations in time for a given !t , 

however it remains very small if compared to the full network, thus indicating the 

presence of strong changes in the activation of nodes from one month to the other. When 

aggregating over time windows of increasing duration, the networks not only increase in 

size but also become denser, with the number of active connections growing faster than 

the number of active nodes. The small disconnected components observed in the daily 

networks coalesce, leading to an increasingly larger giant component (i.e. the largest 

connected component of the network). Though snapshots up to monthly networks are 

small in size compared to the total number of active nodes observed during the year, their 

structure and interconnectivity allows for the creation of giant components spanning a 

large fraction of the aggregated networks (e.g. more than 70% for 

€ 

Δt = 7  days, see 

Figure S1 of the online Supporting Information (SI)), similarly to what was observed in 

the analysis of cattle movement data in other countries [32]. Starting from daily networks 

that may offer only limited propagation at the daily scale, a giant component emerges if 

aggregating on timescales !t " 7  that indicates the existence of paths of propagation 

from one node to another at the system level. 

Figures 1 to 3 report a set of statistical properties of the networks generated by 

aggregating the data on time windows of lengths 

€ 

Δt =1, 7, 28, 365 days. Given that each 

!t  value corresponds to a set of snapshots (except in the case of !t = 365  days), for the 

sake of visualization we show in each plot the distribution of the quantity under study for 

one particular snapshot chosen as an example (red circles), overlaid to gray lines that 



indicate the behavior displayed by the other snapshots corresponding to the same 

€ 

Δt  (in 

the weekly and daily cases, given the large number of snapshots, we show a random 

subset). This allows us to monitor the variations over time signaling changes of the 

system’s statistical properties, as a function of changes in !t  and the time of observation. 

Interestingly, these distributions are superimposed for successive time snapshots at a 

fixed value of!t , denoting a statistical stationarity of global distributions, describing the 

activity taking place at the microscopic level. This behavior, which is observed here for 

the first time for cattle movement data, is consistently present for all !t  under study, and 

is similar to what was observed in other systems for which longitudinal data is available, 

such as e.g. the airline transportation system analyzed in Ref. [24]. 

Figure 1 displays the distributions of in- and out-degrees. The in-degree distributions are 

broad, with a behavior close to a power-law and a slope approximately equal to -2. This 

is in agreement with the results found for a specific month of the 2005 UK cattle data 

[35], and shows that this behavior is a common feature of the system in various countries 

and, moreover, is independent of !t . The range of values of 

€ 

kin  clearly increases with 

increasing values of !t . Large fluctuations are observed also in the out-degree 

distributions, however the range of possible values of 

€ 

kout  is systematically one order of 

magnitude smaller than the corresponding range observed for ink , not only for the annual 

network [34] but for every timescale investigated. Results show a clear asymmetry in the 

receiving and sending activities of the animal holdings, which can be explained by the 

typical activity of specific premises types, such as slaughterhouses, assembly centers and 

also markets. Such premises are indeed responsible for assembling cattle trade fluxes for 

commercial purposes, thus receiving batches from a large number of premises, 

assembling them and moving larger fluxes to fewer premises.  

Similar probability distributions can be computed for the weights as well, taking into 

account the two possible definitions. Figure S2 of the SI shows how the weights 

€ 

wB  have 

by definition a sharp cutoff at their maximum value !t , therefore limiting the range of 

possible values they can assume in the case of small !t . On the other hand, the number 

€ 

wij
A  of animals displaced between farms i and j is characterized by a broad distribution 
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even for the shortest time window 

€ 

Δt =1 day [31]. This shows how cattle displacements 

are most often characterized by a small number of animals, but that movements of very 

large numbers are also observed with a non-negligible probability. Interestingly, the 

shapes of the distributions are almost not affected by changes in !t , denoting underlying 

non-trivial mechanisms that make these statistical properties stable across integrations on 

diverse timescales.  

Figure 2 shows the in- and out-strength distributions, according to the two definitions for 

the weights. A pattern very similar to the degree distributions is observed: the in-strength 

distributions are broad even at small !t , while the out-strength distributions broaden 

significantly only as !t  increases, especially for B
outs , which indicates the total outflow of 

batches. The asymmetry discussed above is thus retained if we consider the total number 

of animals displaced in and out of premises. Besides looking at the overall behaviors of 

these quantities in terms of probability distributions, it is interesting to explore whether 

non-trivial correlations arise that relate the topology with the flows at the premises level, 

by considering the correlations between the strengths and degrees of nodes. Figure 3 

shows the results obtained when the strengths are defined in terms of the weights 

€ 

wB  and 

€ 

wA , considering both the inflow and outflow dynamics. The behavior is linear for the in-

strength, signaling an absence of correlation between the number of premises from which 

a specific holding receives batches and the number of batches or bovines received on 

each connection [14]. In the case of the out-strength we observe instead a slightly 

superlinear trend when 

€ 

sout
A  is expressed as a function of the out-degree, showing that 

more active farms in terms of number of connections also tend to send more animals on 

each connection [14], explaining the asymmetry observed before in the variations of 

€ 

sout  

and 

€ 

kout  with respect to 

€ 

sin  and 

€ 

kin . 

For increasing time window lengths, the aggregated networks take into account more 

displacement events. Concerning the links and nodes present in a network at a given 

timescale 

€ 

Δt , this means that their weights, degrees and strengths are expected to increase 

when longer time windows are considered. Notably however, we do not observe a simple 

shift of the whole distributions towards larger values with a corresponding absence of 



small values: the distributions continue to be broad, spanning several orders of 

magnitude, but the most probable values remain very small. In the case of the degree 

distributions, this can be due to nodes that have very few connections for any time 

window, or to nodes that are active only very rarely. For the weights distributions, it 

shows that on any timescale there exists many links that are active only during few days, 

already indicating the presence of a non-trivial underlying dynamics that cannot be 

uncovered through the analysis of static snapshots only. 

System dynamics 

The results of the previous subsection show how the microscopic dynamics of cattle 

movements is described by statistical properties that are found to be stationary, with a 

behavior that is qualitatively invariant with respect to changes in the timescale (whereas 

size and magnitude of fluctuations clearly depend on the time window 

€ 

Δt ). Here and in 

the following subsections we aim at characterizing the underlying dynamics to uncover 

higher order correlations and relevant temporal aspects leading to the observed behavior. 

The simplest dynamical information is given by the evolution of the sizes of the 

aggregated networks. The numbers of nodes and links follow consistent patterns (as 

shown in Figure S3) with both weekly cycles and clear seasonal properties that 

distinguish the livestock activity across the different seasons [29,31,32,35,40]. On a 

monthly time scale, it emerges that the summer activity is substantially lower than the 

activity registered during the rest of the year. The evolution of the daily snapshots sizes 

shows moreover how the overall movements decrease strongly during the weekends, 

leading to increasingly smaller and more fragmented networks that put obstacles to the 

propagation of a disease across the system.  

Differently from human mobility data where the information is usually not provided at 

the individual level and is aggregated into flows that cannot be traced back to the 

individual’s behavior [14,69], the cattle movement dataset provides detailed information 

at the individual level through tracking each single animal during its displacements. This 

allows two different levels of description of the dynamics: (i) the agent-centered point of 

view that considers the features of the animals’ movements (similarly to what can be 
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done for individuals based on anonymized phone cell data [22,23]); (ii) the network point 

of view that focuses instead on the system’s behavior and is given by the evolution of the 

topology, and of the links' and nodes' properties from one time window to the next. These 

views provide complementary information for the characterization and understanding of 

the dataset. 

Agent-centered dynamics 

Gaining insight from this point of view aims at characterizing the trajectories of each 

bovine, uncovering the possible presence of predictable patterns, similarities or large 

heterogeneities, in the perspective of understanding the potential for disease propagation 

across the system, through its agents. 

As bovine displacements are subject to livestock commercial constraints, we expect that 

the resulting bovine mobility patterns will be different from human mobility patterns 

[19,22,23,69]. Indeed, the number of displacements of any single animal over one year is 

quite restricted [31,44], as shown in Figure S4, in particular if compared with human 

behavior. On average bovines experience 1.45 displacements during a year. Interestingly 

however, some animals perform more than 10 moves, which may potentially result in 

superspreader behaviors. Figure S4 also reports the distributions of geographical 

distances covered either in a single displacement (i.e., the geographical distance between 

the origin and destination farms), or following the trajectory of a single animal in one 

year. Despite a well-defined maximum at short distances, these distributions display 

rather broad tails corresponding to very long routes [31,35]. In addition, the distributions 

are robust against filtering on the weight 

€ 

wA , indicating that very long routes are 

performed by both small and long batches. The possibility of such long displacements 

should be taken carefully into account when dealing with spreading of diseases, as they 

could result in epidemics rapidly reaching geographically very distant parts of the 

network.  

Another interesting issue concerns the time interval between two consecutive 

displacements of an agent, corresponding to the period that a given bovine spends in the 

same holding [31]. This time interval may represent the time of exposure of the animal to 



a potential outbreak taking place in the holding, or the time during which it could spread 

the disease to other animals if infected. Since the different types of farms have different 

roles in the bovines trade, the global distribution shown in Figure 4A is a convolution of 

several different behaviors. In particular, the two peaks at 3 and 6 months correspond to 

pasture and fattening farms, respectively, as shown by the other panels of the Figure that 

disaggregate the results by premises type. Except for the markets, in which bovines spend 

only few days, the distributions of these time intervals are broad for each farm type, with 

different slopes. This points out the large variety of possible timescales characterizing the 

time during which an animal stays in a given premises, indicating that homogeneous 

assumptions on the length of stay of an animal at a given holding do not provide an 

accurate description of reality. The broadness of these distributions should therefore be 

taken cautiously into account in the modeling approaches. 

Network microscopic dynamics 

By comparing the results obtained for the weekly and monthly networks with those 

corresponding to the whole dataset, it is clear that a strong dynamical activity shapes the 

evolution of the system on both global and local scales. As an example, we show in 

Figure 5 a visualization of a subgraph for three consecutive monthly networks. The 

subgraph is constructed by selecting a particular seed node (the same for all three 

networks) and by considering all nodes at distance 3≤  from the seed (where the distance 

is defined by the number of links traversed on the shortest path connecting the two 

nodes). Nodes keep their position in the visualization if they are active over multiple 

snapshots. The figure highlights how the structure of the neighborhood of a given node 

obtained at consecutive time snapshots can widely differ: even highly connected nodes in 

one snapshot can disappear from the neighborhood of the given node in the next 

snapshot, and hubs suddenly appear that were absent from the previous snapshot.  

Activity timescales. Similarly to the dynamics of single animals, the network dynamics 

can be first characterized by the distributions of the activity and inactivity periods of 

nodes and links [24]. These periods are defined, for a given timescale 

€ 

Δt , as the number 

of consecutive time steps in which a node, or a link, is active (or not active, respectively). 

In the case of time windows of 

€ 

Δt =1 day, we remove the weekends from the dataset as 
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they are characterized by a much smaller activity, and consider a node or a link to be 

continuously active if it is present in the snapshots of a given Friday and of the Monday 

of the following week. The corresponding distributions are shown in Figure 6 for 

€ 

Δt =1 

and 7 days. As seen also in the dynamics of the air transportation network [24], most 

nodes and links turn out to be continuously active or inactive for only very short periods. 

The distributions of activity periods 

€ 

τ  are rather narrow in the case of daily networks, 

and can be fitted by power-laws with exponent smaller than -4: most nodes and links are 

active only for one day at a time, and only very few are continuously active for more than 

a few days. The distributions become significantly broader when considering weekly 

networks, where power-laws with exponents close to -3 emerge. The difference observed 

by comparing 

€ 

Δt =1 and 7 days can be easily explained by the integration over multiple 

days in the case of 

€ 

Δt = 7 : being active in two consecutive such networks is a less 

stringent condition than being active each day of two successive weeks. The inactivity 

periods 

€ 

Δτ  are characterized by much broader distributions extending on all possible 

timescales, signaling that a node (or a link) may become active at a given point in time 

without then participating to the dynamics for a long time interval. From the point of 

view of control policies, such long inactivity periods would help in limiting the spread 

through self-isolation of premises. 

Given that the activities of nodes and links of the displacement network occur at both 

short and long timescales, here we aim at characterizing the mechanisms behind the 

appearance and disappearance of links in the system, and we focus on the weights Aw  

that measure the number of animals displaced along each link. As proposed in [24] we 

evaluate in particular the fraction of appearing 

€ 

f a and disappearing 

€ 

f d  links, as a 

function of their weight, in order to uncover a possible correlation between a link's 

stability and the number of displaced animals along that link. More precisely, if 

€ 

E(w | t)  

is the number of links with weight Aww =  at time t and 

€ 

Ea (w | t) is the number of such 

links that were not active at the previous time (and thus appeared at time t), the fraction 

of appearing links is 

€ 

f a (w) = Ea (w | t) E(w | t). An analogous procedure leads to the 

definition of 

€ 

f d  by considering the links of weights 

€ 

w  active at time 

€ 

t −1 but no longer 

active at time t. The quantities )(wf a  and 

€ 

f d (w)  are shown in Figure 7 for daily, weekly 



and monthly networks. We observe that 

€ 

f a (w) and 

€ 

f d (w)  have an almost identical 

behavior, though dependent on the timescale !t . In Figure S5 the results are 

disaggregated by premises type for the origin (or for the destination) of each considered 

link, showing that the behavior observed in Figure 7 results from a convolution of trends 

that are quantitatively different but qualitatively similar for all farm types. In all cases, 

links with small or large displacements of animals are both very unstable, whereas the 

most stable links are those with an intermediate weight. While till now the system of 

bovine movements showed properties that are very similar to those found in the analysis 

of human mobility by air travel, this result instead strongly differs from the positive 

correlations of links’ stability and weight found in the airline transportation network [24]. 

In the airline system this is due to the fact that links with large weights correspond to 

busy routes that are economically convenient carrying a large fraction of the traffic and 

thus well established. Different commercial driving forces characterize the cattle trade 

flows and, in addition, premises have limited receiving capacities, constrained by the 

limited size of the space hosting the cattle for a widely varying number of days (see the 

results in Figure 4). Since a large weight corresponds to a transport of a large number of 

animals, it is rather unlikely that two (or more) very large such events occur on the same 

connection in rapid succession, as this may correspond to a large increase in the 

population at the premises, if no animals are moved away. Differently from this process 

in which bovines stay at the arrival node after displacement, airline passengers either 

connect through an airport or leave the airport to reach their final destination, without 

thus increasing the population at the mobility node itself. The result is that large 

displacements are very stable in the airline case, whereas heavily fluctuate in the bovine 

case. The lack of possible identification of stable connections over time carrying large 

weights (and thus having a large spreading potential) seems to indicate the absence of a 

robust pattern of movements in the system that could be easily targeted by intervention 

measures aimed at controlling and containing the spread of a disease. This aspect will be 

explored in further detail in the next subsection when evaluating the evolution dynamics 

of the network backbone. 
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As expected, the minimum values of 

€ 

f a (w) and 

€ 

f d (w)  are very close to 1 when 

considering the daily networks, meaning that more than 80% of the links present at a 

given day will disappear the day after (and similarly for the appearance of links). At such 

timescale the full dynamical nature of the network emerges. More stable structures are 

instead detected at larger aggregation times, when weekly and monthly networks are 

considered. 

Fluctuations of nodes and links properties. In addition to characterizing the dynamics 

with which nodes and links can switch on and off their activity, here we study the 

evolution of nodes' and links' properties once they are active. In particular, the evolution 

in time of a link's weight 

€ 

wij (t) is characterized by its growth rate
)(
)1(

log)(
tw
tw

tr
ij

ij
ij

+
=  

whose distribution is shown (for the weights Aw ) in Figure 8 for the various time 

windows under study. The distributions are stationary, with exponentially decaying tails, 

as found for the airports network [24] and in studies of firm growth [72]. This 

corresponds to a weights' evolution from one month to the next of the 

form )1)(()1( ijijij twtw η+=+  where the multiplicative noise 

€ 

η = er −1 is a random 

variable whose distribution is broad and does not depend on time, indicating that most of 

the weights increments are small but that sudden and large variations of the weights can 

be observed with a small but non negligible probability. The highly dynamical nature of 

the network, characterized by large instabilities and timescales describing the appearance 

and disappearance of nodes and links, is expected to have a strong impact on the nodes’ 

properties as well. For instance, a node with many connections on a certain day may be 

much less connected the next day [73]. The stationarity of the distributions obtained from 

the analysis of static aggregated networks does not imply the stationarity of the properties 

of each given node; the set of nodes in the tail of the distribution may for instance differ 

from one snapshot to another. If we focus on properties of centrality of the nodes, which 

are often used to identify and target the elements of the system for isolation and 

quarantine aiming at prevention and control of an epidemic spreading on the network, 

large fluctuations in these values point to the strong limitations of such measures. In 

order to investigate this, we show the variations of a node’s property for all snapshots 



considered, depending on the timescale 

€ 

Δt  under study. Figure 9 shows the median and 

the 95% confidence interval of all values of the out-strength A
outs  that each node assumes 

when active, for different time window lengths. Very large fluctuations are observed, 

with most nodes showing variations over more than 2 decades, signaling that this 

property lacks stationarity at the node level. Some nodes with very high strength seem to 

have no fluctuations, but they appear in fact only once in the dataset. Similar results are 

obtained when considering other possible measures of node centrality, such as the in-

strength or the in- and out-degree (not shown). Given that these quantities are proxy 

measures for the centrality of nodes, such findings strongly undermine the efficacy of 

traditional measures for epidemic control that do not take into account the large 

variations in time of the role of the premises with respect to the flows of the system.  

 

Evolution of network backbone 

The results of the previous section show how the system is characterized by large 

fluctuations and strong topology and traffic variations on all spatial and temporal scales. 

The overall picture is thus one of a network whose structure changes very strongly from 

one snapshot to the next, not only at the global level, but also at the node neighborhood 

and node levels, inducing very strong centrality fluctuations. Notably, these centrality 

fluctuations are observed for all premises and geographical positions.  A natural question 

therefore arises concerning the possible existence of a backbone of nodes and 

connections, carrying the relevant topological and dynamical information of the system, 

and of its temporal stability. The observed strong fluctuations may indeed be related to 

less meaningful connections of the network, and may thus be compatible with a 

stationary backbone.  

A first attempt at defining a global backbone over time consists in considering the 

intersection of successive aggregated networks. If a considerable fraction of the system is 

stable across time, the intersection will be quite large and will identify the subset of 

premises and flows that have a predominant role in the dynamics. At the monthly scale, 

less than 4% of the links are common to the 13 corresponding networks. Moreover, the 
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corresponding weights are not particularly stable and show a growth rate distribution 

comparable to the one obtained for the original networks. More advanced filtering 

techniques can be used to extract a statistically significant subgraph that carries a 

significant part of the traffic. In particular, it is possible to retain only the links with 

weights larger than a certain threshold, i.e., the ones with most traffic. However, when 

the system is characterized by large fluctuations of weights, and more in detail by a large 

heterogeneity of weights around a given node (as is the case here, not shown), global 

thresholding can lead to misleading dismissal of locally very important links [74]. For 

this reason, in addition to the thresholding method, we consider the disparity filter 

method that was introduced in Ref. [74]. For each node, it consists in identifying the links 

that should be preserved in the network. To this aim, one considers the null hypothesis of 

a random assignment of the normalized weights 

€ 

pij
out = wij si,out  and 

€ 

pij
in = wij s j ,in  (as 

links are directed, we consider two normalized weights definitions), and computes for 

each link the probability 

€ 

α ij
in(out ) that its normalized weights are compatible with this 

hypothesis.  These probabilities are given by 

€ 

α ij
in = (1− pij

in )k j ,in −1 and 

€ 

α ij
out = (1− pij

out )ki ,out −1 

[66], and the backbone is given by the links which satisfy at least one of the conditions 

€ 

α ij
in < α  or 

€ 

α ij
out < α , where 

€ 

α  is a parameter that can be tuned in order to change the 

significance level of the filtering.  For networks with uncorrelated weights, the disparity 

filtering procedure is equivalent to the global thresholding procedure, pruning the links 

with a weight smaller than 

€ 

w ⋅ ln(1 α), where 

€ 

w  is the average weight in the network. 

We have considered both filtering procedures for the aggregated networks with 

€ 

Δt = 28 

days, and constructed for each network the corresponding backbones for various 

significance levels. In order to assess how the network backbone change in time, we have 

then computed the overlap between the 2/1213×  pairs of backbones, at a given 

significance level, where the overlap of two networks with respective sets of edges 

€ 

E1 

and 

€ 

E2 is defined by 

€ 

| E1∩ E2 | / | E1∪ E2 |. Figure 10 displays the distributions of the 

growth rates of the links' weights Aw  in the various backbones, compared with the 

corresponding distribution in the whole network, together with the overlaps of the 

monthly backbones in color-coded matrices. The overlap between backbones of 

successive monthly networks is substantial but not large, approximately ranging from 25 



to 30%. If we assume that the two successive backbones have the same size, an overlap 

of 25-30% would correspond approximately to an intersection of 40-50% between the 

two systems. While about half of the system is retained from one snapshot to the 

following, this value becomes rapidly smaller when moving away from the diagonal, i.e., 

as the corresponding networks are further apart in time. This shows that the memory of 

the most significant links in a given month rapidly fades away in the successive months, 

and that evaluating the importance of a link based on previous evidence could thus be 

misleading. 

Percolation 

The very short memory of the backbone structure leads us to the study of how the 

dynamical aspects impacts the percolation properties of the network of displacements. 

Percolation has long been used in the analysis of complex networks [75,76], and results 

have shown that many real-world network structures typically retain their integrity, in 

terms of global connectedness, when nodes or links are removed in a random fashion, 

while they are very fragile with respect to targeted attacks. In this respect, percolation 

analysis has become a tool to investigate the structure of networks, by studying how the 

size of the largest connected component evolves when nodes are removed according to 

different procedures [75-79]. The size of the giant component not only is a measure of 

the resilience of the structural properties of the network under study, but it also quantifies 

the extent to which an epidemic could possibly spread in the system. Identifying ways to 

reduce this size, by removing particular nodes, is equivalent to finding efficient 

intervention and control strategies in the framework of disease spreading, aiming at 

breaking down the network in small pieces in order to prevent the disease from invading 

the system. 

Let us consider for instance that an outbreak starts at a certain date. It is then possible to 

sort the nodes of the aggregated network of the corresponding time window by their 

degree, strength, or other centrality measures, and to try to contain the disease spread by 

isolating the most central nodes, reducing drastically the size of the largest connected 

component through the isolation of only a few percents of the nodes [75,77,78]. A lot of 
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work has been done in this direction for the analysis of the fragmentation of the network 

of livestock movements when nodes are chosen according to different centrality 

measures [29,30,32-35,45], and no information on disease spreading is considered, as 

instead was done in Ref. [36]. However, these studies have neglected the dynamical 

nature of the system, focusing on specific snapshots only, and assuming to be able to 

access all the relevant information of the system at any given point in time, e.g. during an 

epidemic emergency. Since we showed so far how the underlying topology and flows 

strongly fluctuate at all levels, here we want to study instead the situation in which we 

have limited information on the system gathered from its activity on the last time 

window under study, and we want to apply isolation and quarantine measures to the 

following snapshot. The ranking of nodes according to a given centrality measure 

(corresponding to their spreading potential) computed on a certain time window may 

indeed loose its relevance when applied at successive times. Given these intrinsic 

dynamical features, we aim here at assessing the impact of a removal strategy on 

consecutive snapshots (thus the snapshots characterized by the highest values of the 

overlap), once the strategy is defined on the basis of the available information on one 

snapshot only, and is not updated according to the successive network evolution.  

We investigate this aspect by measuring the effect of the successive removal of nodes by 

decreasing degree in consecutive snapshots of 

€ 

Δt = 28 days. More in detail, by focusing 

on a given snapshot for 

€ 

Δt = 28 days (the third snapshot of the year, chosen as an 

illustrative example), we fix the order of nodes to be removed in a degree-decreasing 

fashion. Then, we assess the impact of the removal of nodes ordered in such way on this 

snapshot and on the following one. This means that for the successive snapshot we are 

not re-evaluating the centrality of each node (as measured here by the degree) but we use 

the information computed on the previous time snapshot. This procedure is tested on the 

full network and on the corresponding backbone, calculated at two different significance 

levels. Figure 11 shows the results in terms of the relative size of the giant component as 

a function of the fraction of nodes removed. As expected, the removal of nodes is very 

efficient if the order of nodes to be removed is calculated on that snapshot [29,30,32-

35,45], whereas such ordering is not able to destroy the network at the successive time 

window, leading to a size of the giant component that decreases very slowly, and 



maintains a fraction of more than 20% of the system still intact and connected after the 

list of nodes is exhausted. Even though a large number of nodes is removed from the 

system, the effectiveness of such isolation procedure is strongly limited by that fact that 

the premises’ properties have dramatically changed. Many of the active premises have 

appeared/disappeared from one snapshot to the other, and the ones that remained have 

strongly changed their interaction pattern. In such situations, intervention and control 

strategies devised using the information from static aggregated networks, or more 

generally from data from past mobility patterns, can thus result to be very inefficient. 

Dynamical motifs 

After observing the large fluctuations and the fast dynamics characterizing the system at 

all timescales, the last analysis we present in this subsection aims at going even further in 

the understanding of the system flows by exploring the possible signatures of a temporal 

ordering of the bovine displacements and the presence of recurrent paths.  

One of the main consequences of the temporal evolution of the network resides in the 

causality constraints it induces. For instance, a spreading phenomenon can propagate on a 

path ijk (i.e. from i to j to k) only if the link ij is present before the link jk. The search in 

networks of the abundance of particular paths or motifs [80] should then be 

complemented by causality requirements and approaches that are able to incorporate the 

longitudinal dimension [64,65,81,82]. This becomes particularly relevant if the flows 

form cycles or paths that allow the re-infection of some premises, given an appropriate 

interplay of the disease and movement timescales. From the point of view of quarantine 

and similar control strategies, this would represent an important phenomenon to take into 

account when establishing the identification of premises to isolate, or the durations of 

disease surveillance at those locations. 

Figure 12 presents an example of causal motifs: for instance, the repetition of the 

sequence of a link ij followed in the next snapshot by a link jk could imply a cause-effect 

relationship between these two links. Here we introduce a new measure to define causal 

motifs and restrict our analysis on the shortest possible timescale, i.e. the intrinsic 

timescale of the system 

€ 

Δt =1 day. We collect, for each path length l , the motifs given 
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by a list of links ll iiiiii 12110 ,...,, −  such that 10ii  is present at a certain snapshot 0t , 21ii  at 

snapshot 10 +t , ..., and finally ll ii 1−  at 10 −+ lt . The duration of the path is therefore equal 

to its length, and each path corresponds to a possible propagation that respects causal 

constraints. Each motif can occur for several values of the starting time 

€ 

t0, and motifs of 

a given length can be ranked according to their number of occurrences. It is worth 

remarking that the above definition does not focus on the shape of the motifs since only 

temporally connected chain-like motifs are considered, and the recurrence is sought at the 

microscopic level counting the number of appearance of a certain link sequence. Figure 

12 shows the corresponding frequency-rank plots, as well as the fraction of motifs that 

are repeated more than once for each length. Motifs are found up to length l = 8 , and both 

the absolute number of motifs and the fraction of recurring motifs strongly decrease for 

increasing lengths. Since the number of times a link is present in the daily networks is 

broadly distributed (this number is given by the weight 

€ 

wB  in the globally aggregated 

network over the whole year), pure statistical effects could be responsible for the 

abundance of specific patterns. For instance, if both links ij and jk are present all the time, 

then the causal path ijk will be very frequent. We therefore compare in Figure 12 the 

results obtained in the real data with different null models. The first null model (random 

ordered) is constructed by randomly shuffling the order of the daily aggregated networks: 

in this way, the structure of each daily network is kept, but the temporal correlations are 

lost. The second null model (temporal mixed edges) shuffles randomly the days in which 

each edge is active, independently from one edge to the next. The resulting daily 

aggregated networks have therefore randomized structures. Finally, we construct also a 

third null model by reshuffling the edges in each daily network as described in Ref. [83] 

(time ordered and reshuffled networks): we recall that this procedure consists in taking at 

random pairs of links ij and lm involving 4 distinct nodes, and rewiring them as e.g. im 

and jl. This procedure preserves both the in- and out-degree for each node, but destroys 

correlations. Figure 12 shows that the two first null models lead to similar results: a much 

smaller number of motifs is observed, and a smaller fraction of these motifs are found 

more than once. At lengths smaller than 5 however, this fraction is non negligible, 

showing that purely statistical effects due to the frequent presence of some links account 



for a part of the motifs presence and repetition. When both time ordering and network 

topology are reshuffled, motifs essentially disappear.  

Since the network under study is directed, it is interesting to note that a causal sequence 

of links (

€ 

inin+1 at a certain snapshot 

€ 

tn , followed by 

€ 

in+1in+2  at snapshot 

€ 

tn +1) is not a 

valid causal path if it happens in the reverse order (

€ 

in+1in+2  followed by 

€ 

inin+1). We 

therefore consider in Figure 12 also the sequence of 365 daily aggregated networks, seen 

in the reverse temporal order. Strikingly, the number of motifs is much smaller than for 

the true temporal sequence, and the fraction of repeated motifs is close to the case of a 

random temporal ordering. This indicates the presence of an intrinsic time arrow in the 

dataset, and provides a general method for investigating this aspect in dynamically 

directed networks. To our knowledge, this is indeed the first time that an intrinsic arrow 

of time has been explicitly detected in a temporal network. In Figure 12 we also show the 

number of motifs passing through a farm for different farm types. In order to take into 

account the relative abundance of the different farm types, we compare the results with a 

null model where the labels describing the farm types are reshuffled. We notice that some 

premises types (such as assembly centers or markets) are much more prone to be part of 

causal motifs than what would be expected for a random labeling of the premises. Our 

definition of causal motifs is therefore able to characterize the behavior of premises by 

identifying those types of premises that, as expected, show highly recurrent flow-in/flow-

out patterns at such short timescale. The present analysis can also be extended by 

considering longer latency times for the occurrence of specific causal paths in the 

network, by considering sequences of links ij at time t and jl at time 

€ 

t + t', relaxing the 

previous condition on the separation of times between the occurrences of successive links 

in the motifs. The flexibility of this approach thus allows the tuning of the analysis to the 

relevant timescales of the spreading process under study, with a variable latency time t '  

that corresponds to the time during which a node can be considered as continuously 

infectious. On the other hand, exploring different values of t '  allows us to explore 

possible scenarios of interventions through quarantine measures and isolation of premises 

of different duration, and assess their efficacy when simulating an epidemic process in 

the system. 
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Conclusions 

Empirical datasets characterizing cattle displacements are increasingly becoming 

available thanks to monitoring and tracking systems put in place in many countries, after 

recognizing the fundamental importance that movements have in disseminating an 

epidemic from one farm to another, with the potential of leading to national emergencies. 

By leveraging on the approaches and techniques of network science, in this paper we 

have presented a full analysis of the dynamical system of cattle movements, going 

beyond static and simple approximations and taking fully into account the temporal 

dimension of the dataset, using the Italian data of 2007 as a prototypical example. 

Starting from detailed data at the individual level at a daily resolution and covering a 

whole year, we have constructed aggregated networks on different timescales to 

characterize the system’s behavior on a variety of timescales typical of different diseases, 

exposing the coexistence of stationary statistical distributions and strong microscopic 

dynamics at all time and spatial scales. We have shown how this dynamics affects not 

only global quantities (such as the number of connected nodes), but also the nodes' and 

links' properties at a very local level, and in relation with the rest of the system. In 

particular, the centrality of a node fluctuates strongly in time, thus preventing a 

straightforward static assessment of the spreading potential of premises that could be 

used for the definition of prevention and control measures. Longer historical data may be 

of help in assessing the role of specific premises at high risk of flow-in/flow-out 

situations. The network's dynamics also hinders the definition of a stationary backbone 

for the system structure and function, as a subset of the most important links (and 

weights) that are stable over time. We found indeed that the nodes and links forming the 

backbone strongly vary depending on the time window considered, and that the memory 

of the backbone rapidly fades away from one snapshot to the successive ones. This has 

important implications for the dynamical phenomena occurring on the system. Evaluating 

the information available at a given time step, to devise containment strategies against an 

epidemic spreading on the system, would indeed lead to inefficient measures if applied at 

other times. Finally, we have put forward a definition of dynamical motifs, formed by 

sequences of links that allow causal propagation, and illustrated how this definition can 



unveil the existence of an intrinsic time arrow in the dataset. The number of motifs of 

various lengths is indeed strongly different in the real dataset and in a time-reversed 

version; moreover such definition can be easily extended to focus on a variety of 

timescales of interest for the study of the disease spreading. 

This study opens the road to future work in several directions. First of all, it would be 

interesting to explore such full characterization of the bovine movements dynamics also 

in other datasets corresponding to other countries, with the aim of uncovering similarities 

or differences, and assess how these may depend on different livestock market strategies 

and dynamics, or to the implementation of specific prevention measures. Also the effect 

of the introduction of new measures and regulations for the bovine movements and 

market could be possible with the analysis introduced here. Finally, the main result of our 

work highlights the non-trivial dynamical properties that prevent the study of the system 

from a stationary or quasi-stationary point of view and that have a strong impact on the 

dynamical processes that take place on this network. This opens a new challenge in the 

study of epidemic processes on dynamical substrates that continually evolve in time, with 

problems arising from the lack of stationarity, the interaction between multiple 

timescales, the strong dependence on the initial conditions, the presence of a non-

reversible time direction, and others. Furthering our understanding of such systems 

through sophisticate tools of analysis and exploration of scenarios by modeling would be 

crucial to evaluate the behavior of such real-world systems under a disease emergency 

and help identify possible responses to minimize the epidemic impacts. 
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Tables 

Table 1. Cattle trade movements: Data from the Italian National Bovine database for the year 

2007. 

Property Value 

Number of bovines 4,946,201 

Number of animal movements 7,177,825 

Number of batch movements 1,592,332 

Average batch size 4.5 

Days of activity 365 [Jan 1 – Dec 31] 

Number of active farms 173,139 

Average number of days of activity per farm 10.3 

Number of municipalities with active farms 7780  (96% of the Italian municipalities) 

Average number of active farms per municipality 22 

 

 

 

 

 

 

 

 

 

 

 



 

 

	
  
Bajardi	
  et	
  al.	
  

	
  
	
   	
  

35 

Table 2. Summary of the main features of the mobility networks obtained by aggregating the data 

over a time window 

€ 

Δt  

Aggregating time 

window 

Variable  Average Variance!  [min,max] 

€ 

Δt =1 day  

(365 networks) 

# of nodes 4.9 x 103 3 x 103 [85, 1.1 x 104] 

# of links 4.2 x 103 2.8 x 103 [49, 104] 

€ 

kin  0.9 6.2 [0, 683] 

€ 

kout  0.9 0.8 [0, 178] 

€ 

wij
B  1 0 [1, 1] 

€ 

wij
A  3.6 10.4 [1, 2039] 

€ 

Δt = 7  days 

(52 networks) 

# of nodes 2.6 x 104 2.8 x 103 [1.5 x 104, 2.9 x 104] 

# of links 2.8 x 104 3.4 x 103 [1.5 x 103, 3.2 x 103] 

kin  1.1 11.9 [0, 1595] 

€ 

kout  1.1 1.1 [0, 178] 

€ 

wij
B  1.05 0.3 [1, 2039] 

€ 

wij
A  3.8 11.9 [1, 7] 

€ 

Δt = 28 days 

(13 networks) 

# of nodes 6.4 x 104 3.8 x 103 [5.6 x 104, 6.9 x 104] 

# of links 9 x 104 6.5 x 103 [7.8 x 104, 9.9 x 104] 

€ 

kin  1.4 22.9 [0, 4154] 

€ 

kout  1.4 1.9 [0, 219] 

€ 

wij
B  1.3 0.8 [1, 25] 

€ 

wij
A  4.8 18.1 [1, 2039] 

€ 

Δt = 365  days 

(1 network) 

# of nodes 1.7 x 105 - - 

# of links 5.77 x 105 - - 

€ 

kin  3.3 59.5 [0, 13186] 

kout  3.3 7.0 [0, 649] 

€ 

wij
B  2.7 5 [1, 250] 

€ 

wij
A  9.8 65 [1, 10845] 



Figures 

  

Figure 1. Degree distributions for networks aggregated on different timescales 

€ 

Δt . 

Since a single value of !t  (for 

€ 

Δt < 365  days) yields multiple snapshots, each panel 

shows one distribution obtained for a given snapshot (circles) superimposed to a subset of 

the distributions obtained for the other snapshots at the same value of !t  (grey lines). 

Panels A to D report the distributions of the in-degree 

€ 

kin , that show very large 

fluctuations and a power-law like behavior with exponent close to 

€ 

−2  in all cases. Panels 

E to H present the distributions of the out-degree 

€ 

kout , characterized by a cut-off that 

strongly depends on the length of the aggregating time window. 
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Figure 2. Strength distributions for networks aggregated on different timescales 

€ 

Δt . 

Panels A to D report the distributions of the in-strength 

€ 

sin . Interestingly, the definition 

used to weight the links does not affect the distribution of the incoming traffic: the 

distributions 

€ 

P(sin
A )  and )( B

insP  are very close. Panels E to H present the distributions of 

the out-strength 

€ 

sout , whose behavior instead depends strongly on the type of weight 

considered. Broader tails are observed when considering the total number of animals 

displaced out of a given holding. The same representation of Figure 1 is adopted, with 

symbols representing the result of a particular snapshot, and grey lines the results 

obtained for a subset of the other snapshots. 



 

Figure 3. Relation between the number of bovine traffic movements of a holding and 

its number of connections for different values of 

€ 

Δt . Panels A to D report the average 

in-strength of nodes with a given value of in-degree, whereas panels E to H present the 

average out-strength of nodes with given out-degree. The same representation of Figure 1 

is adopted, with symbols representing the result of a particular snapshot, and grey lines 

the results obtained for a subset of the other snapshots.  
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Figure 4. Probability distributions of the time interval 

€ 

τ  between two consecutive 

displacements of a bovine. 

€ 

τ  corresponds to the time during which the bovine stays at 

given premises. The seasonality behavior of breeding is clearly shown by the peaks at 3 

and 6 months, while at shorter times the distribution behaves as 

€ 

τ−1. The global 

distribution is a convolution of the time distributions obtained for different farm types, 

shown in panels B to H. 



Figure 5. Neighborhoods of a selected node in three consecutive monthly networks. 

The subgraphs are obtained by showing all nodes within distance 3 from a selected node 

(in red in the figure), for consecutive monthly snapshots. The visualization highlights 

how the neighborhood of a given node may strongly change its structure in time. It is 

important to note that nodes that disappear from the plots may still be present in the 

network, but are not shown as they may be at distance larger than 3 from the seed, thus 

not belonging to its neighborhood.  
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Figure 6. Probability distributions of the duration 

€ 

τ  of activity and of the duration 

€ 

Δτ  of inactivity of nodes and links. Results are reported for daily (panels A to D) and 

weekly (panels E to H) networks. In the daily case, weekend breaks are neglected as they 

are characterized by a much lower activity and clear weekly patterns (see Figure S3). The 

observed peaks in )( τΔP  of the daily networks correspond to inactivity periods of 

multiples of a week. 



 

Figure 7. Fraction of appearing/disappearing links as a function of the weight 

associated to the link. The weight considered here counts the number of animals, 

€ 

wA . 

Results for daily, weekly, and monthly networks are shown (panels A, B, C, 

respectively). As a reference, the weight distribution is also shown with a grey histogram.  
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Figure 8. Distributions of the growth rates of the number of bovines Aw  displaced 

along a connection. The solid line represents the distribution of the growth rates 

considering all networks of a given aggregating time window 

€ 

Δt . Symbols corresponds a 

selection of snapshots.  



 

Figure 9. Fluctuations of the total outgoing traffic of bovines of a given holding for 

various aggregating time windows. The plot shows, for each holding of the system, the 

fluctuations of the values of A
outs  assumed by each node during all snapshots of the 

€ 

Δt  

under study. The median (black dots) and the 95% confidence interval (brown shaded 

area) of outgoing traffic are shown. 
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Figure 10. Evolution of monthly network backbones. Top: Distributions of the growth 

rates of the weights Aw  of the backbone links, where the network backbone is obtained 

under different filtering procedures. In each case, growth rates r are measured only for 

links that are present in two successive backbones. Center and Bottom: Overlap between 

the backbones of monthly networks. The overlap measures the number of links common 

to the pair of networks under consideration, normalized by their total number of links. 

Backbones are obtained either with a global threshold filter (center row) or using a 

disparity filter (bottom row). Three values of the significance parameter 

€ 

α  are 

considered.  

 



 

Figure 11. Percolation analysis on consecutive monthly networks. Two consecutive 

monthly snapshots (

€ 

n = 3 and 

€ 

n = 4) have been considered. A list of nodes with 

decreasing degree is calculated on the snapshot 

€ 

n = 3, and is applied as a removal 

strategy for both networks. The same procedure has been performed on the corresponding 

network backbones obtained for two values of the significance parameter 

€ 

α . 
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Figure 12. Motifs: schematic representation and their occurrence. A schematic 

example of the dynamics of a subset of the mobility networks is shown in panel A 

through three successive snapshots. The connections are color-coded according to the 

time at which they are active. A temporal motif is a temporal sequence of links such that 

the destination node of a link at time 

€ 

t0 is the origin of another link at time tt Δ+0 . Two 

examples of motifs, of respective lengths 2 and 3, are shown below. We restrict the 

present study to the case of 

€ 

Δt =1 day. Panel B shows the results on the presence of 

motifs, analyzed by counting the number of occurrences during the timeframe under 

study. The longer the motifs, the smaller the number of times they appear. By focusing 

only on the set of motifs that occur at least twice, panel C compares the size of this set 

(expressed as a fraction of the total) obtained from the empirical dataset with the sizes 

obtained through various randomization procedures (see main text). The results are 

shown as functions of the motifs length. In panel D the median and confidence intervals 

of the number of motifs passing through a farm depending on the farms type are shown, 

together with the same computation for a null model in which the farm types are 

reshuffled at random.  



Supplementary Information 

 

 
Figure S1. Size of the giant component of the network for increasing aggregation 

timescale !t . Average number of nodes (panel A) and relative fraction with respect to 

the system size (panel B) of the giant component of networks aggregated on time 

windows of length !t . As !t  increases, the networks become more globally connected. 

Sizes are averaged over all snapshots obtained with a given value of !t . 

 

 
Figure S2. Weight distributions for networks aggregated on different timescales !t . 

Red circles refer to the binned distributions of the weight wij
A , measuring the number of 
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animals moved along the link ij, whereas green squares refer to the binned distributions 

of the weight wij
B  that counts the number of batches displaced along the link. The same 

representation of Figure 1 of the main text is adopted, with symbols representing the 

result of a particular snapshot, and grey lines the results obtained for a subset of the other 

snapshots. The cut-off of the wij
B  distributions is naturally fixed by the choice of the 

aggregating period !t . The distribution of wij
B  for the daily networks has been omitted, 

since it is equal to 1 for wij
B =1 and 0 elsewhere. 

 

Figure S3. Time evolution of the global static features of networks on different 

timescales. The timeline of the number of nodes (top), the number of links (center), and 

the fraction of nodes in the giant component (bottom) are shown for daily, weekly, and 

monthly networks. Clear weekly and seasonal patterns are detected.  

 



 
Figure S4. Bovine activity. Panel A shows the probability distribution of the number of 

displacements that a bovine experiences during one year. Panel B displays the probability 

distributions of the distances covered during a single displacement. Since many links 

correspond to the displacement of very few animals, the same distribution is shown with 

different thresholds, i.e. considering only links with at least 2 or 10 bovines displaced 

during the year under study. This corresponds to keeping respectively 42% and 13% of 

the original links. Panel C shows the probability distribution of the distances covered by a 

single animal during its trajectory in one year. 
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Figure S5. Appearance of nodes by premises type. The fraction of appearing links as a 

function of the weight 

€ 

wA  associated to the link. The black curve refers to the total 

fraction of appearing links, the red curves are obtained considering only the links 

pointing to a given premises type, the green curves are obtained using only the links 

originating at a given premises type. The links’ behavior depends on the nature of the 

displacement, i.e. the premises type of origin/destination. Consistent results are obtained 

for different timescales !t . The fraction of disappearing links (not shown) displays an 

almost  identical behavior (similarly to the results presented in Figure 7 of the main text). 

 


