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Abstract. We study the small-world networks recently introduced by Watts and Strogatz [Nature 393,
440 (1998)], using analytical as well as numerical tools. We characterize the geometrical properties
resulting from the coexistence of a local structure and random long-range connections, and we examine
their evolution with size and disorder strength. We show that any finite value of the disorder is able to
trigger a “small-world” behaviour as soon as the initial lattice is big enough, and study the crossover
between a regular lattice and a “small-world” one. These results are corroborated by the investigation
of an Ising model defined on the network, showing for every finite disorder fraction a crossover from
a high-temperature region dominated by the underlying one-dimensional structure to a mean-field like
low-temperature region. In particular there exists a finite-temperature ferromagnetic phase transition as
soon as the disorder strength is finite.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 64.60.Cn Order-disorder transforma-
tions; statistical mechanics of model systems – 05.70.Fh Phase transitions: general studies

1 Introduction

A recent article by Watts and Strogatz [1], showing the
relevance of what they called “small-world” networks for
many realistic situations, has triggered a lot of attention
for these kind of networks [2–7]: this interest results from
their very definition, allowing an exploration between reg-
ular and random networks.

Random networks have of course been the subject of
many studies in various domains, ranging from physics to
social sciences. A very important characteristic common
to such lattices and for example social networks is that
the length of the shortest chain connecting two vertices
(or members) grows very slowly, i.e. in general logarith-
mically, with the size of the network [8]. This character-
istic has important consequences for many issues, e.g. the
speed of disease spreading [1] etc. The social psychologist
Milgram [9], after realizing that the number of persons
necessary to link two randomly chosen, geographically sep-
arated persons had a median number of six, has called
this concept the “six degrees of separation”. In addition,
models defined on random networks are, due to their lo-
cally tree-like structure, of mean-field type, and can there-
fore be analytically more tractable than their counterparts
defined on regular lattices, but, thanks to the finite con-
nectivity of their vertices, they display however behaviours
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which are intrinsically not captured by the familiar infinite
connectivity models [10].

However, it is well-known that many realistic networks
have a local structure which is very different from random
networks with finite connectivity. For example, two neigh-
bours have many common neighbours, a property which
does not hold for random networks, and which can be
quantified by the introduction of the “clustering coeffi-
cient” (see Sect. 3). Such phenomena are not only found
in social networks, but also e.g. in the connections of neu-
ral networks [1] or in the chemical bond structure of long
macromolecules [11]: The one-dimensional couplings of
neighbouring monomers are complemented by long-ranged
interactions between monomers that are close in space al-
though not along the chain. This interplay has been stud-
ied in fact for example in [12], but it seems that, in this
case, the long-range interactions are not sufficient to really
modify the properties of the one-dimensional structure of
the chain1.

The construction proposed by Watts and Strogatz [1],
that we will recall in Section 2, allows to reconcile local
properties of a regular network with global properties of a

1 For example, an Ising model defined on a self-avoiding walk
with interactions between monomers neighbours in space and
not only on the chain has a critical temperature Tc = 0, as for
a one-dimensional chain [12].
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random one, by introducing a certain amount of random
long-range connections into an initially regular network.

The aim of this paper is to study in some detail the
concepts used in [1] to characterize the “small-world”
behaviour, caused by the coexistence of “short-range”
and “long-range” connections. We will show that this be-
haviour does not appear at a finite value of the disorder
p, but that, for any p > 0, the networks will display this
behaviour as soon as their size is large enough.

This paper is organized as follows. In Section 2 we de-
scribe the procedure used to obtain small-world networks;
in Section 3 we study some of their geometrical properties,
i.e. the connectivity, the chemical distances and the “clus-
tering” coefficient, analytically as well as numerically2.
Section 4 contains the investigation of an Ising-model de-
fined on a small-world lattice, where the interplay between
the short- and long-range interactions leads to interesting
physical effects.

2 Definition of the model(s)

The construction algorithm proposed by Watts and
Strogatz for small-world networks is the following: the ini-
tial network is a one-dimensional lattice of N sites, with
periodic boundary conditions (i.e. a ring), each vertex be-
ing connected to its 2k nearest neighbours. The vertices
are then visited one after the other; each link connecting
a vertex to one of its k nearest neighbours in the clock-
wise sense is left in place with probability 1− p, and with
probability p is reconnected to a randomly chosen other
vertex. Long range connections are therefore introduced.
Note that, even for p = 1, the network keeps some memory
of the procedure and is not locally equivalent to a random
network: each vertex has indeed at least k neighbours. An
important consequence is that we have no isolated ver-
tices, and the graph has usually only one component (a
random graph has usually many components of various
sizes)(see Fig. 1).

It is possible to obtain “small-world” networks in
other ways, that yields the same physical consequences,
and can be more tractable analytically. For example, the
networks studied in [4,5] are obtained by adding long-
range connections to the initial ring without diluting its
one-dimensional structure; the mean connectivity then
changes with the disorder. In Section 4 we will also study
an initial network with multiple links between successive
vertices.

3 Geometrical properties

3.1 Connectivity

For p = 0, each vertex has the same connectivity 2k. On
the other hand, a non-zero value of p introduces disorder

2 Results in particular about the chemical distances and
the onset of the small-world behaviour can also be found in
[2,3,5–7].

into the network, in the form of a non-uniform connectiv-
ity, while maintaining a fixed average connectivity c̄ = 2k.
Let us denote Pp(c) the probability distribution of the
connectivities.

Since k of the initial 2k connections of each vertex are
left untouched by the construction, the connectivity of a
vertex i can be written ci = k + ni, with ni ≥ 0. ni can
then again be divided in two parts: n1

i ≤ k links have been
left in place (each one with probability 1 − p), the other
n2

i = ni − n1
i links have been reconnected towards i, each

one with probability p/N . We readily obtain

P1(n
1
i ) =

(

k

n1
i

)

(1 − p)n1
i pk−n1

i (1)

P2(n
2
i ) =

(kp)n2
i

n2
i !

exp (−pk) for large N (2)

and find

Pp(c) =

min(c−k,k)
∑

n=0

(

k

n

)

(1 − p)npk−n

× (kp)c−k−n

(c − k − n)!
exp (−pk), c ≥ k. (3)

We show in Figure 2 the probability distributions for k =
3 and various values of p: as p grows, the distribution
becomes broader.

3.2 Chemical distances

We now turn to a non-local quantity of graphs: the chemi-
cal distance between its vertices, i.e. the minimal number
of links between two vertices. We note dij the chemical
distance between vertices i and j, and

`(N, p) =
1

N(N − 1)

∑

i6=j

dij (4)

the mean chemical distance, averaged over all pairs of ver-
tices and over the disorder induced by the rewiring proce-
dure.

Watts and Strogatz have shown that the mean distance
between vertices `(N, p) decreases very rapidly as soon as
p is non-zero. They however show the curve of `(N, p)
versus p for only one value of N and do not study how it
depends on N . For p = 0, we have a linear chain of sites,
so that we easily find

`(N, 0) =
N(N + 2k − 2)

4k(N − 1)
∼ N

4k
, (5)

growing like N . On the other hand, for p = 1 `(N, 1) grows
like ln(N)/ ln(2k − 1) (inset of Fig. 3): the graph is then
random. Besides, the distribution of lengths, being uni-
form between 1 (shortest possible distance) and N/(2k) for
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(a) (b)
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Fig. 1. Examples of networks obtained by the procedure described in the text, for k = 2, N = 20. (a): p = 0, regular networks;
(b), (c): intermediate values of p; (d): p = 1.
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Fig. 2. Probability distributions of the connectivity c for k = 3
and various values of p: c ≥ k, and the mean connectivity is
c̄ = 2k = 6. The symbols are obtained by numerical simula-
tions of small-world networks (with N = 1000 vertices), and
the lines are a guide to the eye, joining points given by for-
mula (3). Filled circles show the probability distribution of the
connectivity c for a random network of mean connectivity is
c̄ = 2k = 6 (given by (2k)c exp(−2k)/c!).

the linear chain, becomes more and more peaked around
its mean value as p grows (see Fig. 3).

It is therefore quite natural to ask if the change be-
tween these two behaviours occurs by a transition at a
certain finite critical value of p or if there is a crossover
phenomenon at any finite value of N , with a transition oc-
curring only at p = 0. This last scenario was first proposed
in [2].
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l(N,1)

N/(2k)0 dij

P(dij)

Fig. 3. Probability distribution of the distance dij between two
vertices i and j of small-world graphs, for k = 3, N = 2000,
p = 2−20 (flat distribution), p = 2−12, 2−10 and 2−8 (curves
becoming more and more peaked as p grows), averaged over
500 samples for each p. The maximum value of dij is of course
N/(2k). Inset: `(N, 1) versus N for k = 3 and k = 5, together
with the ln(N)/ ln(2k − 1) straight lines.

We first investigate this question by numerical simu-
lations, to study the behaviour of `(N, p) in a systematic
way, varying N and p: we use values of N from 100 to
20000, with p = 2a/220, a = 0, · · · , 20, and we average
over 500 realizations of the disorder for each value of p.
We have studied three different values of the mean con-
nectivity: 2k = 4, 6 and 10.

In Figure 4, we plot `(N, p)/`(N, 0) for various val-
ues of N and k = 2. It is clear that `(N, p) decreases
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Fig. 4. Mean chemical length `(N, p) normalized by `(N, 0),
versus p, for k = 2, and N from 100 to 20000: the drop in the
curve occurs at lower and lower values of p as N grows.

very fast already for small p (note the logarithmic scale
for p): from this point of view, the network is very soon
similar to a random network. In particular, as N be-
comes larger, the drop in the curve occurs for smaller and
smaller values of p, showing that no finite critical value
of p can be determined this way: in the thermodynamic
limit, `(N, p)/`(N, 0) goes to 0 for all p > 0. This is a
first clear indication of a crossover behaviour (as opposed
to a transition at a non-zero p) that we are now going to
examine in more details.

Note that the first evidence of a crossover has been
given in [2] by the numerical study of system with sizes
up to N = 1000, and mean connectivities 2k = 10, 20, 30.
A scaling of the form

`(N, p) ∼ N∗Fk

(

N

N∗

)

(6)

was proposed, where Fk depends only on k, with Fk(u �
1) ∼ u, Fk(u � 1) ∼ lnu, and N∗ ∼ p−τ with τ = 2/3 as
p goes to zero. However, it can be shown [3], with a simple
but rigorous argument, that τ cannot in fact be lower
than 1: the mean number of rewired links is Nr = pNk;
if τ < 1, and if we take α such that τ < α < 1, then the
scaling hypothesis implies, for large N , `(N,N−1/α) ∼
Nτ/α ln(N) (since N1−τ/α � 1 for large N); Nr however
goes to zero for large N , so that the rewiring of a vanishing
number of links could lead to a change in the scaling of `.
This obviously unphysical result shows that the hypothesis
τ < 1 is not valid. In addition, Newman and Watts [5],
using a renormalization group analysis, have shown that
τ = 1 exactly. Here we will arrive at the same result, using
our numerical simulations to test the scaling hypothesis,
as well as analytical arguments.

To understand how strong the disorder has to be to
induce a crossover, and to show that this crossover can
occur, at fixed p, for N∗ ∼ p−τ , or equivalently, at fixed
N , for p∗ ∼ N−1/τ , only with τ ≥ 1, we study the case of

a finite number of rewired links, Nr = α. This corresponds
to p = α/N . In order to show that such a value of p is not
able to alter the scaling of ` with N , we now establish a
rigorous lower bound.

For any given sample, the extremities of the α rewired
links determine 2α intervals. The sum of their lengths
on the ring is N , so that at least one of them has a
length of order N , which is, even more precisely, larger
than N/(2α). We call this interval J = [i0, j0] and we
consider the interval I ⊂ J , of length N/(4α) = bN ,
I = [i0 +N/(8α), i0 +3N/(8α)], which has not been mod-
ified by the rewiring procedure. We now decompose the
mean length between two vertices of the sample,

` =
1

N(N − 1)

∑

i6=j

dij ,

into two contributions: the first one comes from the pairs
(i, j) with i ∈ I, j ∈ I, the second one includes all pairs
(i, j) where at least one of the vertices is not an element of
I. The first contribution can be estimated by formula (5),
since it comes from a part of the graph which has not been
modified, and at a distance big enough from any modified
link:

∑

i∈I, j∈I

dij ≥ (bN)(bN − 1)
bN

4k

(the inequality comes from the fact that we do not have
periodic boundary conditions for this interval). We now
have access to a lower bound of `(N,α/N) (which is valid
for any sample, and consequently also for the average over
samples):

`(N,α/N) ≥ 1

N(N − 1)

∑

i∈I, j∈I

dij ≥ b3

4k
N.

Since `(N,α/N) is smaller than `(N, 0) ∼ N/(4k), this
shows that

`(N,α/N) = O(N). (7)

In other words, a finite number of rewired links cannot
change the scaling at large N : `(N,α/N) is of order N for
any finite α.

To complete this argument, we have computed numeri-
cally p1/2(N), i.e. the value of p such that `(N, p1/2(N)) =
`(N, 0)/2. Figure 5 shows quite clearly that, for large N ,
p1/2(N) ∼ 1/N : a finite number of rewired links is able to

divide the mean length between vertices by two3.
Let us now go back to the scaling hypothesis of [2].

If the scaling form of equation (6) is valid, we have to
compute `(N, p) at fixed p in order to estimate N∗(p).
For large N , it behaves like N∗(p) ln(N) (see Fig. 6 for
different values of p). For small p, N∗(p) becomes bigger
and bigger, so that we have to use larger and larger values
of N . We show in Figure 7 that the N∗(p) estimated in

3 As shown in [3], N∗ ∼ p−τ implies p1/2(N) ∼ N−1/τ ; we
thus have a clear indication that τ = 1.
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Fig. 5. p1/2(N) such that `(N, p1/2(N)) = `(N, 0)/2, versus

N , for k = 2, 3, 5. The straight line is proportional to 1/N .
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Fig. 6. `(N,p) versus N , for p = 2−a, a = 6, · · · , 11, and
k = 3. For large values of p we have a straight line in the semi-
log plot, while for small values of p we observe the crossover
between `(N,p) ∼ N and `(N, p) ∼ ln(N). The value of N∗(p)
is given by the slope of the linear part in the semi-log plot.

this way behaves like 1/p for small p (and for p → 1,
N∗(p) → 1/ ln(2k − 1), in accordance with `(N, 1) ∼
ln(N)/ ln(2k − 1)), giving τ = 1. This is not very sur-
prising if we consider the above discussion showing that a
finite number of rewired links will change the coefficient of
the scaling of ` with N but not the scaling itself. Moreover,
p1/2(N) corresponds to the drop in the curves of Figure 4
and can therefore be considered as a crossover value.

Using the determined values of N∗, we plot in Figure 8
`(N, p)/N∗(p) versus N/N∗(p) for various values of N and
p. We observe a nice collapse of the data for each value of
k. Thanks to the range of values of N that we use, we are
able to show the collapse over a much wider range of values
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Fig. 7. N∗(p) versus p for k = 2, 3, 5. The straight line is
proportional to 1/p.

than [2]. We clearly see the linear behaviour Fk(x � 1) ∼
x/(4k), and the crossover to Fk(x � 1) ∼ ln(x). Note
that, as explained in [5], we have to use values of p lower
than 1/k2 (and of course large enough values of N , i.e.
N � k) to obtain a clean scaling behaviour: for too large
p, we are moving out of the scaling regime close to the
p = 0-transition.

3.3 Clustering coefficient

To define the “small-world” behaviour, two ingredients are
used by Watts and Strogatz [1]. The first one is the chem-
ical length studied in the previous paragraph, which de-
pends strongly on p and N . The second one is more local:
the “clustering coefficient” C(p) quantifies its “cliquish-
ness”. C(p) is indeed defined as follows: if ci is the number
of neighbours of a vertex i, there are a priori ci(ci − 1)/2
possible links between these neighbours. Denoting Ci the
fraction of these links that are really present in the graph,
C(p) is the average of Ci over all vertices. On a linear-log
plot, C(p)/C(0) is close to 1 for a wide range of values of
p, and its drop occurs around p ≈ 0.1. This is therefore in
contrast with `(N, p), whose drop occurs for much smaller
values of p as soon as N is large enough. It is therefore an
interesting question whether there is an upper threshold
on p for the small-world behaviour.

We now show that a simple redefinition of C(p) leads to
a very simple formula, without altering its physical signifi-
cation, nor the shape of the curve. For p = 0, each vertex
has 2k neighbours; it is easy to see that the number of
links between these neighbours is N0 = 3k(k−1)/2. Then

C(0) = 3(k−1)
2(2k−1) . For p > 0, two neighbours of i that were

connected at p = 0 are still neighbours of i and linked
together with probability (1 − p)3, up to terms of order
1
N . The mean number of links between the neighbours of

a vertex is then clearly N0(1 − p)3 + O( 1
N ). The cluster-

ing coefficient C(p) is defined as the mean of the ratio

Ci = Ni

ci(ci−1)/2 . If instead we define C̃(p) as the ratio of
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Fig. 8. Data collapse `(N, p)/N∗(p) versus N/N∗(p), for k = 2 and k = 5; (a): log-linear scale showing at large N/N∗ the
logarithmic behaviour; (b) linear scale showing at small N/N∗ the linear behaviour `(N, p) ∼ N/(4k): the straight lines have
slopes 1/8 and 1/20.

the mean number of links between the neighbours of a
vertex and the mean number of possible links between the
neighbours of a vertex, we obtain

C̃(p) =
3(k − 1)

2(2k − 1)
(1 − p)3. (8)

We check numerically, with N = 50 to N = 8000, and
averaging over 5000 samples, that the two definitions lead
to the same behaviour (we see in Fig. 9 that the differ-

ence between C(p) and C̃(p) is very small), and that the
corrections to equation (8) are indeed of order 1/N . The
behaviour of C(p) is therefore very simply described by
C(p) ≈ C(0)(1 − p)3, and the dependence on N is very
small.

To summarize this section, we have shown that the
small-world behaviour – as defined by the average chem-
ical distance and the clustering coefficient – is indeed
present for any finite value of 0 < p < 1 as soon as the
network is large enough.

4 Ising model

In this section we want to investigate the consequences of
the mixed geometrical structure of small-world networks
on an Ising model as a prototype of statistical-mechanics
models that can be defined on it. This model can be
understood as a continuous interpolation of a pure one-
dimensional model for p = 0 showing no phase transition
at finite temperature to a model on a random graph4 for
p = 1 having a finite critical temperature Tc(p = 1) > 0
as long as k ≥ 2, cf. [13]. In agreement with the results
from Section 3, we find for every finite p > 0 that the low
temperature behaviour of the model is of mean-field char-
acter, even if we observe a finite temperature crossover to
a dominance of the one-dimensional structure. This obser-
vation confirms the value pc = 0 for the onset of a non-
trivial thermodynamical small-world behaviour as already

4 As already mentioned in the introduction, every point in
this model has a minimal connectivity k. So, even in the case
p = 1, the model is not equivalent to the usual random graph
where both endpoints of a link are chosen randomly.
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Fig. 9. C(p) and C̃(p) versus p, for k = 2 (C(0) = C̃(0) = 0.5),
N = 1000, 2000, 5000: open symbols are for C(p), and the
crosses are for C̃(p); the line is C(0)(1 − p)3. Inset: corrections
C(p) − C(0)(1 − p)3 (filled symbols) for N = 1000 (circles),
N = 2000 (squares) and N = 5000 (triangles), and C̃(p) −
C(0)(1 − p)3 (open symbols) for N = 1000 (circles), N = 2000
(squares) and N = 5000 (triangles). We see that the corrections
go to zero as 1/N for C̃(p); the corrections for C(p) are larger,
but anyway very small.

found in the geometrical properties, and it shows again the
crucial importance of the mixed geometrical structure, as
even global quantities can be dominated by the initial or-
dered structure for high temperatures.

4.1 General formalism

The system we want to study is given by its Hamiltonian

H({Si}) = −
N
∑

i=1

Si

k
∑

j=1

Sm(i,j) (9)

with N Ising spins Si = ±1, i = 1, ..., N, and periodic
boundary conditions, i.e. we identify SN+1 = S1 etc.
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in the following. The independently and identically dis-
tributed numbers m(i, j) are drawn from the probability
distribution

P (m(i, j)) = (1 − p)δm(i,j),i+j +
p

N

N
∑

l=1

δm(i,j),l, (10)

i.e. for p = 0 we obtain a pure one-dimensional Ising model
where every site is connected to its 2k nearest neighbours
by ferromagnetic bonds of strength 1, whereas this struc-
ture is completely replaced by random long-range bonds
for p = 1. The number of bonds in the model is given
by kN , independently of the disorder strength p. Here we
consider only the case of finite probabilities p = O(1),
i.e. an extensive number of links is rewired and, accord-
ing to the last section, we are therefore in the small-world
regime.

In order to decide whether there exists a ferromag-
netic phase transition at finite temperature or not, we
have to calculate the free-energy density at inverse tem-
perature β. Due to the existence of an extensive number as
well of random as of one-dimensional links and due to the
translational invariance of the distribution (10) we expect
this quantity to be self-averaging, we therefore have to
determine

f = − lim
N→∞

1

βN
lnZ

= − lim
N→∞

1

βN
ln
∑

{Si}

e−βH({Si}) . (11)

The average (·) over the disorder distribution P (m(i, j))
is achieved with the help of the replica trick

E12lnZ = lim
n→0

∂nZn (12)

by introducing at first a positive integer number n of repli-
cas of the original system, averaging over the disorder and
sending n → 0 at the end of the calculations. Thus the
replicated and disorder averaged partition function can
be written as

Zn =
∑

{Si}

exp

{

−β
n
∑

a=1

H({Sa
i })
}

=
∑

{Si}

N
∏

i=1

k
∏

j=1

(

(1 − p)eβSi·Si+j +
p

N

N
∑

l=1

eβSi·Sl

)

(13)

where we introduced the replicated Ising spins Si =
(S1

i , ..., Sn
i ). This expression can be simplified by defining

the 2n order parameters [14]

c(S) :=
1

N

N
∑

i=1

δSi,S (14)

giving the fraction of n-tuples in {Si} which are equal to
S ∈ {−1, +1}n, and their conjugates ĉ(S). These order

parameters have to be normalized,
∑

S
c(S) = 1. After

a change ĉ → iĉ leading to real order parameters, we
arrive at

Zn =

∫

∏

S

dc(S) dĉ(S)

× exp

{

N

(

−
∑

S

c(S)ĉ(S) +
1

N
ln tr T

N
k

)}

=

∫

∏

S

dc(S)dĉ(S) exp {Nfn[c, ĉ]} (15)

with an effective 2kn × 2kn-transfer matrix T given by its
entries

T(S1, ...,Sk|Sk+1, ...,S2k) =
k
∏

i=1

eĉ(Si)

×
k
∏

j=1

(

(1 − p)eβSi·Si+j + p
∑

S

c(S)eβSi·S

)

. (16)

At this point we remark that the small-world Ising model
offers an interesting interplay between technical concepts
of mean-field theory, as represented by the global order
parameters, and the theory of one-dimensional systems,
here represented by the effective transfer matrix. As in the
conventional transfer matrix method, the contribution of
the second term in fn can be determined by the largest
eigenvalue of T with right (left) eigenvector |λr〉 (〈λl|),

fn[c, ĉ] = −
∑

S

c(S)ĉ(S) + ln
〈λl|T|λr〉
〈λl|λr〉

, (17)

but in order to calculate the integrals over the order
parameters in (15) we have to use the saddle point
method which implies

c(S) =
∑

S1,...,Sk−1

〈λl|S,S1, ...,Sk−1〉〈S,S1, ...,Sk−1|λr〉
〈λl|λr〉

,

(18)

i.e. the explicit form of the transfer matrix itself depends
on the eigenvectors, and the linear structure of the eigen-
value equations is destroyed.

4.2 High-temperature solution

The problem simplifies significantly in its high-
temperature phase where the correct solution of the
saddle point equations

c(S) =
1

N

∂

∂ĉ(S)
ln trT

N
k

ĉ(S) =
1

N

∂

∂c(S)
ln trT

N
k (19)

can be found without knowing the above-mentioned
eigenvectors and is given by the paramagnetic values
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cpm(S) = 1/2n and ĉpm(S) = kpan. a does not depend

on S, so it can be taken out of ln trT
N
k and cancels fi-

nally with −∑ cĉ in (15). In this phase all replicated spins
S have the same density, and thus the average magne-
tization m = limn→0

∑

S
S1c(S) as well as the overlaps

qab = limn→0

∑

S
SaSbc(S) vanish.

Even if this solution exists for all temperatures, it is
not stable for low temperatures. The critical temperature
can be determined by investigating the 2n+1-dimensional
fluctuation matrix











∂2fn[c, ĉ] ∂2fn[c, ĉ]
∂c ∂c ∂c ∂ĉ

∂2fn[c, ĉ] ∂2fn[c, ĉ]
∂ĉ ∂c ∂ĉ ∂ĉ











. (20)

The paramagnetic solution is valid as long as none of the
eigenvalues of this matrix changes sign5. The phase tran-
sition therefore appears at the point where the first eigen-
value becomes zero and the system becomes unstable with
respect to Gaussian fluctuations around the given saddle
point.

4.3 Crossover from one-dimensional to mean-field
behaviour

The problem in calculating these eigenvalues consists in
the fact that the transfer matrix T is given by a sum over
non-commuting matrices. So it is not clear how to obtain
the eigenvectors of T even at the paramagnetic saddle
point where the problem can be linearized again because
we already know c and ĉ and the form of the transfer
matrix is fixed.

At this moment we therefore restrict to the most in-
teresting case of small p � 1 and treat the problem by
means of a first order perturbation theory in p around
the pure one-dimensional model. In this case we are in
principle able to calculate all the (k-dependent) eigenvec-
tors, which are simple direct products of n eigenvectors
of the pure and unreplicated transfer matrix, and hence
the perturbation-theoretic corrections to their eigenvalues.
The linearized transfer matrix reads

Tlin(S1, ...,Sk|Sk+1, ...,S2k) =

exp







k
∑

i+1

ĉ(Si) + β
k
∑

i,j=1

SiSi+j







×
[

1 − k2p + p
∑

S

c(S)
k
∑

p,q=1

exp {βSp(S− Sp+q)}
]

.

(21)

As we show in some detail in Appendix A from the analysis
of the entries of the fluctuation matrix (20), this pertur-
bation expansion contains powers of a term proportional

5 Due to the common change ĉ → iĉ one half of the eigen-
values has to be negative, the other half positive in order to
insure a stable saddle point.

to pξ0 with ξ0 being the correlation length of the pure sys-
tem, and its first order approximation consequently breaks
down when pξ0 becomes larger than O(1) for increasing
disorder p or decreasing temperature T . In the pure model
the correlation length diverges for low temperatures as

ξ0 ∝ ek(k+1)β . (22)

Consequently, at fixed but low temperature T , we find
a crossover from a weakly perturbated one-dimensional
behaviour for disorder strengths p � pco(T ) with

pco(T ) ∝ exp

{−k(k + 1)

T

}

(23)

to a disorder-dominated and hence mean-field like regime
for larger p. This can be understood by a simple physi-
cal argument. We consider a cluster of correlated spins in
the pure model which has a typical length scale l ≈ ξ0.
Thus the number of links in this cluster is also O(ξ0) for
finite k, and the average number of redirected links in this
cluster at disorder strength p is approximately pξ0. For
p � pco(T ) there are on average consequently less than
one redirected link per cluster, and the system is not seri-
ously perturbated by the disorder. The opposite holds for
larger p.

This shows that an arbitrarily small, but finite fraction
p of redirected links (“short cuts” in the graph) leads at
sufficiently small temperature T < Tco(p),

Tco(p) ∝ −k(k + 1)

log(p)
, p � 1, (24)

to a change of the behaviour of the model from a one-
dimensional to a mean-field one, which nicely under-
lines the importance of both geometrical structures in the
small-world lattice.

4.4 The ferromagnetic phase transition

In the low-temperature regime T � Tco(p) the thermo-
dynamic behaviour is dominated by the mean-field type
disorder, and we expect a finite temperature transition
to a ferromagnetically ordered phase at finite tempera-
ture Tc(p) at least for sufficiently large p and k ≥ 2. Due
to the above-mentioned technical problems in diagonaliz-
ing the transfer matrix we cannot calculate this transition
analytically, and we compute therefore the full line Tc(p)
for k = 2 and k = 3 by means of numerical simulations.
We use a cluster algorithm [15] to compute the equilib-
rium distribution of the magnetization, for system sizes
ranging from N = 500 to N = 8000, and use Binder cu-
mulants [16] to determine the critical point (see the inset
of Fig. 10 for an example).

The important result is that we obtain a transition at
a non-zero temperature for all the investigated values of
p. Moreover, for small p we have, as shown in Figure 10:

Tc(p) ∝ − 2k

log(p)
· (25)
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Fig. 10. Inverse critical temperature βc(p) for k = 2 (circles)
and k = 3 (diamonds). The full lines show the asymptotic
scaling (25) of βc(p � 1). The scaling (24) of the crossover
between one-dimensional and mean-field behaviour is given
by the dashed lines – and consistently found to be at higher
temperatures as the ferromagnetic phase transition. The in-
set shows the β-dependence of the Binder cumulant used to
determine the critical temperature for p = 0.1, k = 3 and
N = 500, 1000, 2000, 5000 (triangles, diamonds, squares, cir-
cles).

This transition line is found to be always at smaller
temperatures than the crossover temperatures, which il-
lustrates again the mean-field character of the phase tran-
sition.

Even if the behaviour of the system is dominated by
the random part of its Hamiltonian, the underlying one-
dimensional structure is crucial for the existence of the
phase transition and for the explicit value of the transi-
tion temperature. This becomes clear from the fact that
only the existence of the short-range links leads to the ex-
istence of a macroscopic cluster for p below the percolation
threshold of the random bonds, and can be supported an-
alytically by investigating a version of the model where all
one-dimensional bonds are deleted and only the random
bonds for fixed p are conserved. This model shows a fer-
romagnetic transition only above pc(k) = 1−

√

(k − 1)/k.
So, even if the phase transition is induced by the pres-
ence of long-range interactions, it is based on an interplay
between both structures.

4.5 A simplified model

In this subsection we present a slightly modified model
where the full procedure introduced in Section 4.1 can be
followed analytically, and the phase diagram can be calcu-
lated explicitly. The model has the same Hamiltonian (9),

but its disorder distribution is given by

P̃ (m(i, j)) = (1 − p)δm(i,j),i+1 +
p

N

N
∑

l=1

δm(i,j),l. (26)

So the underlying one-dimensional graph is changed: in-
stead of having bonds to the next 2k neighbours it in-
cludes k bonds to each of the two next nearest neigh-
bours (which, in the pure case, is equivalent to one bond
of strength k). In the disordered version every of these
bonds is replaced with probability p by a random bond,
so the random structure of the model remains unchanged
compared to the original model. Anyway, this model re-
mains a “valid” small-world network as it consists of a
mixture of a regular low-dimensional with a random long-
ranged lattice. This can e.g. be confirmed by the fact that
our simplified model also shows the scaling behaviour (6)
with the same scaling exponent τ = 1 as the latter de-
pends only on the dimensionality of the regular structure,
cf. [5]. Because of the geometrical similarity of the un-
derlying networks we expect also a qualitatively similar
thermodynamic behaviour.

Again we average the replicated partition function over
the disorder and introduce the order parameters c(S) and
ĉ(S). By doing this we arrive again at

Zn =

∫

∏

S

dc(S) dĉ(S) exp {Nfn[c, ĉ]} (27)

with a slightly changed fn,

fn[c, ĉ] = −
∑

S

c(S)ĉ(S) +
1

N
ln trTN (28)

where the effective transfer matrix is of dimension 2n and
reads

T(S1|S2) = eĉ(S1) [(1 − p) exp{βS1 · S2}

+p
∑

S

c(S) exp{βS1 · S}
]k

. (29)

Also in this case, the simple paramagnetic saddle point for
c and ĉ is given by cpm(S) = 1/2n, ĉpm(S) = kpan with a
β-dependent a canceling in (28), which therefore becomes

fn[cpm, ĉpm] =
1

N
ln trTN

pm (30)

with

Tpm(S1|S2) = [(1 − p) exp{βS1 · S2} + p(coshβ)n]
k
.

(31)

This matrix can be easily diagonalized by introduc-
ing the two-dimensional orthonormalized vectors |+〉 =
1/

√
2 (1, 1) and |−〉 = 1/

√
2 (1,−1). The eigenvectors of

Tpm are |µ〉 = |µ1〉 ⊗ · · · ⊗ |µn〉 with µa = +,− for all
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Λcc = k(k − 1)p2(tanhβ)2 +

2k2p2

k−1�
m=0

�
k − 1

m � pm(1 − p)k−m−1 � tanh(k − m − 1)β (tanhβ)2 �
1 −

k�
m=0

�
k

m � pm(1 − p)k−m tanh(k − m)β

Λcĉ = −1 +

kp tanh β � 1 +

k−1�
m=0

�
k − 1

m � pm(1 − p)k−m−1 tanh(k − m − 1)β �
1 −

k�
m=0

�
k

m � pm(1 − p)k−m tanh(k − m)β

Λĉĉ = 1 + 2

k�
m=0

�
k

m � pm(1 − p)k−m tanh(k − m)β

1 −

k�
m=0

�
k

m � pm(1 − p)k−m tanh(k − m)β

· (36)

a = 1, ..., n. With ρ(µ) being the number of factors |+〉 in
|µ〉, the eigenvalues are found to be

λ[µ] = λ(ρ(µ)) =
k
∑

j=0

(

k

j

)

(p coshβn)j(1 − p)k−j

× (2 cosh(k − j)β)ρ(µ)(2 sinh(k − j)β)n−ρ(µ).

(32)

The behaviour of fn in the thermodynamic limit N → ∞
is completely determined by the largest eigenvalue λ(n) =
λ[+...+], and the paramagnetic free energy of the model
reads

−βfpm = lim
n→0

∂nfn[cpm, ĉpm]

=
k
∑

j=0

(

k

j

)

pj(1 − p)k−j

× (j ln coshβ + ln 2 cosh(k − j)β) . (33)

The second eigenvalue λ(n − 1) = λ[− + ...+] of the
transfer matrix Tpm describes in the replica limit n → 0

the decay of the two-point correlation function 〈SiSj〉 ∝
λ(n − 1)|i−j| for distances 1 � |i − j| � `(N, p), cf. Sec-
tion 3.2, i.e. for points i and j whose chemical distance is
given with finite probability by the one-dimensional dis-
tance |i − j| and does not include random bonds. The
corresponding correlation length reads

ξp = − lim
n→0

1

lnλ(n − 1)

=
−1

ln
(

∑k
j=0

(

k
j

)

pj(1 − p)k−j tanh(k − j)β
) (34)

and remains finite for every non-zero temperature. So,
in complete agreement with our findings for the origi-
nal model in the last subsections, we can conclude that
the modified model has no ferromagnetic phase transition

caused by a divergence of the one-dimensional correlation
length. There is nevertheless a transition due to the fact
that the paramagnetic saddle point cpm(S) and ĉpm(S) be-
comes unstable at a certain temperature. In order to see
this we investigate again the fluctuation matrix (20) for
the present model. The four blocks can be calculated (see
Appendix B for details), and diagonalized simultaneously.
The fluctuation mode becoming at first unstable leads to
the reduced matrix

(

Λcc Λcĉ

Λcĉ Λĉĉ

)

(35)

with entries
see equation (36) above.

The vanishing of its determinant gives the critical temper-
ature Tc(p) which depends on p. The determinant is nega-
tive for p = 0 at all positive temperatures, where the para-
magnetic solution is known to be correct, and positive at
T = 0 for all p > 0, we thus conclude that Tc(p > 0) > 0.
The explicit value can be calculated numerically from (35)
and is shown in figure (11). The critical temperature for
small disorder p behaves like

Tc(p) ≈ − 2k

log(2kp)
, (37)

it consequently shows the same asymptotic p-dependence
as in the original model, cf. (25). In addition it shows in
this case the same p-dependence as the crossover temper-
ature found from 2kpξ0 ∝ 1 with ξ0 = −1/ ln(tanh kβ) ∝
exp{2kβ} for β � 1.

5 Summary and conclusion

In conclusion, in the first part of this work we have studied
the geometrical properties of small-world networks which
interpolate continuously between a one-dimensional ring
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Fig. 11. The inverse phase transition temperature βc(p) in the
simplified model for k = 2 and k = 3. The dashed lines show
the asymptotic behaviour given in (37).

and a certain random graph. The coexistence of a more
and more diluted local structure and of random long-
ranged links leads to some very interesting features:

• Due to the local structure two neighbouring vertices
have in general common neighbours, a fact which leads
to a certain cliquishness. The clustering coefficient,
measuring this property, was found to decrease like
(1− p)3 with the fraction p of randomly rewired links.

• The average length between two points characterizing
global properties of the network was found to depend
strongly on the amount of disorder in the network.
A crossover, first proposed in [2], could be worked
out: At fixed p, the average length between two ver-
tices was found to grow linearly with the system size
N � O(1/p) for small networks, whereas it grows only
logarithmically for large networks N � O(1/p).

Therefore, the mere notion of “small-world” graph, i.e.
the region of disorder where the local properties are still
similar to those of the one-dimensional ring whereas the
global properties are determined by the random short-cuts
in the graph, depends on its size, and can be extended to
smaller and smaller p, taking larger and larger N .

In the second part these findings where corroborated
by the investigation of an Ising model defined on the small-
world network. In the thermodynamic limit we found
the following behaviour for fixed disorder strength p: for
large temperatures, the system behaves very similarly to
the pure one-dimensional system, whereas it undergoes a
crossover to a mean-field like region for smaller tempera-
tures. Finally, at low but non-zero temperature, we find a
ferromagnetic phase transition. This underlines again the
results of the geometrical investigations that the graph
is in its small-world regime for any disorder strength at

sufficiently large system sizes, i.e. in a region where both
geometrical structures lead to interesting physical effects.

We are very grateful to G. Biroli, R. Monasson and R. Zecchina
for numerous fruitful discussions. M.W. acknowledges financial
support by the German Academic Exchange Service (DAAD).

Appendix A: Breakdown of the first order
perturbation theory

In this appendix we want to present the first-order per-
turbation calculations for small disorder strengths p � 1
leading finally to the crossover phenomenon described in
Section 4.3. We start from the linearized transfer matrix

Tlin(S1, ...,Sk|Sk+1, ...,S2k) =

exp







k
∑

i+1

ĉ(Si) + β
k
∑

i,j=1

SiSi+j







×
[

1 − k2p + p
∑

S

c(S)
k
∑

p,q=1

exp {βSp(S − Sp+q)}
]

.

(A.1)

and calculate the elements of the fluctuation matrix
(20) around the paramagnetic saddle point up to first
order in p. In order to achieve this we use the 2k

(bi-)orthonormalized eigenvectors |λα〉, (〈λα|) α =
1, ..., 2k, of the pure and unreplicated transfer matrix

T
(0)(S1, ..., Sk|Sk+1, ..., S2k) = exp







β
k
∑

i,j=1

SiSi+j







.

(A.2)

We choose these eigenvectors to be ordered according to
their eigenvalues. The eigenvectors of the replicated pure
system are therefore given by |α〉 = |λα1〉 ⊗ · · · ⊗ |λαn〉,
and the corrections of O(p) can be calculated by using
these vectors.

At first we realize that the second derivative of

fn[c, ĉ] = −
∑

S

c(S)ĉ(S) +
1

N
ln tr T

N
k

lin (A.3)

with respect to c is already of order p2 and can therefore
be neglected. The interesting entries of the fluctuation
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∂fn

∂ĉ(S)
= −c(S) +

∑

S1,...,Sk−1

T
N
k

lin(S,S1, ...,Sk−1|S,S1, ...,Sk−1)

tr T
N
k

lin

∂2fn

∂ĉ(S)∂c(R)
= −δS,R − N

k
cpmĉpm +

N−1
∑

j=0

∑

S1,...,Sk−1

(

T
j
lin

∂Tlin

∂c(R)
T

N−j−1
lin

)

(S,S1, ...,Sk−1|S,S1, ...,Sk−1)

tr T
N
k

lin

. (A.4)

matrix consequently come from the off-diagonal blocks
∂2fn/∂c∂ĉ. We calculate the derivatives

see equation (A.4) above.

Due to the fact that

∂T

∂c(R)
= p

k
∑

p,q=1

exp

{

βSp(S − Sp+q)

+ β
k
∑

i,j=1

SiSi+j +
k
∑

i=1

ĉ(Si)

}

(A.5)

is already linear in p, the other Tlin-factors can be replaced
by the replication (T(0))⊗n of the pure matrix. Introduc-
ing two-times the identity

1 =
∑

α

|α〉〈α| (A.6)

where 〈α| denotes the biorthogonal set of left eigenvectors
into (A.4) and keeping only the exponentially dominant
terms proportional to λnN

1 , we can write

∂2fn

∂ĉ(S)∂c(R)
= −δS,R − N

k
cpmĉpm + M(1...1)(S,R)

+
∑

α6=(1...1)

p

1 − λα

Mα(S,R) (A.7)

and in the limit n → 0 the fluctuation modes respecting
the normalization of c(S) give rise to eigenvectors of the
form

−1 +
p

1 − λ2/λ1
O(p0, (eβ)0) + ... (A.8)

with λ1 and λ2 being the two largest eigenvectors of T
(0).

For low temperatures, where 1 − λ2/λ1 � 1, we have

1

1 − λ2/λ1
=

1

1 − exp(− 1
ξ0

)
≈ ξ0 (A.9)

and the correction in O(p) gets arbitrarily large for
low enough temperatures T . This leads directly to the
crossover in the behaviour of the model for p ∝ ξ−1

0 dis-
cussed in Section 4.3.

Appendix B: Fluctuations around
the paramagnetic saddle point

In this appendix we are going to present the calculations
of the Gaussian fluctuation matrix at the paramagnetic
saddle point solution for the modified model presented in
Section 4.5 in order to determine the ferromagnetic phase
transition temperature for general k and p. We start with
equations (28, 29),

fn[c, ĉ] = −
∑

S

c(S)ĉ(S) +
1

N
ln trTN , (B.1)

T(S1|S2) = eĉ(S1)
[

(1 − p) exp{βS1 · S2}

+ p
∑

S

c(S) exp{βS1 · S}
]k

. (B.2)

In the following we need the first and second derivatives
of T:

∂T(S1|S2)

∂c(S)
= kp exp{ĉ(S1) + βS1 · S}

×
[

(1−p) exp{βS1 · S2}+p
∑

S

c(S) exp{βS1 · S}
]k−1

∂T(S1|S2)

∂ĉ(S)
= T(S1|S2)δS1,S

∂2
T(S1|S2)

∂c(S)∂c(R)
= k(k − 1)p2 exp{ĉ(S1) + βS1 · (S + R)}

×
[

(1−p) exp{βS1 · S2}+p
∑

S

c(S) exp{βS1 · S}
]k−2

∂2
T(S1|S2)

∂c(S)∂ĉ(R)
=

∂T(S1|S2)

∂c(S)
δS1,R

∂2
T(S1|S2)

∂ĉ(S)∂ĉ(R)
= T(S1|S2)δS1,SδS1,R. (B.3)
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The resulting saddle point equations for the calculation

of Zn,

c(S) =
T

N (S|S)

trTN

ĉ(S) =
T

N−1∂c(S)T

trTN
, (B.4)

have obviously a simple paramagnetic solution of the form

c(S) = 1/2n and ĉ(S) = 2pa(β)n, i.e. a solution, where
every replicated spin has equal probability. Whether this
is correct or not for any finite temperature depends on the
eigenvalues of the Hessian matrix











∂2fn[c, ĉ] ∂2fn[c, ĉ]
∂c ∂c ∂c ∂ĉ

∂2fn[c, ĉ] ∂2fn[c, ĉ]
∂ĉ ∂c ∂ĉ ∂ĉ











(B.5)

calculated at the before-mentioned saddle point. One im-
portant observation is that the structure of all four blocks
in this matrix is the same, resulting in the possibility of
a simultaneous diagonalization of the four blocks, so only
the submatrices of 4 eigenvalues belonging to the same
eigenvectors have to be considered. But at first we have
to calculate the entries of (B.5), and we start with the
upper left corner:

∂2fn

∂c(S)∂c(R)
=−Nĉ(S)ĉ(R)+

tr T
N−1 ∂2

T/∂c(S)∂c(R)

tr TN

+
N−2
∑

j=0

∂T/∂c(S) T
j ∂T/∂c(R) T

N−j−2

tr TN
·

(B.6)

The numerator of the second term is dominated by the
largest eigenvalue of T which, according to the notation
in Section 3.5, is | + ...+〉. We are only interested in the
limit n → 0, so we can set all n-th powers to 1 for the
simplicity of our calculations.

tr T
N−1 ∂2

T

∂c(S)∂c(R)

= λ(n)N−1〈+... + | ∂2
T

∂c(S)∂c(R)
| + ...+〉

= k(k − 1)p2
∑

S1,S2

exp{ĉ(S1) + βS1 · (S + R)}

× [(1 − p) exp{βS1 · S2} + p]
k−2

= k(k − 1)p2eĉ(cosh 2β)
S·R

2 . (B.7)

The last term in equation (B.6) is exponentially domi-
nated by

tr
∂T

∂c(S)
T

j ∂T

∂c(R)
T

N−j−2

= λ(n)N−2〈+... + | ∂T

∂c(S)
| + ...+〉〈+... + | ∂T

∂c(R)
| + ...+〉

+
∑

µ 6=(+...+)

λ[µ]jλ(n)N−j−2

× 〈+... + | ∂T

∂c(S)
|µ〉〈µ| ∂T

∂c(R)
| + ...+〉

+
∑

µ6=(+...+)

λ[µ]N−j−2λ(n)j

× 〈µ| ∂T

∂c(S)
| + ...+〉〈+... + | ∂T

∂c(R)
|µ〉. (B.8)

With

〈+... + | ∂T

∂c(S)
|µ〉 =

∑

S1,S2

kpeĉ+βS1·S
(

(1 − p)eβS1·S2 + p
)k−1 〈S2|µ〉

= kpeĉ
k−1
∑

m=0

(

k − 1

m

)

pm(1 − p)k−m−1

× [tanh(k − m − 1)β tanhβ]
n−ρ(µ) 〈S|µ〉

〈µ| ∂T

∂c(R)
| + ...+〉 =

∑

S1,S2

kpeĉ+βS1·S2

×
(

(1 − p)eβS1·S2 + p
)k−1 〈µ|S1〉

= kpeĉ [tanh β]
n−ρ(µ) 〈µ|R〉 (B.9)

we consequently find

tr ∂T

∂c(S)T
j ∂T

∂c(R)T
N−j−2

tr TN
=

k2p2
∑

µ

k−1
∑

m=0

(

k − 1

m

)

pm(1 − p)k−m−1

×
[

tanh(k − m − 1)β (tanh β)2
]n−ρ(µ)

×
(

λ[µ]j + λ[µ]N−j−2 − δµ,(+...+)

)

〈S|µ〉 〈µ|R〉. (B.10)

It is now obvious that the matrix ∂2fn/∂c∂c has also the
eigenvectors |µ〉. The first one, | + ...+〉, corresponds to
fluctuations changing the normalization of c(S) and is not
allowed. So the second one, | − +...+〉 (or any other with
ρ(µ) = n−1), is expected to be the dangerous one leading
finally to the ferromagnetic phase transition in the Ising
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k(k − 1)p2(tanhβ)2 +

2k2p2

k−1�
m=0

�
k − 1

m � pm(1 − p)k − m − 1 � tanh(k − m − 1)β (tanh β)2 �
1−

�
m=0

k � k
m � pm(1 − p)k−m tanh(k − m)β

. (B.11)

−1 +

kp tanh β � 1 +

k−1�
m=0

�
k − 1

m � pm(1 − p)k − m − 1 tanh(k − m − 1)β �
1 −

k�
m=0

�
k

m � pm(1 − p)k − m tanh(k − m)β

, (B.12)

model. From (B.6, B.7, B.10) we obtain for this eigenvalue

see equation (B.11) above.

The calculation of the other elements of the fluctuation
matrix is done analogously. Here we report only the re-
sults. The eigenvalue of ∂2fn/∂c∂ĉ corresponding to the
eigenvector | − +...+〉 is found to be

see equation (B.12) above.

and for ∂2fn/∂ĉ∂ĉ we get the entry

1 + 2

∑k
m=0

(

k
m

)

pm(1 − p)k−m tanh(k − m)β

1−∑k
m=0

(

k
m

)

pm(1 − p)k−m tanh(k − m)β
(B.13)

leading to (35).
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