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Abstract. The connection between granular gases and sticky gases has recently been considered, leading
to the conjecture that inelastic collapse is avoided for space dimensions higher than 4. We report Molecular
Dynamics simulations of hard inelastic spheres in dimensions 4, 5 and 6. The evolution of the granular
medium is monitored throughout the cooling process. The behaviour is found to be very similar to that of
a two-dimensional system, with a shearing-like instability of the velocity field and inelastic collapse when
collisions are inelastic enough, showing that the connection with sticky gases needs to be revised.

PACS. 47.50.+d Non-Newtonian fluid flows – 05.20.Dd Kinetic theory – 51.10.+y Kinetic and transport
theory of gases

An important difference between a molecular fluid and
a gas of mesoscopic or macroscopic grains is the possibil-
ity for the latter, associated with the inelastic nature of
the collisions, to exhibit clustering and collapse [1–3]. A
large and rapidly growing body of theoretical work is de-
voted to clustering, which consists in a long-wavelength
low-frequency hydrodynamic phenomenon, and refers to
the formation of density inhomogeneities. On the other
hand, the phenomenon of inelastic collapse, which is a
short-wavelength and high-frequency singularity inherent
to the inelastic hard sphere (IHS) model, seems much less
understood, except in one dimension [4].

In the IHS model, grains are modeled as smooth
hard spheres undergoing binary, inelastic and momentum-
conserving collisions, which dissipate a constant fraction
(1 − r) of the component of the relative velocity v12

along the center-to-center direction σ̂. Noting with primes
the post-collision velocities, this translates into v

′
12 · σ̂ =

−r v12 · σ̂, while the tangential relative velocity (perpen-
dicular to σ̂) is conserved.

In an interesting article, Ben-Naim et al. proposed
that a freely evolving inelastic gas belongs asymptotically
to the universality class of the sticky gas [5], for which
v
′
12 = 0 after each collision. Noticing that the temperature

T of an inelastic gas is a monotonically increasing function
of the restitution coefficient r and therefore bounded from
below by the totally inelastic case (r = 0), these authors
invoked a mapping onto Burgers’ equation to conjecture
that the inelastic collapse is avoided for space dimensions
d > dc = 4, and that the standard Haff’s cooling law
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T ∝ (εt)−2, where ε = (1 − r2)/(2d), holds indefinitely
above this critical dimension dc. Velocity fluctuations and
scaling exponents in one dimension can indeed be de-
scribed by the inviscid Burgers equation [5]. However, in
higher dimensions, the completely inelastic version of the
IHS model, with r = 0, does not strictly correspond to the
sticky gas limit because the tangential relative velocity is
not dissipated in a binary encounter (v′

12 · σ̂ = 0, but a

priori v
′
12 �= 0), so that it is interesting to test the validity

of the above-mentioned predictions. In this article, we re-
port Molecular Dynamics (MD) simulations of IHS gases
for d = 4, 5 and 6. For each space dimension, the relevant
parameters φ (packing fraction) and r (normal restitution)
are varied for systems consisting typically of N = 5·103 to
5 · 104 particles. The code was first successfully tested by
comparing for various densities the MD equation of state
(or, equivalently, the pair correlation function at contact)
with the analytical approximation of Song et al. [6]. For
all investigated dimensions and for high enough dissipa-
tion (r ≤ 0.2 for d = 5 and r ≤ 0.1 for d = 6), the
system exhibits the finite-time singularity characteristic
of the inelastic collapse, in contradistinction to the con-
jecture of [5], with a situation closely reminiscent to its
two-dimensional counterpart [2]: the (hyper)spheres col-
lide infinitely often in a finite time along their joint line
of centers. Following references [2] we probed this multi-
particle process occurring through the accumulation of an
infinite sequence of binary collisions by a contact criterion:
after each collision, the relative distance d∗ between the
next two colliding partners is monitored; if this interpar-
ticle spacing normalized by the diameter σ has decreased
and becomes of the order of machine precision, a three
body interaction has occurred, corresponding to an inelas-
tic collapse. The results of a typical run (d = 5) are shown
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Fig. 1. Normalized inter-particle separation (see text for defi-
nition) as a function of the number of collisions since an arbi-
trary time origin, for d = 5, N = 16807, φ = 0.08 and r = 0.1.
Each circle corresponds to a collision and the data were ob-
tained specifying a “quadruple precision” computation (with
reals coded on 16 bytes). Each decrease (from 10−8 to 10−36)
corresponds to repeated collisions between a small number of
particles, typically three particles, one bouncing back and forth
between two others, with a diverging frequency. For the same
system, the inset shows with diamonds the results of a stan-
dard “double precision” run (reals on 8 bytes). In both cases,
the floor of machine precision is indicated by a dashed line
(approximately 10−34 for real�16 and 10−16 for real�8). Only
those collisions with d∗ < 10−8σ have been displayed.

in Figure 1. When a multi-body interaction commences,
d∗ decreases geometrically with the number of collisions,
as in two dimensions [2]. Enforcing a high-precision com-
putation allows to follow the decay over more than 26
orders of magnitude (whereas only 8 orders are accessible
with a standard double precision algorithm, see the inset
of Fig. 1). After a collapse has occurred, the inaccuracy
of the computer disperses the collapsing cluster, before
another multi-body event involving different particles oc-
curs at a different location. Our analysis indicates that
on a hypothetical infinite precision machine, the collapse
would continue forever whereas roundoff errors act as an
effective regularization. Throughout a collapse, the time
between two successive collisions follows a geometrical de-
crease very similar to that displayed in Figure 1.

Let us note that the seemingly low value of the pack-
ing fraction φ in Figure 1 is a misleading effect of “high”
dimensionality. It turns that the reduced density

n∗ = nσd =
d 2d−1

πd/2
Γ

(

d

2

)

φ , (1)

where n is the number density and Γ the Euler function, is
a more relevant parameter to discriminate between “low”
and “high” densities. In a simple cubic lattice, the highest
packing achievable with spheres at contact corresponds to
n∗ = 1. The configuration of Figure 1 with φ = 0.08 cor-
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Fig. 2. Evolution on a linear-log scale of the mean kinetic en-
ergy (rescaled by its initial value) with the number of collisions
per particle for N = 16807, r = 0.6 (ε = 0.064), φ = 0.08 and
d = 5. The long-dashed line has a slope −2 (Haff’s law) while
the short-dashed one is a fit to the long-time behaviour with
slope −0.66.
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Fig. 3. Linear-log plot of energy versus number of collisions
for r = 0.4 (ε = 0.084), φ = 0.08, d = 5 and two system sizes:
N = 16807 (full curve) and N = 7776 (dashed line). The inset
shows the dependence with inelasticity for N = 16807: r = 0.4
(ε = 0.084), full curve, and r = 0.6 (ε = 0.064), dashed line.
The energy decay thus depends on the system size and is not
only a function of ετ , as suggested in [5].

responds to n∗ = 0.5 and is consequently of high density.
We considered the possibility that the conjecture of [5]
applies in the opposite limit of low packing (that would
correspond to the so-called sticky dust in the case of van-
ishing both normal and tangential restitution coefficients).
We lowered φ by an order of magnitude which requires to
consider large systems to avoid a spurious increase of the
mean free path; our simulations with N = 2 ·105 particles
and φ = 0.008 (n∗ = 0.05) in five dimensions nevertheless
exhibit inelastic collapse for r < 0.05.
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Fig. 4. Time dependence of
√

E0/E for r = 0.5 (ε = 0.075)
and d = 5. The full and long-dashed curves correspond to the
large-time behaviour for N = 16807 and N = 7776, respec-
tively. The dotted line with slope 1.7 is a magnification of the
short-time evolution, independent of N and ε (since the evo-
lution follows Haff’s law) obtained by rescaling both x and y
axis by the same (large) factor. In the x axis, t is expressed
in units of tb/ε where tb is the Boltzmann mean collision time
of elastic particles at the same packing fraction (φ = 0.08).

These curves show that, although
√

E0/E increases like εt/tb,
the prefactors at short and large times differ, and depend at
large times on N and ε.

When the restitution coefficient is above a critical
threshold, the inelastic singularity is absent and we can
follow the time evolution of the system. Initial conditions
for all inelastic runs were equilibrated fluid configurations
of elastic hard spheres at the corresponding (uniform) den-
sity, with a uniform temperature (coarse-grained kinetic
energy) and Gaussian distribution of velocities. The short-
time regime is then given by the homogeneous cooling
state, which is essentially an adiabatically changing equi-
librium state where the mean kinetic energy E (related to
the temperature T by E = dT/2 due to the vanishing of
the flow field) is given by

E(t) =
E0

(1 + εt/t0)
2
. (2)

In equation (2), t0 is the Enskog mean collision time of
elastic particles at the same density [7,8] and the inelas-
ticity parameter ε = (1 − r2)/(2d) follows from the as-
sumption of a Gaussian velocity distribution. It has been
shown within the framework of Enskog-Boltzmann equa-
tion that the corrections due to non-Gaussian behaviour
on the cooling rate are small for all inelasticities [9]. The
internal clock of the system can be parameterized by τ ,
the average number of collisions suffered per particle in a
time t, which reads in the homogeneous cooling state

τ =
1

ε
ln

(

1 + ε
t

t0

)

. (3)
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Fig. 5. Probability density distribution of the five components
of the rescaled velocity, for N = 7776, r = 0.6, d = 5 and τ =
122. One of the central Gaussian directions is arbitrarily chosen
as the x direction and that containing the most significant
fraction of the kinetic energy is labeled y. The vertical lines at
cα = ±1.7 indicate the cutoffs used in the projection scheme
producing Figure 6.

Denoting Nc the total number of collisions having oc-
curred in the system over a time t, we have τ = 2Nc/N .
Figure 2 shows that the law E(τ) = E0 exp(−2ετ) ex-
pected from equations (2) and (3) is only valid at short
times. A crossover, indicated in Figure 2 by an arrow,
is generically observed for all runs in dimensions 5 and
6, provided the inelastic collapse is avoided; the crossover
time depends both on the inelasticity and on system sizes.
After the crossover, the behaviour of E with the num-
ber of collisions also depends on system size (see Fig. 3),
and [ln(E/E0)]/τ does not scale with the inelasticity as ε
(inset of Fig. 3). Moreover, Figure 4 shows that the en-
ergy decays like t−2, as predicted in [5]; however, Figure 4
shows that the prefactor is different at short and large
times 1, and (at large times) strongly increases with in-
creasing number of particles; it neither scales with inelas-
ticity as ε−2 (not shown). All these results are at variance
with the suggestions of [5]: the energy at large times de-
cays as A(N, ε)ε−2t−2, and not simply as ε−2t−2 (Haff’s
law).

Before reaching the crossover time tc, the velocity
distribution of the particles is isotropic and very close to
a Maxwellian. Once the crossover time is elapsed, we ob-
serve an evolution reminiscent of the shearing instability
found in lower dimensions [1,2,8,10]. Figure 5 shows the

1 We note that from equation (2), the slope of the dotted
line in Figure 4 (short-time behaviour) corresponds to the ratio
tb/t0 of Boltzmann over Enskog mean collision times, and is
an indirect measure of the pair correlation function at contact
χ [7]. From Figure 4, we get χ � 1.7, while the equation of
state of reference [6] yields 1.74 for the density considered. This
value is corroborated by an independent elastic run where we
measure χ � 1.7.
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Fig. 6. Projection of the velocities onto the x-y plane, for the
same system as in Figure 5. Only those particles with cy < −1.7
(respectively, cy > 1.7) have been shown on the left (respec-
tively, right) plot. The simulation box is a cube [−0.5, 0.5]5.

distribution of the components of the rescaled velocity
c = v/

√

T (t) for t � tc. For the particular system of
Figure 5, two components are found to be Gaussian
(the central peaks) and the remaining directions appear
as bimodal and concentrate most of the energy. The
corresponding shear bands are difficult to visualize, but
insight can be gained by a suitable projection onto a two-
dimensional surface. Such a projection is displayed in Fig-
ure 6. The coherent motion we observe in Figure 6 suggests

that the large time dynamics of the system is controlled by
the periodic boundary conditions used in the simulations,
as analyzed in [10].

Since, in a 5-dimensional system of 5 · 104 particles,
with packing fraction 0.08, the simulation box length L is
only 10 times as large as the spheres’ diameter, the sys-
tems considered here can be considered as small (in the
sense that there exists no possible separation of length
scales). The behaviour reported here for E(t) is therefore
consistent with the two-dimensional simulations of Orza et

al. [11], showing E ∝ A(N, ε) t−2 for small systems, with a
prefactor much larger than predicted by Haff’s law. Gain-
ing one order of magnitude for L/σ would require to in-
crease N by d orders of magnitude, which is unachievable
for d > 4. The validity of Brito and Ernst’s theoretical
prediction for large systems E ∝ τ−d/2 [12] (coinciding
with the approach of [5] for d ≤ 4) can consequently not
be tested in dimensions higher than 4.

In conclusion, our simulations show the existence of an
inelastic collapse in high dimensions, not only for dense
systems but also for more dilute ones (even if the situ-
ation of very low packing fraction cannot be reached, so
that the “sticky dust” limit cannot be tested by numerical
simulations). They indicate therefore that the relationship
between inelastic and sticky gases put forward in [5] needs
to be refined.

It is a pleasure to thank M. Ernst for his continued interest in
our work.
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