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Lack of energy equipartition in homogeneous heated
binary granular mixtures

Alain Barrat, Emmanuel Trizac

Abstract We consider the problem of determining the
granular temperatures of the components of a homoge-
neous binary heated mixture of inelastic hard spheres, in
the framework of Enskog kinetic theory. Equations are de-
rived for the temperatures of each species and their ratio,
which is different from unity, as may be expected since
the system is out of equilibrium. We focus on the partic-
ular heating mechanism where the inelastic energy loss is
compensated by an injection through a random external
force (“stochastic thermostat”). The influence of various
parameters and their possible experimental relevance is
discussed.

Keywords Transport of gases, Theory of gases, Granular
mixtures

1
Introduction

Experimental and theoretical studies of rapid granular
flows [1] have hitherto mostly focused on assemblies of
identical particles, either freely cooling when the energy
loss due to inter-particle collisions is not compensated for,
or driven in a non-equilibrium stationary state by various
energy injection mechanisms. Recently however, interest
has grown for the more complicated case of polydisperse
systems [2–10]. Theoretical investigations into the homo-
geneous cooling stage of a binary mixture [2,3] have shown
that the two components have different granular temper-
atures (i.e. kinetic energies), even if their cooling rates are
equal. Such a result, confirmed by detailed Monte Carlo
simulations [8] is also obtained when the system is sheared
[9,10], heated by the contact with an elastic granular gas
maintained at fixed temperature T [11], or within the
Maxwell model framework [12]. Similarly, a tracer particle
undergoing inelastic collisions with an equilibrium fluid at
temperature T reaches a granular temperature lower than
T [13].
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This violation of equipartition in a mixture, although
in sharp contrast with the behaviour of molecular gases
at equilibrium, is not unexpected: the terminology “gran-
ular temperature” for the kinetic energy of a granular gas
has been coined from the equivalence of temperature and
kinetic energy in an elastic gas, but does not have any
thermodynamical status in out-of-equilibrium systems like
inelastic granular gases.

In recent experiments, the granular temperatures have
been measured for binary mixtures, both in 3D vibro-
fluidized granular beds [6] and in 2D strongly vibrated
granular gases [7]. Both studies reported a clear violation
of equipartition with a temperature ratio quite insensitive
to the relative densities of the two species.

The present article aims at providing a simple theo-
retical framework where the temperature ratio is readily
obtained in a non-equilibrium steady state (NESS). This
allows to investigate the influence of many parameters
which can be difficult to tune experimentally, such as
the masses, sizes, densities and inelasticities of the beads.
We consider analytically a heated binary mixture in
the framework of the homogeneous non-linear (Enskog-)
Boltzmann equation for smooth inelastic hard spheres.
Similarly to the case of free cooling described in [3] and
restricting to Gaussian velocity distributions, we derive
in section 2 equations for the granular temperatures of
the mixture components, which are easily solved numeri-
cally. The corresponding temperature ratio is in excellent
agreement with existing numerical work [11]. In section 3,
we consider the NESS sustained by heating through ran-
dom kicks (“stochastic thermostat” approach), a mech-
anism which has focused some attention recently for
one-component (monodisperse) systems [14–22]. Although
finding an energy injection mechanism of experimental rel-
evance is a difficult issue, we expect the approach proposed
here to elucidate the basic trends of grain behaviour when
varying the controlling parameters. Moreover, as will be
shown below, the temperature ratio we obtain provides a
reasonable zeroth order approximation to compare with
the experiments reported in [6,7].

2
Kinetic theory

We consider the model of smooth inelastic hard spheres
(IHS) undergoing binary, momentum conserving, inelastic
collisions, in the framework of the homogeneous non-linear
Enskog equation. The system is a mixture of two types
of IHS, with masses m1 and m2, diameters σ1 and σ2.
Three types of collisions may occur so that the mixture
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is also characterized by three different restitution coeffi-
cients: α11, α22, and α12 = α21.

The velocity distributions in the homogeneous state
f1(v, t), f2(v, t), obey the following kinetic equations:

∂tfi(v1, t) =
∑

j

Jij [v1|fi, fj ] + Ffi (1)

where the Jij describe the effect of dissipative inter-
particle collisions, and Ffi represents an external forcing
which injects energy into the system, allowing it to reach
a non-equilibrium steady state. The kernels Jij for colli-
sions between a particle of type i and a particle of type j
are given, in dimension d, by

Jij [v1|fi, fj ] = χijσ
d−1
ij

∫
dv2

∫
′

d�̂(�̂ · v12)

(
1

α2
ij

fi(v
′

1)fj(v
′

2) − fi(v1)fj(v2)

)
. (2)

where the χij are the pair distribution functions at contact
(a priori unknown, but becoming close to 1 in the limit of
low densities); �̂ is a unit vector directed from the center of
the particle of type i to the center of particle j [separated
at contact by σij = (σi + σj)/2], and the prime on the
integral is a shortcut for

∫
�(�̂ · v12). Moreover, v12 =

v1 − v2, and the pre-collisional velocities v′

1 and v′

2 are
given in terms of the post-collisional velocities v1 and v2

by:

v′

1 = v1 − µji(1 + α−1
ij )(�̂ · v12)�̂ (3)

v′

2 = v2 + µij(1 + α−1
ij )(�̂ · v12)�̂ (4)

where µij = mi/(mi + mj), so that momentum is con-
served but energy dissipated.

The partial granular temperatures are defined from the
kinetic energies by

nid

2
Ti(t) =

∫
dv

miv
2

2
fi(v, t) , (5)

ni =
∫

dvfi(v, t) being the number density of particles of
type i with a total temperature of the mixture

T =
1

n1 + n2

∑

i

niTi . (6)

From (1), the evolution equation for the temperatures
reads

∂tTi =
mi

nid

∑

j

∫
dvv2Jij [v|fi, fj ] + FTi , (7)

where FTi describes the effect of the forcing (source) term
Ffi. It is possible to integrate over �̂ (see calculations in
the appendix, and also [3]) to obtain, without any further
approximation at this stage:

∂tTi = FTi − β3miχiiσ
d−1
ii (1 − α2

ii)

4nid

×
∫

dv1dv2v
3
12fi(v1)fi(v2)

−
β3miχijσ

d−1
ij

nid

∫
dv1dv2fi(v1)fj(v2)

×
[
µ2

ji(1 − α2
ij)v

3
12 + 2µji(1 + αij)v12(v12 · Vij)

]

(8)

with β3 = π(d−1)/2/�[(d+3)/2], Vij = µijv1 +µjiv2, and
� the Euler function.

Since the system reaches a stationary state where the
forcing term balances the dissipation due to collisions (the
forcing and dissipative terms in (8) generically involve dif-
ferent powers of the temperatures so that its right-hand-
side admits a “physical” root), we can write ∂tTi = 0. It is
moreover convenient to scale the velocities with the ther-
mal velocities v0,i =

√
2Ti/mi, and introduce the func-

tions �i such that

fi(v) =
ni

vd
0,i

�i

(
v

v0,i

)
. (9)

Equation (8) may then be cast into an equation for
the rescaled velocity distributions �i; no further step
can however be taken without some approximations on
the unknown distributions �i. It is convenient to study
the deviations of �i from the Gaussian �

0
i (c) through

an expansion in Sonine polynomials [23]. In single com-
ponent heated systems, the deviation from a Gaussian
remains small, especially for experimentally relevant val-
ues of the restitution coefficient [16,18,20,21]. We will
here limit our treatment to the Gaussian approximation
�i(c) = �

0
i (c) = πd/2 exp(−c2) (lowest order Sonine ex-

pansion). It would of course be possible to go further in
a systematic and controlled way, as in [3], but we will see
by comparison of our approximate analytical calculations
with Monte Carlo simulations that, at least in the cases
we consider, the Gaussian approximation provides reliable
results.

Assuming Gaussian velocity distributions, it is now
possible to carry out the remaining integrations in (8);
the calculations are straightforward and some technical
details may be found in the appendix of [3]. We only give
the resulting equations for the granular temperatures Ti

in the NESS:

d�(d/2)

miπ(d−1)/2
FTi = χiiσ

d−1
ii ni

2(1−α2
ii)

m
3/2
i

T
3/2
i +χijσ

d−1
ij njµji

×
[
µji(1 − α2

ij)

(
2Ti

mi
+

2Tj

mj

)

+ 4(1 + αij)
Ti − Tj

m1 + m2

]

×
(

2Ti

mi
+

2Tj

mj

)1/2

. (10)

These equations still depend on the particular heating
mechanism through the term FTi; once the latter has been
specified, two equations are obtained for T1 and T2; they
are easy to implement and solve numerically varying the
various controlling parameters.

Before turning to the heating provided by a stochastic
thermostat [which amounts to (FTi)/mi = constant], we
consider three particular limiting cases.

a. In the tracer limit [13], i.e. n1 → 0, without any
forcing term, T2 is imposed and only the equation for T1

is considered. As already noted in [3], the result for γ =
T1/T2 obtained in [13]
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Fig. 1. Comparison of the simulation results found in [11]
(lines) with the solution of equation (12) (circles), for various
values of the mass ratio and of the parameter ε recalled in (12)

γ =
1 + α12

2 + m2

m1

(1 − α12)
(11)

is easily recovered, irrespective of dimension.
b. Another possibility to obtain a NESS for IHS has

been proposed in [11]: the temperature T2 = T of one
population is imposed, with a corresponding Gaussian ve-
locity distribution, and elastic collisions between particles
of type 2 as well as for 1 − 2 collisions: α22 = α12 = 1.
Energy is consequently injected into the inelastic popula-
tion 1 (with restitution coefficient α11 = α < 1), without
the need for any other forcing term. In [11], high preci-
sion numerical results were obtained for the distribution
function �1, and temperature T1 (the system is three-
dimensional, and χij = 1), by an iterative numerical res-
olution of the Boltzmann equation. Imposing FT1 = 0 in
(10), it is straightforward to obtain a third order polyno-
mial equation for γ = T1/T2 (this quantity is necessarily
smaller than 1)

ε2(1 − α2)2

32

(
m1

m2
+

m2

m1
+ 2

)2

γ3 = (1 − γ)2
(

γ +
m1

m2

)

where, ε =
4n1

n2(1 + σ2/σ1)2
. (12)

In Fig. 1, the solution of equation (12) is compared
to the results reported in [11]. The agreement is excel-
lent, which may be traced back to the analysis of [11],
showing that the distribution function �1 is very close
to a Gaussian, although mathematically different (on the
other hand and by definition of the model, �2 is strictly
speaking a Gaussian). The slight discrepancy obtained at
low α for m1 = m2 corresponds to values of the para-
meters for which the deviation of �1 from a Gaussian is
stronger.

c. Finally, a forcing term Ffi(v) = ζ ∂
∂v

·[vf(v)], which
provides an Enskog-Boltzmann equation formally equiva-
lent to the free cooling case (see e.g. [18]), leads back to
the results of [3] obtained in this situation: the term FTi is
indeed proportional to Ti, so that writing ∂tTi = 0 in (8)
yields the same equation for γ as equating the two cooling
rates ∂tTi/Ti when FTi = 0.

3
The stochastic thermostat

In this section, we consider the situation of energy supply
through random kicks [14–22]: the particles are submit-
ted between collisions to an uncorrelated white noise (e.g.
Gaussian). The equation of motion for a particle is then

mi
dv

dt
= Fi + mi�̂i (13)

where Fi is the force due to inelastic collisions, and
〈ξiα(t)ξjβ(t

′)〉 = ξ2
0δijδαβδ(t− t′), where Greek indices re-

fer to Cartesian coordinates. The associated forcing term
in the Enskog equation is

Ff =
ξ2
0

2

(
∂

∂v

)2

f(v, t) ,

so that FTi = miξ
2
0 . We do not claim that the forcing

term considered here is the most suited to describe vibro-
fluidized beds, but it mimics an important effect of energy
injection by a moving piston: in experiments, particles un-
dergoing collisions with the piston (of large mass) gain
a velocity that is decorrelated from their masses, so that
more kinetic energy is injected into the population of large
mass.

The corresponding equation for γ = T1/T2 reads:

χ11σ
d−1
11 (1 − α2

11)
n1

n2

(
m2

m1

)3/2

γ3/2 +
√

2χ12σ
d−1
12

×
[
(
1 − α2

12

)(
µ2

21 − n1

n2
µ2

12

)(
1 +

m2

m1
γ

)3/2

+2µ21(1 + α12)

(
µ21 +

n1

n2
µ12

)(
1 +

m2

m1
γ

)1/2

×(γ − 1)

]

= χ22σ
d−1
22 (1 − α2

22) . (14)

The temperature ratio γ therefore depends in a non-trivial
way on the ratios of masses, densities and diameters, and
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also on the inelasticities αij and pair correlation functions
χij . It may be checked that in the limit of vanishing in-
elasticities, γ → 1 as it should. Moreover, for mechan-
ically equivalent particles (i.e. m1 = m2, σ1 = σ2 and
α11 = α22 = α12), we should also recover equipartition
(γ = 1) irrespective of densities. This is the case in the
Boltzmann limit (low densities where all pair correlation
functions χij → 1). At arbitrary packing fraction, the var-
ious approximation for the χij that may be found in the
literature [24,25] are such that χij no longer depends on
i and j when σ1 = σ2, so that equipartition holds for
mechanically equivalent particles.

Since equation (14) relies on a Gaussian approximation
for �i, we have compared our approach to the results of
Monte Carlo simulations (the so-called DSMC technique
[26]) where the non-linear Boltzmann equation is solved
numerically for both species. As we solve numerically the
homogeneous Boltzmann equation, the phenomena of seg-
regation or clustering are explicitly discarded.

In the following sections, we will study more precisely
some cases that could have experimental relevance, and
for the sake of simplicity, we considered χij = 1. All
the results are given for the three dimensional case; note
however that for σ1 = σ2 the temperature ratio becomes
d-independent.

3.1
Equal inelasticities: �ij = �

We first consider the case of equal restitution coefficients
(αij = α), for materials having similar elastic properties.
The dependence of γ on the mass and number density ra-
tios, for equal sizes, is shown in Figure 2. Excellent agree-

Fig. 2. Temperature ratio γ = T1/T2 as a function of inelas-
ticity, for α11 = α22 = α12 = α, and grains of equal radii
(σ1 = σ2). The curves show the solutions of equation (14)
whereas the symbols display the results of DSMC simulations.
The top three curves correspond to a mass ratio m2/m1 = 2,
the three intermediate ones to m2/m1 = 3 and m2/m1 = 5
for the three bottom curves. For each mass ratio, several den-
sity ratios have been considered: n2/n1 = 3 (squares and
dashed lines), n2/n1 = 1 (pluses and continuous lines), and
n2/n1 = 1/3 (circles and dot-dashed lines)

ment is found between DSMC simulations (symbols) and
the solution of equation (14). It turns out indeed that the
velocity distributions measured in Monte Carlo simula-
tions are very close to Gaussians. As may be expected,
γ is a decreasing function of m2/m1. The density depen-
dence is relatively weak (the temperature ratio slightly
increases when n2/n1 increases by an order of magni-
tude).

We have also considered two types of beads of the
same material, i.e. the same restitution coefficient α11 =
α22 = α12 and same mass density ρ: the ratio of masses
m2/m1 is then equal to (σ2/σ1)

3 for three-dimensional
beads. Figure 3 shows a strong influence of the size ratio,
for two experimentally relevant values of α: γ decreases
very strongly as soon as σ2 is two or three times σ1. Once
again, the number density ratio has a relatively small in-
cidence on γ. It is interesting to disentangle the effects
of σ2/σ1 and m2/m1, by varying one parameter alone,
the other being kept constant. It appears that the leading
effect in the decrease of γ observed in Figure 3 is ascrib-
able to a change in mass ratio, and not in size: the results
obtained at σ1 = σ2 varying m2/m1 are close to those
reported in Fig. 3, but surprisingly give a lower γ (e.g.
the results displayed in Figure 3 for α = 0.9 and equal
densities are γ = 0.66 and 0.38 for σ2/σ1 = 2 and 3 re-
spectively, whereas with σ1 = σ2, we obtain γ = 0.59 for
m2/m1 = 23 and γ = 0.29 for m2/m1 = 33).

3.2
Comparison with experiments

For glass spheres with size ratio σ2/σ1 = 1.25, Wild-
man and Parker have measured a temperature ratio
γ = T1/T2 in the range 0.75–0.8 [6], with a weak
dependence on densities (except may be in the limit of
large grains predominance where n2 � n1). Estimating
the relevant restitution coefficient to be α � 0.9 [6], we
obtain from Eq. (14) γ � 0.9 (see also Fig. 3), with also

Fig. 3. Temperature ratio from eq (14) for grains made of the
same material, i.e. for m2/m1 = (σ2/σ1)

3, and αij = α. Filled
symbols correspond to α = 0.9, open ones to α = 0.7. The
squares are for n2/n1 = 3, the circles for n2/n1 = 1 and the
diamonds for n2/n1 = 1/3
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Fig. 4. T1/T2 as a function of mass ratio, for αij = 0.85 and
σ1 = σ2, for the stochastic thermostat and for the free cool-
ing regime, together with the experimental data of [7]. Note
that the values αij = 0.85 are only schematic and cannot be
intended as an exact description of the experimental situation

a weak dependence on n2/n1. It is however noteworthy
that this weak dependence is opposite to that observed
experimentally: when the proportion of large grains is in-
creased, we obtain an increase of γ. For comparison, the
temperature ratio obtained for the same parameters in the
homogeneous cooling stage [3] is γ � 0.96 and the authors
of [6] proposed a simplified theory for which γ is in the
range 0.4–0.7.

The results obtained by Feitosa and Menon [7] con-
firm the very weak influence of n2/n1 when the grains (of
equal size) are made of two different materials. For a mix-
ture glass/aluminum with mass ratio m2/m1 = 1.09, γ
is measured very close to 1, whereas for a more asym-
metric mixture of glass and brass with m2/m1 � 3.6,
γ � 0.7. Making use of equation (14) with schematic in-
elasticities α11 = α12 = α22 = 0.85, we obtain γ = 0.98
for m2/m1 = 1.09 and γ = 0.7 for m2/m1 = 3.6. In the
free cooling regime, the corresponding ratios are 0.99 and
0.82. These results are displayed in Fig. 4.

Other results are given in Figures 5 and 6, where the
partial inelasticities are not taken equal, but are given
values that we expect to be of experimental relevance:
the experimental data of [7] are therefore also reported in
Fig. 5(b). In Fig. 5, the sizes of the particles are taken
equal and the mass ratio changes, while Fig. 6 displays
the influence of the size ratio when the density ratios are
fixed.

The situation reported in [7] corresponds to that of the
Figures 5b and 6b, where the heavier grains are also the
more dissipative. As may be observed in Fig. 5b, a vari-
ation of n1/n2 from 1/3 to 3 leaves γ roughly unaffected
for m2/m1 ≤ 3.

It may be noted that γ is not bounded from above
by 1, and values slightly above 1 are obtained even when
m2 > m1 by conveniently choosing the inelasticities (or,
at fixed inelasticities and densities, by conveniently choos-
ing the sizes). γ in nevertheless generically smaller than 1
for m2 > m1: the heavier particles have a larger kinetic
energy.

Fig. 5. a T1/T2 as a function of mass ratio, for α11 = 0.7,
α12 = 0.8, α22 = 0.9 and σ1 = σ2. b same with “reversed”
inelasticities (α11 = 0.9, α12 = 0.8 and α22 = 0.7), together
with the experimental values of [7]

4
Conclusion

We have considered heated binary granular mixtures from
the point of view of kinetic theory. As in the free cooling
case, and in agreement with recent experimental data, the
granular temperatures of the components of the mixture
differ. This finding is not surprising in a non-equilibrium
system, where the“temperature” does not have any ther-
modynamical relevance.

Using a mean-field approach with the assumption of
isotropic Gaussian velocity distributions, we have derived
an equation for the temperature ratio γ that may be
adapted for various kinds of heating mechanisms, and
easily solved once the controlling parameters have been
chosen. In particular, the values obtained within the
stochastic thermostat framework are compatible with
those measured in the experiments reported in [6,7].
Even if a quantitative comparison with experiments is
somehow pointless given the simplicity of our approach,
similar trends are observed. For example, the heavier
particles carry generically more kinetic energy than the
lighter ones, the ratio being insensitive to the relative
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Fig. 6. a γ versus size ratio for an equimolar mixture (n2 =
n1) with α11 = 0.7, α12 = 0.8, α22 = 0.9 and different mass
density ratios ρ2/ρ1. b same with α11 = 0.9, α12 = 0.8, α22 =
0.7 and again n2 = n1

number fraction of both species. It also appears that the
breakdown of energy equipartition is all the more pro-
nounced as the mass ratio is increased, the size ratio play-
ing only a minor role.

Appendix

In this appendix we show how to perform the integrals
over �̂, in order to obtain equation (8). We start from the
identity∫

dvv2Jij [v|fi, fj ] = χijσ
d−1
ij

∫
dv1dv2

∫
′

d�̂(�̂ · v12)fi(v1)fj(v2)
(
v′′2
1 − v2

1

)
, (15)

with v′′

1 = v1 − µji(1 + αij )(�̂ · v12)�̂, i.e. where

v′′2
1 − v2

1 = µ2
ji(1 + αij)

2(�̂ · v12)
2

−2µji(1 + αij)(�̂ · v12)(�̂ · v1) .

Using the unit vector ĉ12 = v12/v12, and the known inte-

grals βn =
∫

′
d�̂(�̂ · c12)

n (see e.g. [16]), the first term is
readily computed and yields:

β3χijσ
d−1
ij µ2

ji(1 + αij)
2

∫
dv1dv2fi(v1)fj(v2)v

3
12 . (16)

To compute the term containing (�̂ ·v1), we choose one of
the unit vectors to be along v12, and decompose:

v12 = v12 ê1, v1 =
v1 · v12

v12
ê1 + v⊥

1 ,

�̂ =
�̂ · v12

v12
ê1 + �̂

⊥
. (17)

(�̂ · v1) is then written as

(v1 · v12)(�̂ · v12)

v2
12

+ �̂
⊥ · v⊥

1 ,

and the term �̂
⊥ ·v⊥

1 gives a vanishing contribution in the
integral over �̂ for symmetry reasons. We are therefore left
with
∫

′

d �̂
(v1 · v12)(�̂ · v12)

3

v2
12

= v12β3(v1 · v12) .

Rearranging terms and writing v1 = µjiv12 + µijv1 +
µjiv2 = µjiv12 + Vij , one finally obtains equation (8).
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