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Orsay, France
§CEA-DIF Centre d’Etudes de Bruyères-Le-Châtel,

BP12, F-91680, France

Received June 16, 2006; Revised September 12, 2006

We study the predictability of epidemic forecasts in a data-driven meta-population model con-
sidering the complete air transportation system and the associated urban areas. We define the
predictability as the robustness of the system evolution with respect to the stochastic fluctu-
ations. As a quantitative measure of predictability we consider the information similarity of
the time series characterizing different epidemic outbreaks with the same initial conditions. We
study the predictability as a function of the parameters describing the basic susceptible-latent-
infected and recovered disease dynamics. We find that the overall predictability is determined
by the level of sampling of the underlying travel pattern by infected and latent individuals.
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1. Introduction

Large scale epidemic forecast is crucially depen-
dent upon the accurate and realistic modeling
where the movement of individuals at various lev-
els is taken into account. In the case of spa-
tially extended systems, modeling approaches have
evolved into meta-population schemes which explic-
itly include spatial structures and consist of mul-
tiple subpopulations coupled by the movement of
people among those [Anderson & May, 1984; May
& Anderson, 1984; Bolker & Grenfell, 1993, 1995;

Lloyd & May, 1996; Grenfell & Bolker, 1998; Keel-
ing & Rohani, 1995; Ferguson et al., 2003]. The
heterogeneities and details of the population struc-
ture have become increasingly important features
and the introduction of large scale agent based mod-
els has enabled the simulation of the propagation of
an infectious disease at the level of the single indi-
vidual [Chowell et al., 2003; Eubank et al., 2004;
Ferguson et al., 2005; Longini et al., 2005]. If one
focuses on the world-wide level, the large scale
and geographical impact of infectious diseases on
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populations in the modern era is mainly due to
commercial air travel. For this reason, in the early
80’s, models aimed at forecasting the geographi-
cal spread of epidemics by using information on
the airplane passenger fluxes among cities have
been developed [Rvachev & Longini, 1985], capi-
talizing on previous studies on the Russian airline
network [Baroyan et al., 1969]. Similar modeling
approaches have been used to study specific out-
breaks such as pandemic influenza [Longini, 1988;
Grais et al., 2004], HIV [Flahault & Valleron, 1991],
and SARS [Hufnagel et al., 2004]. More recently,
the availability of complete datasets [Guimerà &
Amaral, 2004; Barrat et al., 2004; Guimerà et al.,
2005] has allowed to build modeling frameworks for
the computational study of epidemics taking into
account the full air transportation systems and the
census data of the corresponding urban areas [Col-
izza et al., 2006a, 2006b]. In these approaches the
only parameters in the models are the disease
transition rates describing the etiology of the dis-
ease. All the couplings due to transportation terms,
urban area size and the network connectivity pat-
tern are fixed elements of the problem obtained
from real data.

While the ability to forecast the spread of
an infectious disease is inevitably entangled with
the accuracy and the level of realism introduced
in the modeling approach, the impact of the
parameters and model features on the reliability
of the predicted scenarios is difficult to assess.
Here we investigate how different communicable
diseases — characterized by different epidemi-
ological parameters regarding infectiousness and
transition rates — might affect our ability to
predict their geographical and temporal propaga-
tion. In order to tackle this issue we consider
the meta-population model defined in [Colizza
et al., 2006a, 2006b] for the forecast of the world-
wide spread of emerging diseases. We perform
a systematic analysis of the effect of the dis-
ease parameters on the statistical similarity of
the epidemic behavior evolution obtained with
the same initial conditions and different noise
realizations. This amounts to the assessment of
the robustness of the obtained predictions with
respect to the inherent randomness of the epi-
demic evolution. The analysis shows that the over-
all predictability of the epidemics is determined by
competing effects related to the number of infected
individuals and the heterogeneity of the traveling
pattern.

The paper is organized as follows: we recall the
modeling framework in Sec. 2; Sec. 3 presents the
results regarding the impact of disease parameter
values on quantitative forecasting of epidemic out-
breaks. Finally, we consider some conclusions and
directions for future work in Sec. 4.

2. Meta-Population Model

We consider the general modeling framework pre-
sented in [Colizza et al., 2006a, 2006b], which
describes the world-wide propagation of a dis-
ease through a meta-population approach, in the
same spirit as in the models of [Longini, 1988;
Grais et al., 2003; Flahault & Valleron, 1991; Huf-
nagel et al., 2004]. The spatial structure is explicitly
included in the model by considering multiple sub-
populations coupled by movements of individuals.
More specifically, the sub-populations correspond
to urban areas and individuals in each urban area
are allowed to travel according to the routes of the
airline transportation system.

2.1. Intra-city level: SEIR infection
dynamics

The epidemic evolution inside each urban area is
described by a fully mixed population with a basic
standard compartmentalization in which each indi-
vidual can only exist in one of the following discrete
states such as susceptible (S), latent (E), infected (I)
or permanently recovered (R). This set of states do
not correspond strictly to any particular disease but
encompasses the most relevant features and param-
eters of a variety of different virus transmission,
by including specific stages of the disease dynam-
ics such as e.g. the latency period. More refined and
extended compartmentalizations can be considered.

In each city j the population is Nj and the num-
bers of individuals in the various classes at time t
are denoted as Sj(t), Ej(t), Ij(t) and Rj(t) respec-
tively. By definition Nj = Sj(t) + Ej(t) + Ij(t) +
Rj(t). Individuals change compartment according
to the following rules: during the time interval
dt, the probability that a susceptible individual
acquires the infection from any given infected indi-
vidual, and becomes latent, is proportional to βdt,
where β is the transmission parameter that cap-
tures the etiology of the infection process. Latents
become infected with probability εdt, and infected
individuals recover with a probability µdt, where
ε−1 and µ−1 are the average latency time and aver-
age infection duration.
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The populations Nj of the large metropolitan
areas served by the airports are obtained by differ-
ent census sources freely available on the Internet.
For large cities, Nj represents the population of the
whole metropolitan area. The final data set contains
the population of the 3100 largest airports.

2.2. Transport operator

In addition to the infection dynamics taking place
inside each urban area, the epidemic evolution at
the global level is governed by the travel of individ-
uals from one city to another by means of the airline
transportation network, therefore infecting different
regions of the world. The network is obtained by
considering the International Air Transport Associ-
ation (IATA)1 database, which contains the world
list of airport pairs connected by direct flights and
the number of available seats on any given connec-
tion. The resulting world-wide air-transportation
network is therefore a weighted graph compris-
ing V = 3100 vertices denoting airports in 220
different countries and E = 17182 weighted
edges whose weights represent the passenger flows
between airports. This dataset accounts for 99% of
the world-wide traffic and has been complemented
by the population of the large metropolitan area
served by the airport as obtained by different
sources. The obtained network is highly hetero-
geneous both in the connectivity pattern and in
the traffic capacities [Guimerà & Amaral, 2004;
Barrat et al., 2004].

In practice, the travel dynamics is described by
the transport operator Ωj({X}) representing the
net balance of individuals in a given class X (S,
E, I or R) that entered and left each city j. This
operator is a function of the traffic flows wj� per
unit time, the city populations Nj, and might also
include transit passengers on connecting flights (see
[Colizza et al., 2006b] for details). The number of
passengers ξj�(Xj) of each compartment X travel-
ing from a city j to a city � is an integer random
variable, extracted from a multinomial distribution
which considers pj� = wj�∆t/Nj as the probability
of traveling from j to � in the time interval ∆t. Mean
and variance of ξj�(Xj) are given by 〈ξj�(Xj)〉 =
pj�Xj and Var(ξj�(Xj)) = pj�(1 − pj�)Xj , respec-
tively, and the transport operator for each city j
can be written as

Ωj({X}) =
∑

�

(ξ�j(X�) − ξj�(Xj)). (1)

2.3. Global stochastic epidemic model

In each city we work directly with the master equa-
tions for the dynamical rules given in Sec. 2.1.
Under the assumption of large populations, we
obtain the Langevin equations for the numbers of
susceptible, latent, infected and recovered individu-
als and we associate to each reaction process a noise
term with amplitude proportional to the square root
of the reaction term (for details, see [Colizza et al.,
2006b; Gardiner, 2004; Marro & Dickman, 1998]).
The noise term accounts for the stochastic nature of
the infection dynamics of directly transmitted dis-
eases, with intrinsic fluctuations in the infectious
contact process, the generation of new cases and
the removal of infectious individuals. These stochas-
tic nonlinear differential equations are then coupled
through the transport operator, yielding the follow-
ing set of stochastic discretized differential equa-
tions for the worldwide spread of the infection:

Sj(t + ∆t) − Sj(t)

= −β
IjSj

Nj
∆t +

√
β

IjSj

Nj
∆tηj,1(t)

+ Ωj({S}) (2)

Ej(t + ∆t) − Ej(t)

= + β
IjSj

Nj
∆t − εEj∆t −

√
β

IjSj

Nj
∆tηj,1(t)

+
√

εEj∆tηj,2(t) + Ωj({E}) (3)

Ij(t + ∆t) − Ij(t)

= + εEj∆t − µIj∆t − √
εEj∆tηj,2(t)

+
√

µIj∆tηj,3(t) + Ωj({I}) (4)

Rj(t + ∆t) − Rj(t)

= +µIj∆t − √
µIj∆tηj,3(t) + Ωj({R}). (5)

Here ηj,1, ηj,2 and ηj,3 are statistically independent
normal random variables with zero mean and unit
variance. The model is thus a compartmental sys-
tem of 3100 × 4 stochastic differential equations
whose integration provides the disease evolution in
the corresponding urban areas (see [Colizza et al.,
2006b] for more implementation details). A quan-
tity commonly used to describe the epidemic behav-
ior in time is the prevalence in a city j, which is

1http://www.iata.org.
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given by the fraction Ij/Nj of infectious individu-
als with respect to the city population. The global
prevalence at time t is defined as the world-wide
density of infectious individuals,

∑
j Ij/

∑
j Nj,

thus providing a measure of the global level of
infection.

3. Predictability

A central issue in modeling the spread of epidemic
diseases is to assess the reliability of the predicted
patterns. The interplay of different aspects involved
in the process — infection dynamics, travel,
stochasticity, transportation network, etc. — might
have a crucial role in the level of accuracy and relia-
bility provided by the obtained epidemic forecasts.
In [Colizza et al., 2006a, 2006b], we have investi-
gated the role of the air-transportation network in
the emergence of spatiotemporal propagation pat-
terns and proposed to use a similarity measure to
quantify the predictability of epidemic outbreaks.
Indeed, even when global average quantities have
small fluctuations, different sub-populations might
be affected in very different ways, resulting in very
different epidemic scenarios. We therefore need to
assess the reliability of the epidemic forecast at the
local level however considering the complete set of
sub-populations and geographical areas. More pre-
cisely, the predictability of the epidemic pattern is
given by the statistical similarity of the detailed his-
tory of epidemics outbreaks starting with the same
initial conditions and subject to different noise real-
izations. Let us define the active individuals Aj in
city j as the sum of latent and infectious individ-
uals, Aj = Ej + Ij , thus representing the infected
individuals still active, i.e. not yet recovered. We
then consider the full vector π(t) whose compo-
nents are πj(t) = Aj(t)/

∑
� A�; i.e. the probability

that an active individual is in city j.2 The similarity
between two outbreak realizations is quantitatively
measured by the statistical similarity of two realiza-
tions (I and II) of the global epidemic character-
ized by the vectors πI and πII respectively. Among
possible measures of similarity, we consider here the
Hellinger affinity

simH(πI , πII) =
∑

j

√
πI

j π
II
j . (6)

This measure belongs to the interval [0, 1], with
sim(πI , πII) = 1 when the two distributions are

identical and sim(πI , πII) = 0 when there is no
overlap at all. The normalization of π(t) how-
ever means that two realizations differing only
of a global multiplicative factor will generate the
same vector π. In order to correctly take into
account the possible difference in the total epi-
demic prevalence between the two realizations, it
is thus necessary to consider as well the quantity
sim(aI , aII) where a = (a, 1 − a) and a is the
worldwide density of active individuals

∑
j Aj/N

(N is the total population). This vector thus takes
into account the similarity of the global preva-
lence in two stochastic realizations. In summary,
the overlap function between two different stochas-
tic realizations of an epidemic with the same start-
ing initial conditions and disease parameters is
defined as

Θ(t) = simH(aI , aII) × simH(πI , πII). (7)

The overlap is maximal (Θ(t) = 1) when the very
same cities have the very same number of active
individuals in both realizations, and Θ(t) = 0 if the
two realizations do not have any common infected
cities at time t.

Here we focus on the influence of disease param-
eters such as the latency time ε−1, the infectious-
ness β, and the initial percentage of susceptible
individuals on the predictability. Different values
of β and ε−1 point to different viruses or different
strains of the same virus, with variations in the virus
infectiousness and average latency period; changes
in the percentage of initially susceptible popula-
tion are related to acquired immunity or vaccina-
tion campaigns. The average infectious period µ−1

is kept fixed and equal to 3 days, as estimated for
seasonal influenza. In the following, we will study
how the variation of the disease parameters affects
the evolution of the overlap over time. As initial
conditions we consider five infected individuals in
Frankfurt (which is the airport with the largest
number of connections). Results are obtained as
averages over 500 different realizations of the
stochastic noise. We consider a set of parameter val-
ues and initial conditions such that the epidemic
outbreak always occurs and the spread of the infec-
tion out of the initially infected city is observed.
Cases in which the initial outbreak dies out in the
seeding city due to fluctuations are not considered
in this analysis.

2Note that one could as well consider instead π′
j(t) = Ij(t)/

P
l Il, i.e. only infected individuals. Results are not affected by

the different choice.
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3.1. Transmission rate

We first focus on the influence of the transmission
rate, at fixed latency time and within a fully sus-
ceptible population. This corresponds to a change
in the virus infectiousness, i.e. its ability to be
transmitted from an infectious individual to a sus-
ceptible one, and affects the value of the reproduc-
tive ratio R0, the key epidemiological parameter for
the description of a disease. In an SEIR model,
the reproductive ratio is given by R0 = β/µ and
represents the average number of secondary infec-
tions generated by a typical infectious individual
in a fully susceptible population. Increasing values
of R0 can be achieved by increasing the transmis-
sion rate or increasing the average infectious period
µ−1, leading to the same qualitative results. In the
following we will focus on changes in the virus
infectiousness β while keeping µ constant. Larger
values of β correspond to faster propagation, higher
prevalence and larger number of cases, as shown in
Fig. 1(a).

The evolution of the overlap Θ is shown in
Fig. 1(b). Starting from a value equal to 1, due
to setting identical initial conditions, Θ decreases
in the early stage of the outbreak, when the num-
ber of cases is still small. As discussed in [Colizza
et al., 2006a, 2006b], this decrease is essentially
due to the fact that the initially latent or infected
may travel and go out of the initially infected city
through various routes. In particular, the overlap
decreases more if the seed of the infection is a air-
port hub, from which many different possible paths
for the virus propagation can be taken. The overlap
then increases again and reaches a maximum at the
epidemic peak: in the absence of containment mea-
sures, this peak corresponds indeed to a relatively
uniform and predictable pattern of infection. The
gradual decrease of the global prevalence can on the
other hand be quite different from one realization to
the other, with the epidemic dying out in different
cities at different times, so that Θ decreases again
towards 0.

Although the global evolution of Θ always
follows the same qualitative pattern, a strong quan-
titative effect is observed when the disease parame-
ters are changed. A first observation is simply that
the time scale of the spatial propagation depends
obviously on the time scale of the local infection
dynamics inside each urban area: the evolution is
globally slower for smaller β. In the initial stages
however, the picture is more complicated: while the

overlap profile at short times is similar for all val-
ues of β, the decrease of Θ is more pronounced for
smaller β, as shown in Fig. 1(b). Such trend can be
explained by the fact that, since the transmission
rate is reduced the number of active individuals gen-
erated per unit time is lower. This has a priori two
consequences which both tend to lower the overlap:
first of all, even in the absence of any travel term,
the relative stochastic fluctuations associated to the
random contamination process are larger; moreover,
the fluctuations due to travel are enhanced as well,
since the smaller number of infected individuals can
spread the disease in very different “diffusion” pat-
terns for different realizations. In other terms, the
evolution of a large number of individuals on the
network is statistically more predictable than that
of a small number. The effect can be quite drastic,
since the minimal value reached by Θ in the initial
epidemic stages varies from 70% to approximately
30% for β varying from 0.50 to 1.055.

In order to understand the separate roles of
these two effects, we have isolated the two aspects.
In a first experiment we have computed Θ for an ini-
tially infected isolated city, i.e. a dynamical setup in
which the travel term is absent. This corresponds
to a single-population epidemic model with inter-
nal fluctuations. The overlap values obtained are
extremely high, with 1 − Θ of the order 10−4. In
a second experiment, we have monitored the evolu-
tion of Θ when only the diffusion process is consid-
ered, with no infection dynamics. This corresponds
to set the disease parameter β, ε and µ equal to
0. Θ(t) decreases exponentially at short times and
reaches a plateau which depends on the number
of individuals diffusing on the network. For larger
number of individuals, the travel pattern fluctuates
less and the overlap is larger.

At finite β, two competing effects are therefore
determining the overlap profile: the diffusion of indi-
viduals decreases Θ, while the exponential increase
in the number of active individuals tends to increase
it. This competition leads to the observed minimum
of Θ(t), which occurs at larger times for decreasing
β (since the second effect is slower), and thus at
lower values of Θ. After the minimum, the epidemic
growth takes over so that the overlap increases; the
values of Θ reached at the epidemic peak are essen-
tially independent of β: although the prevalence is
smaller for smaller β, it is in any case large enough
to have a large reproducibility.

Let us finally note that, for smaller β, the fluc-
tuations associated to the average overlap profile
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(a)

(b)

Fig. 1. Results obtained for different values of the virus infectiousness β, assuming ε−1 = 1.9 days and µ−1 = 3 days.
Sub-populations are considered to be fully susceptible. (a) Full lines and (b) symbols correspond to average values and shaded
areas, representing 95% confidence intervals. (a) Prevalence profiles. Inset: percentage of the cumulative number of cases with
respect to the total population. (b) Overlap profiles. Insets: overlap profiles with corresponding fluctuations for β = 1.055
(top) and β = 0.5 (bottom).

increase, as shown in the insets of Fig. 1(b), due
to the smaller numbers of active individuals, which
lead to larger fluctuations from one couple of real-
izations to the other.

3.2. Initial immunity

We next consider the influence of changes in
the initial fraction of susceptible individuals,
taking this fraction uniform across cities for
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(a)

(b)

Fig. 2. Results obtained for different values of the initial fraction of susceptible population S(t = 0) = αN , assuming
β = 1.055, ε−1 = 1.9 days and µ−1 = 3 days. (a) Full lines and (b) symbols correspond to average values and shaded areas
representing 95% confidence intervals. (a) Prevalence profiles. Inset: percentage of the cumulative number of cases with respect
to the total population. (b) Overlap profiles. Insets: overlap profiles with corresponding fluctuations for S(t = 0) = N (top)
and S(t = 0) = 0.6N (bottom).

simplicity: α = Sj(t = 0)/Nj . Smaller values of α
corresponds to situations in which a larger fraction
of individuals in each sub-populations is immune
to the virus at the start of the epidemic. The

prevalence profile assumes smaller values and the
time scale is longer for larger α [see Fig. 2(a)], as
expected since the virus finds a reduced pool of
available susceptible individuals.
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(a)

(b)

Fig. 3. Results obtained for different values of the average latency period ε−1, assuming β = 1.055, µ−1 = 3 days and a
fully susceptible population. (a) Full lines and (b) symbols correspond to average values and shaded areas representing 95%
confidence intervals. (a) Prevalence profiles. Inset: percentage of the cumulative number of cases with respect to the total
population. (b) Overlap profiles. Insets: overlap profiles with corresponding fluctuations for ε−1 = 1.5 days (top) and ε−1 = 6
days (bottom).

As shown in Fig. 2(b), a decrease in α has essen-
tially the same effect as a decrease in the value of
β, and can be traced back to the same reason: a
smaller number of cases leads to stronger decrease

of the predictability, due essentially to the larger
fluctuations in the diffusion pattern. The relevant
epidemiological parameter is indeed R1−α = αβ/µ
which reduces to the reproductive ratio R0 in a fully
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susceptible population (α = 1). Changes in α will
affect R1−α in the same way as changes in the virus
infectiousness.

In summary, smaller values of the infectious-
ness β, or larger values of the initial immunity
probability, correspond to less dangerous epidemic
outbreaks but at the same time more difficult to
forecast. Note that we keep here β and α constant
over the whole propagation, while the application
of containment measures can be modeled through
an effective reduction of β over time. Numerically
reproducing data of a successfully contained pan-
demic in order to validate an epidemic model may
therefore be more challenging because the number
of cases is drastically reduced thanks to efficient
measures.

3.3. Latency time

Let us now consider, at fixed β and S(t = 0), the
influence of the latency time ε−1. We show data
for ε−1 = 1.5 days and six days corresponding typ-
ically to seasonal influenza or SARS-like diseases,
respectively.

As Fig. 3(a) shows, increasing latency times
lead to slower propagation and a longer duration
of the epidemic. The number of cumulative cases is
unchanged [see inset of Fig. 3(a)] since the repro-
ductive ratio is constant, not depending on ε.

Since the prevalence is lower at any given time
for larger latency times, the trend observed is the
same as when β decreases: larger fluctuations in
the travel pattern are observed as ε−1 increases.
However, a supplementary effect takes place in this
case: for larger values of ε−1 latent individuals spend
on average more time in traveling from one region
to another before changing compartment and thus
becoming infectious. The overall time since infec-
tion to recovery is longer, so that the disease will
very likely propagate to different regions in differ-
ent realizations. In summary, the faster the onset of
symptoms and infectiousness, the more predictable
the propagation pattern.

4. Conclusions

In this paper, we have considered the problem
of the predictability of epidemic scenarios, within
the global stochastic modeling framework devel-
oped in [Colizza et al., 2006a, 2006b]. This approach
allows to consider the propagation of epidemics on
a worldwide scale by coupling evolution equations
inside the various cities through transport terms.

The predictability of the disease propagation pat-
tern is quantified by the overlap between realiza-
tions having the same initial conditions but different
noise realizations. While the fluctuations due to the
internal noise of the disease evolution inside each
city are less relevant in affecting the reproducibil-
ity of an epidemic outbreak, the availability of a
huge number of different traveling paths for latent
and infectious individuals lead to a strong decrease
of the predictability at short times. The overlap
reaches a minimum during the initial stage of the
outbreak and then increases until the epidemic peak
is reached. Such a profile is due to the presence
of two competing effects: on the one hand, given
a certain number of individuals diffusing along the
transportation network from a given initial city, the
overlap between two realizations decreases because
of the possible diversity in diffusion patterns; on
the other hand, an increase in the number of indi-
viduals diffusing (which occurs as the epidemics
evolves) leads to smaller fluctuations around the
average pattern. In other words, when higher is
the number of infected and latent individuals, the
smaller will be the effect of the noise in the dif-
fusion process. This readily implies that when the
infectiousness is lower, or the latency time larger,
providing a slower injection of infected individuals
in the system, the diffusion noise has a larger impact
and the predictability decreases. These results are
a first assessment of the predictability that can be
achieved with large scale computational approaches
to epidemic forecasts and indicates that a careful
theoretical analysis of the specific modeling frame-
work is needed in order to define the appropriate
confidence limits for the obtained predictions.
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