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LETTER TO THE EDITOR

Dynamics within metastablestatesin a mean-field spin
glass
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Abstract. In this letter we presenta dynamicalstudy of the structureof metastablestates
(correspondingio TAP solutions)in a mean-fieldspin—glassmodel. After reviewing known
resultsof the staticalapproachwe usedynamics:startingfrom aninitial conditionthermalized
at a temperaturébetweenthe staticaland the dynamicaltransitiontemperaturesye are ableto
studythe relaxationaldynamicswithin metastablestatesandwe showthattheyarecharacterized
by atrue breakingof ergodicity and exponentiakelaxation.

The recentdevelopmentsn the theory of spin—glassdynamics[1] have madeclearerthe

similarity of behaviourin spin glassesandin glasseq?2, 3]. In this contextit seemsat the

momentthat a certain categoryof spin glassesthosewhich are describedby a so-called
one-stepreplica-symmetrybreaking (RSB) transition[4], are good candidatemodelsfor a

mean-fielddescriptionof the glassphasd5, 6]. In thesesystemshe presencef metastable
statesgenerates purely dynamicaltransition (which is supposedo be roundedin finite-

dimensionakystemdb, 6]) at atemperaturdy higherthanthe oneobtainedwithin atheory

of staticequilibrium, Ts.

The sphericalp-spin spin glassintroducedin [7, 8] is an interestingexampleof this
category. It is a simple enoughsystemin which the metastablestatescan be definedand
studiedby the TaP method[9]. In this paperwe want to provide a better understanding
of thesemetastablestates,using a dynamicalpoint of view. We shall show the existence
of a true emgodicity breakingsuch that thesemetastablestates,in spite of being excited
stateswith a finite excitationfree enegy per spin, are actually dynamically stableevenat
temperatureaboveTy. Note that a connectionbetweendynamicsand TAP approachwas
madein [18], for a similar model, but not in the samespirit.

The sphericalp-spinspin glassdescribesV realspinss;, i € {1, ..., N} which interact
throughthe Hamiltonian
Hs)=—= Y iy S-S, (1)

1<ip < <ip<N

togetherwith the sphericalconstrainton the spins: Zf"zlsl? = N. The couplings are
Gaussian,with zero meanand variance p!/(2N?~1). In the p > 2 caseit showsan
interestingspin—glasdehaviour simple enoughto allow for detailedanalyticaltreatment.
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In the static approach,one describesthe propertiesof the Boltzmann probability
distribution of this system. The replica methodshowsthe existenceof a static transition
with a one-steprsB at temperaturels [7]. This transitionreflectsthe fact that, below T,
the Boltzmannmeasuras dominatedby a few pure statesa scenariowhich is well known
from the randomenegy model[10].

Staying within a static framework, the TAP approach[11, 12] provides some more
insight into the physicalnatureof this system. The TAP equationscan be derivedthrough
a variationalprinciple on the local magnetizationsn; = (s;), from a free enegy f ({m;})
which is bestwritten in termsof radial and angularvariables,q ands; (with m; = ,/g5;),
in the form [11]

n T 1 _
fmi)y =q"?E° (8:) = 5 InA = @) = [(p = Da” = pg" " +1] )
wherethe angularenepy is
E° ({8} = - Z Jiremiy Siy -+ - Si, - @)

1<ip<-<ip<N

At zerotemperaturghe TAP statesare just unit vectorswhich minimize the angularenegy
EC. Thereactually exist suchstatesfor E° € [E,.in, Ec = —+/2(p — 1)/p]. Denotingby
§ onezerotemperaturestate,of enegy E?, it givesrise at finite temperaturel’ to one TAP
statea givenby

mi =Ja (EQ T)3} (4)
whereq(E, T) is the largestsolution of the equation:
_E— . /JE2 - E2
(1—q)g"* = T(°>- (5)
p—1

The free enegy of this state, f,,, at temperaturel’, is obtainedby insertingin the TAP free
enegy (2) the correspondingaluesof the angularenegy, E° = E? andof the self-overlap,
q =qo = q (E2, T). The correspondingneny is

1
E, = ql?EQ - > l(p =Dl - palt+1]. (6)

Whenchangingthe temperaturepne canfollow the metastablestateswhich keepthe same
angulardirection;their orderin freeenepgy or enegy, atfixed T, is the sameastheir orderin
E°. WhenraisingT, a statedisappearst atemperaturd . E®) (whereequation(5) ceases
to havesolutions). Tmax(E°) is a decreasindgunction of E?; the most excited states with
E° = E., disappeafirst at Tpax(Ec), andthe lowestat Tnax(Epin) = Trap. Above Trap, the
only remainingstateis the paramagnetionewith ¢ = 0 andfree enegy Fpara= —1/(47T).
To completethe descriptionof metastablestatesat any temperaturepne only needsthe
density of statesp(E®) with an angularenegy E°. This hasbeencomputedin [12]; the
multiplicity is exponentiallylarge, giving a finite complexity densitys2(E®), definedas
0
2% = m T2 g
The complexity at finite temperatures easily deducedfrom this s. We shall denoteby
Sc(f, T) thelogarithmof the numberof TAP statesat freeenegy f andtemperature’. The
Boltzmannpartition function canthen be approximatedasthe sumover all TAP solutions:

,_ /d ; exp(_ =TS, T))) -
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Figure 1. free enegy versustemperature;(1) free enegy of the paramagneticsolution for
t > td, frot fOr r < t4; (2) free enegy of the lowesttap states,with zero temperatureenegy
emin; (3) free enegy of the highesttap states,correspondindo ec; (4) an intermediatevalue of
eg leadsto an intermediatevalue of f at any temperature{5) feq(t); the differencebetween
curves(5) and (1) givesthe complexity T S¢( feq(?), ).

which can be evaluatedat large N by a saddle-pointmethod. At temperatures” > Ty,
with Ty = /p(p —2)P=2(p — 1)1-/2, the Boltzmann measureis dominatedby the
paramagneticstateq = 0. At any T € [Ts, Ty], the Boltzmannmeasureis dominated
by a classof TAP solutions,thoseof free enegy f = feq(T). Becauseof their extensive
complexity, this givesfor the total equilibrium free enepy:

Sfiot= =T IN(Z) = feq(T) — T Sc(feq(T), T) . (©)]

Thecomputatiorof feqis easilydone[7, 14]. Onefindsthat fio is equalto the paramagnetic
free enepgy in this range. Below Ts the lowestlying TAP statesdominatethe Boltzmann
measureleadingto RSB. The situationis summarizedn figure 1. Comparedo a usualphase
transition,the situationis complicatedby the existenceof a finite complexity. Actually we
seethatbetweerthe two transitiontemperature§s and 7y, the situationis unclear:the total
equilibrium free enegy seemso gettwo equalcontributions,from the paramagnetictate
and from a bunchof TAP solutionswith non-zerog. One canwonderif thereis a phase
coexistencegr simply a problemof doublecountingin the TaAp approach.This issue,which
is an importantone if one aims at understandinghe finite-dimensionalbehaviourof this
type of systemg6], canin fact be clarified within a dynamicalapproachaswe now show.
Let us also mentionthat somepurely static approacheslso carry relevantinformation on
relatedissueg[13, 19].

The TAP structureof statesis usually not exploreddynamically: indeed, the usually
studiedout of equilibrium dynamicsof the sphericalp-spin model startsfrom a random
configuration,andnevergoesbelowthe thresholdcorrespondindo the upperTtap solutions.
This processhas beenstudiedin [15]: an interestingaging behaviourhasbeenfound at
temperature§’ < Ty, but the enegy densityof the systemonly goesasymptoticallyto one
of the highestTAp states(the thresholdstateswith angularenegy E® = E.). Hence,it is
impossibleto exploreTAp statesvia this kind of dynamics.

Herewe will usea differentapproachfor the dynamics[18, 19], wherewe startfrom




L84 Letter to the Editor

a spin configurationwhich is picked up from a Boltzmanndistribution at temperaturel”,
and then let the systemrelax at temperaturel. We shall concentrateon the casewhere
T' e [Ts, T4], which meansthat our initial configurationwill belongto the TAP stateswith
free enegy feq(T"). This will leadto the study of the relaxationinside one TAP state.
The relaxationaldynamicsat temperaturel’ is given by the Langevinequation:
ds; (¢) oH

dr as;

where H is the Hamiltonian (1),  is the Lagrangemultiplier implementingthe spherical
constraintandn; is a Gaussiarwhite noisewith zeromeanandvariance2T. The dynamics
is describedby the behaviourof two-timescorrelationand responsdunctionsdefinedby

— w(@)si (1) + i (1) (10)

A 1 L 3(si(0)

1
€.y =51 WOS@) )= 53 G
i=1 i=1 T

(11)

where(-) is ameanoverthethermalnoise,andanoverlinedenotesa meanoverthe coupling
constants.

Using the usualfield-theoreticaltechniquesfor out of equilibrium dynamics[1€], in
the large-N limit, it is possibleto study the dynamicsat temperaturel’, startingfrom a
Boltzmannmeasureat temperaturl”’. In orderto implementthis initial sampledependent-
measure,it is necessaryto introducereplicas[17-19] and to write dynamicalequations
for two-times overlapsbetweenreplicasC*(t, ') = (s¢(t)s®(t')), a and b being replica
indices. The equationbtaineddiffer from the usualout of equilibriumones(corresponding
to T’ = oo [15)) by termsinvolving a coupling to the initial configuration,i.e. C¢*(¢, 0).
Besides,asnotedin [19], the time evolution respectghe initial replica-symmetricor RSB
structureof the C“, i.e. the staticreplicastructuredescribingequilibriumat 7.

For the p-spin model with 7’ > Ty the initial condition is replica symmetric, with
C?(0, 0) = 8,,. Thereforeat all timeswe canwrite C?(¢, t') = C(t, t')8,5. The obtained
equationdor the correlationand responsdunctionsreadfl9], for any T’ > Ts, andz > ¢t':

t 2 _
() :/ ds [pchl(t,s) - p(pl)cpz(r,s)} rt.s)+T
0

2
L cr¢,0 a- ¢, 0)
27
ar, 1) , P 1 ,
o = u@r,t) 2T’C ,0 r(t,t)
_ 1 t
—% / ds CP2(1, 5)r(t, $)(r(t, ') — 7 (5, ) (12)
0
8C / t
ace,r) =—u)C, 1)+ E/ ds CP7Y(t, s)r (', s)
ot 2 Jo
—1 [t
—%/ ds CP=2(t, s)r(t, s)(C(t. 1) — C(s, 1))
0
— P cr1¢.0 cu. iy + L-cr it 0) . 0).
27 : : 27 :
Let us examine the situation first for T = T’ (this case was studied in [18];

supposinga priori equilibrium dynamics, they were able to connectit with the TAP
approach):sincewe start at equilibrium, we expectequilibrium dynamicssatisfyingboth
time translationinvariance(TTl) and the fluctuation dissipationtheorem(FDT): C(z,1') =
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Ceq(t — 1), r(t,1') = req(t — t') With reg(1) = —%855“. Equations(12) reduce,with this
ansatzto a single equationfor the evolutionof Ceq(7):

9Ceq(T) p [ _ 0Ceq(u)

% = ~pocCed(T) = 5 /O du CL3 (T — u) % (13)

where us, = T, and Ceq(0) = 1. Above Ty, this equationdescribeshe relaxationwithin
the paramagnetistate, with lim,_, o, Ce(t) = 0. Below Ty, the condition of dynamical

stability w < 0 leadsto a non zerolimit Co, for Ceq(t) [8]; this limit is given by the
largestsolution of
14 -2 _
ﬁcgo 1-Cyx)=1 (14)

(the other non-zerosolution is unstablewith respectto the dynamics(13)). This valueis
preciselythe self-overlapg of the TAP stateseflectingthe staticsat 7, i.e. with free enegy
feq(T). This meansthat, for temperaturebetweerthe staticalandthe dynamicaltransition
temperatureghethermalizedsystemis trappednsidea TAP state,andnotin a paramagnetic
state,for which C., would be zero (asfor T > Ty). We can also excludethe possibility
of a coexistencewhich would leadto someintermediatevalue: the paramagnetistatehas
disappeareét Ty, andthe Gibbs stateis formed by the bunchof TAP solutionshavingthe
suitablefree enegy feq(T), anda finite complexity density.

To get further insight, alwaysstartingfrom a thermalizedconfigurationat temperature
T’ € [Ts, Tq], we now studythe dynamicsatatemperaturd” differentfrom 7. In our study
of the dynamicalequations(12), we have found numerically (using the type of algorithm
developedn [20]) andanalyticallythataftera shorttransienthe systenreaches stationary
regimewhereTTI andrDT hold (seefigure 2). The possibility of sucha situationhasalready
beenconjecturedin [19], togetherwith an interestingconnectionto the static approaches
developedn [13, 19].

0.95 E

09 }F -

0.85 E

0.8 -

C(t,t), Cegft-t')

0.75 ~

07 + F

086 | S ]

Figure 2. p = 3 model,with 75 ~ 0.586, Tq ~ 0.612; numericalintegrationof equationg12)
for 7" = 0.605, T = 0.6; we plot C(z, 0) versust (full curve),and C(z,t") versust — ¢’ for
t' = 6, 12, 18, 24 (symbols);the dottedcurveis the numericalintegrationof (15), andthe dotted
curveis the valueof C, obtainedby (16).
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In orderto study this solution analytically, we introduceas previously Ceq(T), req(7),

Coo = liML o Ceg(T), oo = iMoo pu(2), and ! = lim,_., C(¢, 0), and obtain the
equation:
0Ceq(T) _ P p-1 P pa
e = (oo G 50 G0
P _ p p
+§/0 du CLy () req(t —u) — o7 Che 5t (15)

Besides,us, Co and! satisfy the following setof equationsobtainedby taking ' = 0,
t — oo in (12),andt — oo in (15):

p -1 P p-1
—T4+ X or1q_ _ 2 p1q
oo =T + 9 CL A= Co) = 5ot 72— 1)
po_ 2T
"~ p(1-Cy)
TCo = 2’; /l”(l—Coo)+%Cg’gl(1—Coo)2 (16)

andthe enegy reacheddynamicallyat large timesis E, = 5= (Ck — 1) — 4.

It is thenstraightforwardio checkthatthe overlapC,, andthe enegy E, areidentical
to the valuescharacteristicof certain TAP statesat the temperaturel’. Thesestatesare
preciselythoseobtainedby following the equilibrium TAP statesat temperaturel’’ (which
pick up a certainvalue E?, of the angularenegy) to temperaturel’, by keepingthe same
directionin § spacebut changingthe overlapfrom g(ES,, T") to q(E2., T).

From equation(15), it is possibleto show that the relaxation of Ceq(r) is of the
form t73/%exp(—1/10). The relaxationtime o can also be computed,and has a quite
complicatedexpressiorthatwe do not reproducenere. It divergesfor the highestTap states
(correspondingo E® = E.). Of course,this exponentialrelaxationcan only happenas
long as the followed TAP solution still existsat temperaturel: if T becomedarger than
Tmax(E%), we observea fast relaxationto the paramagnetistate,with C,, =1 = 0.

We have thus shown that the TAP solutions are real states,correspondingto a full
breakingof ergodicity: startingwithin a TAp state(which can be achievedby our trick of
usingthermalizedinitial conditionsat a temperaturel’”’), one relaxeswithin this statewith
a finite relaxationrate,and one canevenfollow this statewhen changingthe temperature.
Besides,the Gibbs measurebelow the dynamicaltransitionis madeof a superpositiorof
TAP stateswhich are differentergodic componentstotally separatedrom eachotherin the
dynamicalevolution. The paramagneticsolution, valid above Ty, disappearsat 7q. Note
that the way in which this occursis not clear, and we leavethis openquestion,which is
crucial for a better understandingf aging dynamics,for future work. SomeTAapP states
existasindependenemodic componentevenat temperature§’ € [Ty, Trap]. Theyarenot
seenin the usualdynamicsbecausehey are difficult to find: startingfrom randominitial
conditionsonestaysin the big paramagnetiergodic component.If onesucceed# starting
within a TAP state,one stayswithin this stateevenby rising the temperatureboveTy (but
below the T« of this state). One should notice that the usualdynamicsat a temperature
below Ty, startingfrom a randomconfiguration,only leadsto a ‘weak ergodicity breaking’
[21, 15], wherethe self-overlapvanishesat very large time differences(much larger than
thewaiting time). This is explained[15, 22] by the fact thatthe system which wasinitially
in the (infinite temperatureparamagnetistate,doesnot find any TAP statein a finite time,
but staysat enegy densityO(1) (goingto zeroast goesto infinity) abovethethreshold.In
contrast,thereis no sign of agingwhenone startswithin a TAp state. This is in agreement
with somerecentintuitive scenariogor aging[22, 23].



Letter to the Editor

L87

It is a pleasureto thankJ Kurchanand R Monassorfor somevery useful discussionsand
suggestions.

References

(1]

(2]
K]

(4]
(5]

(6]
(7]
(8]
&l
[10]

(11]
[12]
(13]
[14]
[15]
[16]
[17]
(18]

[19]
[20]
[21]
[22]
(23]

For a short introduction and referencessee MézardM Lecture at Statphys19 GlassydynamicsPreprint

LPTENS95/35
FranzS andHertz J 1995 Phys.Rev.Lett. 74 2114

BouchaudJ P, CugliandoloL, KurchanJ and MézardM Mode-couplingapproximationsglasstheory and

disorderedsystemsPreprint LPTENS 95/47,condmat9511042

MézardM, ParisiG andVirasoroM A 1987 Spin—GlassTheoryand Beyond(Singapore:World Scientific)

Kirkpatrick T R and ThirumalaiD 1987 Phys.Rev.B 36 5388

Kirkpatrick T R, ThirumalaiD andWolynesP G 1989 Phys.Rev.A 40 1045andreferencesherein
ParisiG Slow dynamicsin glassesPreprint condmat-9412034

CrisantiA and SommersH-J 1992Z. Phys.B 87 341

CrisantiA, HornerH and SommersH-J 1993Z. Phys.B 92 257

ThoulessD J, AndersonP W and PalmerR G 1977 Phil. Mag. 35 597

DerridaB 1980Phys.Rev.Lett. 45 79

GrossD andMézardM 1984 Nucl. Phys.B 240431

KurchanJ, ParisiG andVirasoroM A 1993J. Physiquel 3 1819

CrisantiA and SommersH-J 1995J. Physiquel 5 805

MonassorR 1995Phys.Rev.Lett. 75 2847

MonassorR in preparation

CugliandoloL F andKurchanJd 1993 Phys.Rev.Lett. 71173

SompolinskyH and ZippeliusA 1981 Phys.Rev.Lett. 47 359; 1982 Phys.Rev.B 25 6860
HoughtonA, JainS and YoungA P 1983Phys.Rev.B 28 290

ThirumalaiD andKirkpatrick T R 1988 Phys.Rev.B 38 4881

Kirkpatrick T R and ThirumalaiD 1989J. Phys.A: Math. Gen.22 L149

FranzS andParisiG 1995J. Physiqud 5 1401

FranzS andMézardM 1994 Physica210A 48

Bouchaud] P 1992 J. Physiqud 2 1705

KurchanJ and Laloux L 1995 Phasespacegeometryand slow dynamicsPreprint condmat9510079
BarratA andMézardM 1995J. Physiquel 5 941



