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Abstract. In this letter we presenta dynamicalstudy of the structureof metastablestates
(correspondingto TAP solutions) in a mean-fieldspin–glassmodel. After reviewing known
resultsof the staticalapproach,we usedynamics:startingfrom an initial conditionthermalized
at a temperaturebetweenthe staticalandthe dynamicaltransitiontemperatures,we areable to
studytherelaxationaldynamicswithin metastablestatesandwe showthattheyarecharacterized
by a true breakingof ergodicity andexponentialrelaxation.

The recentdevelopmentsin the theory of spin–glassdynamics[1] havemadeclearerthe
similarity of behaviourin spin glassesandin glasses[2, 3]. In this contextit seemsat the
momentthat a certaincategoryof spin glasses,thosewhich are describedby a so-called
one-stepreplica-symmetrybreaking(RSB) transition[4], are good candidatemodelsfor a
mean-fielddescriptionof theglassphase[5, 6]. In thesesystemsthepresenceof metastable
statesgeneratesa purely dynamicaltransition(which is supposedto be roundedin finite-
dimensionalsystems[5, 6]) at a temperatureTd higherthantheoneobtainedwithin a theory
of staticequilibrium,Ts.

The sphericalp-spin spin glassintroducedin [7, 8] is an interestingexampleof this
category. It is a simple enoughsystemin which the metastablestatescan be definedand
studiedby the TAP method[9]. In this paperwe want to provide a betterunderstanding
of thesemetastablestates,using a dynamicalpoint of view. We shall show the existence
of a true ergodicity breakingsuch that thesemetastablestates,in spite of being excited
stateswith a finite excitationfree energy per spin, areactuallydynamicallystableevenat
temperaturesaboveTd. Note that a connectionbetweendynamicsand TAP approachwas
madein [18], for a similar model,but not in the samespirit.

Thesphericalp-spinspinglassdescribesN realspinssi, i ∈ {1, . . . , N} which interact
throughthe Hamiltonian

H(s) = −
∑

16i1<···<ip6N

Ji1,...,ip si1 . . . sip (1)

togetherwith the sphericalconstrainton the spins:
∑N

i=1 s2
i = N. The couplings are

Gaussian,with zero mean and variancep!/(2Np−1). In the p > 2 caseit shows an
interestingspin–glassbehaviour,simpleenoughto allow for detailedanalyticaltreatment.
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In the static approach,one describesthe propertiesof the Boltzmann probability
distribution of this system. The replica methodshowsthe existenceof a static transition
with a one-stepRSB at temperatureTs [7]. This transitionreflectsthe fact that, below Ts,
the Boltzmannmeasureis dominatedby a few purestates,a scenariowhich is well known
from the randomenergy model [10].

Staying within a static framework, the TAP approach[11, 12] provides some more
insight into the physicalnatureof this system.The TAP equationscan be derivedthrough
a variationalprinciple on the local magnetizationsmi = 〈si〉, from a free energy f ({mi})
which is bestwritten in termsof radial andangularvariables,q and ŝi (with mi = √

qŝi),
in the form [11]

f ({mi}) = qp/2E0
(

{ŝi}
)

− T

2
ln(1 − q) − 1

4T
[(p − 1)qp − pqp−1 + 1] (2)

wherethe angularenergy is

E0
(

{ŝi}
)

≡ −
∑

16i1<···<ip6N

Ji1,...,ip ŝi1 . . . ŝip . (3)

At zerotemperaturethe TAP statesarejust unit vectorswhich minimize the angularenergy
E0. Thereactually exist suchstatesfor E0 ∈ [Emin, Ec = −

√
2(p − 1)/p]. Denotingby

ŝα
i onezerotemperaturestate,of energy E0

α, it givesriseat finite temperatureT to oneTAP

stateα given by

mα
i =

√

q
(

E0
α, T

)

ŝα
i (4)

whereq(E, T ) is the largestsolutionof the equation:

(1 − q)qp/2−1 = T

(−E −
√

E2 − E2
c

p − 1

)

. (5)

The free energy of this state,fα, at temperatureT , is obtainedby insertingin the TAP free
energy (2) thecorrespondingvaluesof theangularenergy, E0 = E0

α andof theself-overlap,
q = qα ≡ q

(

E0
α, T

)

. The correspondingenergy is

Eα = qp/2
α E0

α − 1

2T
[(p − 1)qp

α − pqp−1
α + 1] . (6)

Whenchangingthe temperature,onecanfollow the metastablestateswhich keepthe same
angulardirection;theirorderin freeenergy or energy, atfixedT , is thesameastheirorderin
E0. WhenraisingT , astatedisappearsata temperatureTmax(E

0) (whereequation(5) ceases
to havesolutions). Tmax(E

0) is a decreasingfunction of E0; the most excitedstates,with
E0 = Ec, disappearfirst at Tmax(Ec), andthelowestat Tmax(Emin) ≡ TTAP. AboveTTAP, the
only remainingstateis the paramagneticonewith q = 0 andfree energy Fpara= −1/(4T ).

To completethedescriptionof metastablestatesat any temperature,oneonly needsthe
densityof statesρ(E0) with an angularenergy E0. This hasbeencomputedin [12]; the
multiplicity is exponentiallylarge,giving a finite complexitydensitys0

c(E
0), definedas

s0
c(E

0) = lim
N→∞

logρ(E0)

N
. (7)

The complexity at finite temperatureis easily deducedfrom this s0
c . We shall denoteby

Sc(f, T ) the logarithmof thenumberof TAP statesat freeenergy f andtemperatureT . The
Boltzmannpartition function canthenbe approximatedasthe sumover all TAP solutions:

Z =
∫

df exp

(

− (f − T Sc(f, T ))

T

)

(8)
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Figure 1. free energy versustemperature;(1) free energy of the paramagneticsolution for
t > td, ftot for t < td; (2) free energy of the lowest tap states,with zero temperatureenergy
emin; (3) free energy of the highesttap states,correspondingto ec; (4) an intermediatevalueof
e0 leadsto an intermediatevalue of f at any temperature;(5) feq(t); the differencebetween
curves(5) and(1) givesthe complexityT Sc(feq(t), t).

which can be evaluatedat large N by a saddle-pointmethod. At temperaturesT > Td,
with Td =

√

p(p − 2)p−2(p − 1)1−p/2, the Boltzmann measureis dominatedby the
paramagneticstateq = 0. At any T ∈ [Ts, Td], the Boltzmannmeasureis dominated
by a classof TAP solutions,thoseof free energy f = feq(T ). Becauseof their extensive
complexity,this givesfor the total equilibrium free energy:

ftot ≡ −T ln(Z) = feq(T ) − T Sc(feq(T ), T ) . (9)

Thecomputationof feq is easilydone[7, 14]. Onefindsthatftot is equalto theparamagnetic
free energy in this range. Below Ts the lowest lying TAP statesdominatethe Boltzmann
measure,leadingto RSB. Thesituationis summarizedin figure1. Comparedto ausualphase
transition,the situationis complicatedby the existenceof a finite complexity. Actually we
seethatbetweenthetwo transitiontemperaturesTs andTd, thesituationis unclear:thetotal
equilibrium free energy seemsto get two equalcontributions,from the paramagneticstate
and from a bunchof TAP solutionswith non-zeroq. One can wonder if there is a phase
coexistence,or simply a problemof doublecountingin theTAP approach.This issue,which
is an importantone if one aims at understandingthe finite-dimensionalbehaviourof this
type of systems[6], canin fact be clarified within a dynamicalapproachaswe now show.
Let us alsomentionthat somepurely static approachesalsocarry relevantinformationon
relatedissues[13, 19].

The TAP structureof statesis usually not exploreddynamically: indeed,the usually
studiedout of equilibrium dynamicsof the sphericalp-spin model startsfrom a random
configuration,andnevergoesbelowthethresholdcorrespondingto theupperTAP solutions.
This processhasbeenstudiedin [15]: an interestingaging behaviourhasbeenfound at
temperaturesT < Td, but the energy densityof the systemonly goesasymptoticallyto one
of the highestTAP states(the thresholdstateswith angularenergy E0 = Ec). Hence,it is
impossibleto exploreTAP statesvia this kind of dynamics.

Herewe will usea differentapproachfor the dynamics[18, 19], wherewe start from
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a spin configurationwhich is picked up from a Boltzmanndistribution at temperatureT ′,
and then let the systemrelax at temperatureT. We shall concentrateon the casewhere
T ′ ∈ [Ts, Td], which meansthat our initial configurationwill belongto the TAP stateswith
free energy feq(T

′). This will leadto the studyof the relaxationinsideoneTAP state.
The relaxationaldynamicsat temperatureT is given by the Langevinequation:

dsi(t)

dt
= −∂H

∂si

− µ(t)si(t) + ηi(t) (10)

whereH is the Hamiltonian(1), µ is the Lagrangemultiplier implementingthe spherical
constraint,andηi is a Gaussianwhite noisewith zeromeanandvariance2T . Thedynamics
is describedby the behaviourof two-timescorrelationandresponsefunctionsdefinedby

C(t, t ′) = 1

N

N
∑

i=1

〈si(t)si(t ′)〉 r(t, t ′) = 1

N

N
∑

i=1

∂〈si(t)〉
∂hi(t ′)

(11)

where〈·〉 is ameanoverthethermalnoise,andanoverlinedenotesameanoverthecoupling
constants.

Using the usual field-theoreticaltechniquesfor out of equilibrium dynamics[16], in
the large-N limit, it is possibleto study the dynamicsat temperatureT , starting from a
Boltzmannmeasureat temperatureT ′. In orderto implementthis initial sampledependent-
measure,it is necessaryto introducereplicas[17–19] and to write dynamicalequations
for two-timesoverlapsbetweenreplicasCab(t, t ′) = 〈sa(t)sb(t ′)〉, a and b being replica
indices.Theequationsobtaineddiffer from theusualoutof equilibriumones(corresponding
to T ′ = ∞ [15]) by termsinvolving a coupling to the initial configuration,i.e. Cab(t, 0).
Besides,as notedin [19], the time evolution respectsthe initial replica-symmetricor RSB

structureof the Cab, i.e. the static replicastructuredescribingequilibrium at T ′.
For the p-spin model with T ′ > Ts the initial condition is replica symmetric,with

Cab(0, 0) = δab. Therefore,at all timeswe canwrite Cab(t, t ′) = C(t, t ′)δab. The obtained
equationsfor the correlationandresponsefunctionsread[19], for any T ′ > Ts, and t > t ′:

µ(t) =
∫ t

0
ds

[

p2

2
Cp−1(t, s) − p(p − 1)

2
Cp−2(t, s)

]

r(t, s) + T

− p

2T ′ C
p−1(t, 0) (1 − C(t, 0))

∂r(t, t ′)

∂t
= −µ(t)r(t, t ′) − p

2T ′ C
p−1(t, 0) r(t, t ′)

−p(p − 1)

2

∫ t

0
ds Cp−2(t, s)r(t, s)(r(t, t ′) − r(s, t ′)) (12)

∂C(t, t ′)

∂t
= −µ(t)C(t, t ′) + p

2

∫ t ′

0
ds Cp−1(t, s)r(t ′, s)

−p(p − 1)

2

∫ t

0
ds Cp−2(t, s)r(t, s)(C(t, t ′) − C(s, t ′))

− p

2T ′ C
p−1(t, 0) C(t, t ′) + p

2T ′ C
p−1(t, 0) C(t ′, 0) .

Let us examine the situation first for T = T ′ (this case was studied in [18];
supposinga priori equilibrium dynamics, they were able to connect it with the TAP

approach):sincewe start at equilibrium, we expectequilibrium dynamicssatisfyingboth
time translationinvariance(TTI) and the fluctuationdissipationtheorem(FDT): C(t, t ′) =
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Ceq(t − t ′), r(t, t ′) = req(t − t ′) with req(τ ) = − 1
T

∂Ceq

∂τ
. Equations(12) reduce,with this

ansatz,to a singleequationfor the evolutionof Ceq(τ ):

∂Ceq(τ )

∂τ
= −µ∞Ceq(τ ) − p

2T

∫ τ

0
du Cp−1

eq (τ − u)
∂Ceq(u)

∂u
(13)

whereµ∞ = T , andCeq(0) = 1. Above Td, this equationdescribesthe relaxationwithin
the paramagneticstate,with limτ→∞ Ceq(τ ) = 0. Below Td, the condition of dynamical

stability ∂Ceq(τ )

∂τ
6 0 leadsto a non zero limit C∞ for Ceq(τ ) [8]; this limit is given by the

largestsolutionof
p

2T 2
Cp−2

∞ (1 − C∞) = 1 (14)

(the other non-zerosolution is unstablewith respectto the dynamics(13)). This value is
preciselytheself-overlapq of the TAP statesreflectingthestaticsat T , i.e. with freeenergy
feq(T ). This meansthat, for temperaturesbetweenthestaticalandthedynamicaltransition
temperatures,thethermalizedsystemis trappedinsidea TAP state,andnot in a paramagnetic
state,for which C∞ would be zero (as for T > Td). We can also excludethe possibility
of a coexistence,which would leadto someintermediatevalue: the paramagneticstatehas
disappearedat Td, and the Gibbsstateis formedby the bunchof TAP solutionshaving the
suitablefree energy feq(T ), anda finite complexitydensity.

To get further insight, alwaysstartingfrom a thermalizedconfigurationat temperature
T ′ ∈ [Ts, Td], we now studythedynamicsat a temperatureT differentfrom T ′. In our study
of the dynamicalequations(12), we havefound numerically(using the type of algorithm
developedin [20]) andanalyticallythataftera shorttransientthesystemreachesa stationary
regimewhereTTI andFDT hold (seefigure2). Thepossibilityof sucha situationhasalready
beenconjecturedin [19], togetherwith an interestingconnectionto the static approaches
developedin [13, 19].

Figure 2. p = 3 model,with Ts ≈ 0.586, Td ≈ 0.612; numericalintegrationof equations(12)
for T ′ = 0.605, T = 0.6; we plot C(t, 0) versust (full curve), and C(t, t ′) versust − t ′ for
t ′ = 6, 12, 18, 24 (symbols);thedottedcurveis thenumericalintegrationof (15), andthedotted
curveis the valueof C∞ obtainedby (16).
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In order to study this solution analytically,we introduceas previouslyCeq(τ ), req(τ ),
C∞ = limτ→∞ Ceq(τ ), µ∞ = limt→∞ µ(t), and l = limt→∞ C(t, 0), and obtain the
equation:

∂Ceq(τ )

∂τ
= −

(

µ∞ − p

2T
Cp−1

∞ + p

2T ′ l
p−1

)

Ceq(τ )

+p

2

∫ τ

0
du Cp−1

eq (u) req(τ − u) − p

2T
Cp

∞ + p

2T ′ l
p . (15)

Besides,µ∞, C∞ and l satisfy the following set of equations,obtainedby taking t ′ = 0,
t → ∞ in (12), andτ → ∞ in (15):

µ∞ = T + p

2T
Cp−1

∞ (1 − C∞) − p

2T ′ l
p−1(1 − l)

lp−2 = 2T T ′

p(1 − C∞)

T C∞ = p

2T ′ l
p(1 − C∞) + p

2T
Cp−1

∞ (1 − C∞)2 (16)

andthe energy reacheddynamicallyat large timesis E∞ = 1
2T

(C
p
∞ − 1) − lp

2T ′ .
It is thenstraightforwardto checkthat the overlapC∞ andthe energy E∞ areidentical

to the valuescharacteristicof certain TAP statesat the temperatureT . Thesestatesare
preciselythoseobtainedby following the equilibrium TAP statesat temperatureT ′ (which
pick up a certainvalueE0

T ′ of the angularenergy) to temperatureT , by keepingthe same
direction in ŝ space,but changingthe overlapfrom q(E0

T ′ , T ′) to q(E0
T ′ , T ).

From equation(15), it is possible to show that the relaxation of Ceq(τ ) is of the
form τ−3/2exp(−τ/τ0). The relaxation time τ0 can also be computed,and has a quite
complicatedexpressionthatwe do not reproducehere. It divergesfor thehighestTAP states
(correspondingto E0 = Ec). Of course,this exponentialrelaxationcan only happenas
long as the followed TAP solution still existsat temperatureT : if T becomeslarger than
Tmax(E

0
T ′), we observea fast relaxationto the paramagneticstate,with C∞ = l = 0.

We have thus shown that the TAP solutions are real states,correspondingto a full
breakingof ergodicity: startingwithin a TAP state(which can be achievedby our trick of
usingthermalizedinitial conditionsat a temperatureT ′), onerelaxeswithin this statewith
a finite relaxationrate,andonecanevenfollow this statewhenchangingthe temperature.
Besides,the Gibbs measurebelow the dynamicaltransitionis madeof a superpositionof
TAP states,which aredifferentergodiccomponents,totally separatedfrom eachotherin the
dynamicalevolution. The paramagneticsolution, valid aboveTd, disappearsat Td. Note
that the way in which this occursis not clear, and we leavethis openquestion,which is
crucial for a better understandingof aging dynamics,for future work. SomeTAP states
existasindependentergodiccomponentsevenat temperaturesT ∈ [Td, TTAP]. Theyarenot
seenin the usualdynamicsbecausethey are difficult to find: startingfrom randominitial
conditionsonestaysin thebig paramagneticergodiccomponent.If onesucceedsin starting
within a TAP state,onestayswithin this stateevenby rising the temperatureaboveTd (but
below the Tmax of this state). One shouldnotice that the usualdynamicsat a temperature
belowTd, startingfrom a randomconfiguration,only leadsto a ‘weak ergodicity breaking’
[21, 15], wherethe self-overlapvanishesat very large time differences(much larger than
thewaiting time). This is explained[15, 22] by the fact that thesystem,which wasinitially
in the (infinite temperature)paramagneticstate,doesnot find any TAP statein a finite time,
but staysat energy densityO(1) (going to zeroast goesto infinity) abovethe threshold.In
contrast,thereis no sign of agingwhenonestartswithin a TAP state.This is in agreement
with somerecentintuitive scenariosfor aging[22, 23].
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