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Abstract. We studythe out-of-equilibriumdynamicsof severalmodelsexhibiting ageing.We
attemptto identify various types of ageingsystemsusing a phasespacepoint of view. We
introducea trial classification,basedon the overlapbetweentwo replicasof a system,which
evolve togetheruntil a certain waiting time, and are then totally decoupled. In this way we
investigatetwo typesof systems,domaingrowth problemsandspin glasses,andwe showthat
they behavedifferently.

1. Intr oduction

The dynamicsof spin glassesand other disorderedsystemsexhibits a very much studied
phenomenonknown as ‘ageing’: the behaviourof the systemdependson its history, and
experimentsshowa typical out-of-equilibriumregimeon all (accessible)time scales[1]. In
thesimplestcaseonequenchesthesysteminto its low-temperaturephaseat time t = 0, and
thedynamicsof thesystemdependson its age,i.e. the time elapsedsincethequench.This
typeof behaviourcanbestudied,for example,by lookingat thecorrelationfunctionof some
local observableO(t), C(t, t ′) = 〈O(t)O(t ′)〉, or at the responseof suchan observableto
a changein a conjugatedexternalfield h(t ′): r(t, t ′) = 〈∂O(t)/∂h(t ′)〉. While in the usual
equilibrium behaviourthesetwo-times quantitiesobey time-translationalinvariance(TTI)
(C(t, t ′) = C(t − t ′), r(t, t ′) = r(t − t ′)) and the fluctuation–dissipationtheorem(FDT)
relating correlationand response,one frequently observesin off-equilibrium dynamicsa
dependenceon C(t, t ′) ' t−αC(t ′/t), which is referred to as ageing behaviour,and a
violation of FDT.

This kind of ageingbehaviouris not restrictedto spin glasses:the persistenceof out-
of-equilibriumeffectsevenafter very long timeshasbeenobservedin manyothersystems,
eitherexperimentalsystems[2], or in computersimulations[3]. In somecasesageingcould
be studiedanalytically [4–9].

The kind of loosedefinition of ageingthat we haveusedso far seemsto be ubiquitous
andto hide a variety of very distinct physicalsituations.While the mean-fieldspin glassis
knownto bea complicatedsystemwith a roughfree-energy landscapewith manymetastable
states,ageingalsooccursin muchsimplerproblemslike therandomwalk [7], thecoarsening
of domain walls in a ferromagnetquenchedbelow its critical temperature[10], or some
problemswith purelyentropicbarriers[8, 9], all problemsin whichthefree-energy landscape
seemsto be very simple.
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It is interestingto find a way to distinguishbetweenthesedifferenttypesof ageing,and
this papertakessomestepstowardssucha classification. A first classificationof ageing
hasalreadybeenproposedin the literature[5]. In the mean-fielddynamicsof spin glasses,
it hasbeenshownthat the responsefunction exhibits an anomalyin the low-temperature
phase[13, 14]. While it looks mysteriousin the frameworkof equilibrium dynamics,this
anomalyis well understoodif one studiesoff-equilibrium dynamics[5]. The anomalyis
definedthereas

χ̄ = lim
t→∞

∫ t

0
dt ′ r(t, t ′) −

∫ ∞

0
lim

tw→∞
r(tw + τ, tw) dτ . (1)

It measuresthe differencebetweenthe susceptibilityof the systemat large times and the
susceptibilityof a hypotheticalsystemwhich would beat equilibrium. A non-zeroanomaly
showsthe existenceof a long-termmemoryof the systemto someperturbationsoccurring
at any time. Systemswith suchan anomalycertainlyexhibit strongageingeffects.

In spiteof its nicemathematicalstructure,theanomalyis, in general,not easyto control
and compute(analytically or numerically). In this paperwe want to proposeanothertool
for the classificationof ageing. We shall use an overlap Qtw (tw + t, tw + t) between
two identical copiesof the system,which are constrainedto evolve from the sameinitial
configurationand with the samethermalnoisebetweenthe initial quenchand a time tw,
andthenevolvewith differentrealizationsof the thermalnoisebetweentw andtw + t . This
quantitywasintroducedin [12], andin a studyof theageingdynamicsof thesphericalspin
glassby CugliandoloandDean[15] (slightly differentobjectsinvolving two copiesof the
systemevolving with the samenoisehavealso beenstudiedbefore[11]). We argue that
the asymptoticvalueof this overlapin the doublelimit limtw→∞limt→∞Qtw (tw + t, tw + t)

distinguishesbetweendifferenttypesof ageing.In a first classof systemsthe limit is finite
(equalto the Edwards–AndersonparameterqEA in the caseswe havestudiedso far). This
class,which we call type I, includesthemodelswith coarseningof domainwalls: we show
it explicitly hereafterin the caseof theO(n) modelwith n → ∞, andwithin somewidely
usedassumptionsfor the domaingrowth in the non-conservedscalarorderparametercase.
The secondclass,ageingsystemsof type II, containsthe spin-glass-likeproblemswith
complicatedfree energy landscapes,and we study explicitly the p-spin sphericalmodels
or the zero-dimensionalversionof the manifoldsin a randompotential. For this class,the
limit limtw→∞limt→∞ of theoverlapis equalto theminimumpossibleoverlap(i.e. zerofor
the p-spin sphericalmodel (with p > 2) andq0 for the zero-dimensionalmanifolds).

Besidessuggestinga first (rough) classification,this overlapfunction may turn out to
give someintuitive ideasaboutthe energy landscapein which the systemevolves,and its
complexity. For example,if we think of a systemfalling down a ‘gutter’, it is clear that
it will continuouslygo away from its position at tw (the correlationfunction decreasesto
zero),but two copiesseparatedat tw will not beableto separateindefinitely,andtheoverlap
will havea limit at long timeswhich candependon tw: astw grows,thesystemgetscloser
andcloserto equilibrium. Type I systemsseemto havesucha behaviour.

In contrast,a ruggedlandscapewith manybifurcations,andmanydifferentpaths,will
allow two copiesto really move away from one another,so the overlapwill decayto its
minimum possiblevalue,for any finite tw: the distancebetweenthe two replicasbecomes
the largestpossibleone.

For one-timequantities,like the energy for example,type I and type II systemsseem
to havea similar kind of freezing.The ageingbehaviour(the studyof two-time quantities)
showsthat this freezingis not full. Besides,the study of the overlapbetweentwo copies
showsthat the freezingin type I systemsis in somesensemore‘robust’ thanin type II.
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Theclassificationinducedby theasymptoticvalueof theoverlapfunctionmightcoincide
with the onequotedabove,usingthe anomalyof the response.Indeed,all type II systems
that we study are known to possessa non-vanishinganomaly. In type I systems,the
anomalyhasbeencomputedso far only in the O(n) model with n → ∞, where it does
vanish (or equivalentlyfor the p = 2 sphericalmodel [15]). The existenceof a general
relationbetweenthesetwo criteria remainsto be studied.At an intuitive level it may look
plausible: if onethinksof a type I systemasevolving in a phasespacegutter,it shouldnot
havea long term memoryof a perturbation.On the otherhand,a type II systemevolving
in a ruggedlandscapewill be continuouslybifurcating and a changeof direction will be
rememberedat long times. As we are awarethat such intuitive argumentscan be very
misleading,we just mentionthem hereas a motivation to further studiesof the response
anomalyin variousageingsystems.

The paperis organizedas follows. In section2, we definethe dynamicsand various
quantitieswe study,andpresentthe generalfeaturesof equilibrium dynamics.Section3 is
devotedto the studyof variousproblemsof domaingrowth,with analyticalandnumerical
results. Type II systemsare studied in section 4, where we analyse, in particular,
the behaviourof the zero-dimensionalversion of the random manifold problem and of
Bouchaud’smodelof phasespacetraps[16, 17]. The last sectioncontainsour conclusions.

2. Definitions, equilibrium dynamics

We considersystemsdescribedby a field φ(x) in a d-dimensionalspace(we shall also
considerspinsystems,with obviousgeneralizationsof thedefinitions).Givena Hamiltonian
H [φ] =

∫

ddx H(φ(x)), we assumea Langevindynamicsat temperatureT :

∂φ(x, t)

∂t
= −

∂H

∂φ(x, t)
+ η(x, t) (2)

whereη is a white noise,with 〈η(x, t)η(x′, t ′)〉 = 2T δd(x − x′)δ(t − t ′) (〈 〉 meansan
averageover this thermalnoise).

The quantitieswe aremostly interestedin arethe following:

• the two-time autocorrelationfunction C(t, t ′): this is the meanoverlap betweenthe
configurationsof the field at times t and t ′,

C(t, t ′) =
1

V

∫

ddx 〈φ(x, t)φ(x, t ′)〉 (3)

• the responsefunction

r(t, t ′) =
1

V

∫

ddx

〈

δφ(x, t)

δη(x, t ′)

〉

(4)

• theoverlapfunctionQtw (t, t ′): thesystemevolvesduringa certaintime tw; at tw a copy
is made,and the two systemsobtained,labelledby (1) and (2), evolve independently;
Qtw (t, t ′) is then the overlapbetweenthe configurationof one copy at time t and the
otherat time t ′:

Qtw (t, t ′) =
1

V

∫

ddx 〈φ(1)(x, t)φ(2)(x, t ′)〉 . (5)

Of course,for t 6 tw or t ′ 6 tw, Qtw (t, t ′) = C(t, t ′).
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Before turning to out-of-equilibrium dynamics, let us first show that the overlap
Qtw (t, t ′) is simply relatedto the correlationin the caseof equilibrium dynamics.

If a systemis evolving amonga set of states,accordingto a masterequation,with
transitionratesobeyingdetailedbalance,i.e.

d

dt
pi(t) =

∑

j

Tijpj (t) Tijp
eq
j = Tjip

eq
i (6)

wherepi(t) is the probability of beingin statei at time t , the formal solution is

pi(t) =
∑

j

〈i|eT t |j〉pj (0) (7)

where〈i|eT t |j〉 arethe matrix elementsof the evolutionoperatoreT t (〈i|T |j〉 = Tij ). The
detailedbalanceimplies that

〈j |eT t |i〉peq
i = 〈i|eT t |j〉peq

j . (8)

If we expressthis property in termsof the overlapbetweentwo replicasevolving in
equilibrium dynamics,we obtain(seefigure 1):

Qas(s, t) = Cas(s + t) (9)

wherewehavedefinedQas(s, t) = limtw→∞ Qtw (tw+s, tw+t) andCas(t) = limtw→∞ C(tw+
t, tw).

Figure 1. Theequilibriumvalueof theoverlap,whentw → ∞ betweenthefirst replicaat time
tw + s (point B) andthe secondat time tw + t (point C) is the sameasthe overlapbetweenD
(time tw − s, beforethe separation)andC, or betweenE (time tw − t) andB.

There exist other interestinglarge-time limits in the problem which exhibit ageing.
In particular, the interesting property of weak-ergodicity breaking [16], defined by
limt→∞ C(tw + t, tw) = 0, expressesthe fact that suchsystemsneverreachequilibrium. In
the following we will thereforebe interestedin the function

S(tw) ≡ lim
t→∞

Qtw (tw + t, tw + t) (10)

and,in particular,in its large-tw limit S∞ = limtw→∞ limt→∞ Qtw (tw + t, tw + t). We shall
showthatthis limit dependson thetypeof systemoneconsidersandallowsfor a distinction
of variousageingtypes.
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3. Domain-growth processes

A phenomenonwhich is often consideredas a typical exampleof an out-of-equilibrium
dynamicalevolutionis thephase-orderingkinetics[10, 19]. It is thedomaingrowthprocess
for an infinite systemwith different low-temperatureorderedphases,suddenlyquenched
from a disorderedhigh-temperatureregion into an unstablestateat low temperature.Here
we shall keepto the dynamicalevolutionof systemswith a non-conservedorderparameter
[10, 19].

The systemwe study is describedby an n-componentvectorfield φ(x, t) representing
thedensityof magnetizationat thepoint x of a d-dimensionalspace,asa functionof time.
The systemis preparedat high temperature,where〈φ〉 = 0 and then rapidly quenchedat
t = 0 in a low-temperatureregion,wherethereis more than one energetically favourable
statewith 〈φ〉 6= 0. This situationis well describedby a typical coarse-grainedfreeenergy:

F =
∫

ddx
[

1
2(∇φ)2 + V (φ)

]

(11)

wherethe first term representsthe energy costof an interfacebetweentwo differentphases
and V [φ] is a potentialwith minima at different valuesof φ. The statewith 〈φ〉 = 0 is
unstableat low temperature,so the systemevolvesby forming larger and larger domains
of a single phase;at a late stageof growth, the typical patternof domainsis self-similar
andthe characteristicsizeof a domainis L(t). This evolutioncanbe studied,for instance,
througha Langevindynamicswith thermalnoiseη:

dφ

dt
= ∇2φ − V ′(φ) + η . (12)

Equilibrium is not achieveduntil L(t) reachesthe sizeof the sample.In an infinite sample
one thus observesan ageingbehaviourin the correlationfunction. Roughly speakingthe
systemremembersits agetw throughthe valueof its typical domainsizeL(t).

3.1. TheO(n) model

Interestinglyenough,oneof the few exactlysolvedmodelsof coarsening[10], namelythe
caseof the O(n) modelwith n large anda constraintφ2 = n, is alsorelatedto a problem
which lookslike a spin-glasssystem.Indeedconsiderthefollowing spin-glassHamiltonian:

H = −
∑

ij

Jij sisj (13)

wheresi arerealspinswith a sphericalconstraint
∑

i s
2
i = n, andJij arerandomcouplings.

This model is usuallycalledthe (p = 2) sphericalspin glass[20]. Its Langevindynamics,

dsi

dt
=
∑

j

Jij sj (t) − z(t)si(t) + ηi(t) (14)

wherez(t) is a Lagrangeparameterenforcingthe sphericalconstraint,canalsobe written
in the basiswherethe Jij matrix is diagonal:

dsλ

dt
= (λ − z(t))sλ(t) + ηλ(t) . (15)

Then the dynamicalequationreducesto the oneof the O(n) model in Fourier spacewith
λ = −k2. The only importantpieceof informationon the J matrix is the behaviourof its
spectrumnearits largesteigenvalueλ∗. The caseof a squareroot singularity,suchas for
instancetheWigner law, is equivalentto a d = 3 coarseningproblem.Clearly thespherical
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spin glassdoesnot really havea spin-glass-likebehaviour(this hasbeenknown for a long
time in statics[20]); however,it exhibitsanageingdynamics,which is relatedto thegrowth
of the correlationlength in the O(n) model. Recently,Cugliandoloand Dean[15] have
performeda detailedcomputationof thedynamicsof this problem,in which theycomputed
all therelevantquantitiesof interestfor our discussion.Theyfoundageingin thecorrelation
function, but the anomalyof the responseasdefinedin (1) vanishes,which showsthat the
memoryeffects are weak. besides,the overlaplimit S(tw) = limt→∞ Q(tw + t, tw + t) is
a continuousfunction of tw, taking valuesbetweenq2

EA andqEA, with S∞ = qEA, and,of
course,limtw→∞ Q(tw + t, tw + t ′) = Cas(t + t ′).

Physically,the systemevolvesin time throughtwo processes:a thermalnoisewhich
affects evenly all the componentssλ, superimposedonto a deterministicevolution which
amountsto reinforcing the eigenmodescloser to the λ∗, and this deterministicpart is
dominantover the thermalnoise.

The fact that this systemhasthe propertyS∞ = qEA togetherwith the weakergodicity
breakingpropertylimtw→∞limt→∞C(tw+t, tw) = 0 suggeststheexistenceof akind of gutter
in phasespace:two replicas,evendecoupled,rememberforever that they areevolving in
the samecanal.

3.2. Scalarorder parameter:analyticstudy

We now turn to the domaingrowth problemin the caseof a scalarorderparameter.This
problem cannot be solved exactly but we shall use a well known approximation[18],
recentlydevelopedby Bray andHumayun[21]. We refer the readerto Bray’s review [10]
for a detailedpresentationof the method.The ideais to takeadvantageof the universality
of domaingrowth in the scalingregime: after an initial regimeof fast growth, the order
parametersaturatesat theequilibriumvalueinsidea domainandtheonly way for thesystem
to furtherdecreasethe freeenergy is the reductionof thesurfaceof walls betweendifferent
domains. Therefore,the dynamicalpropertiesof the systemat a late stageof growth are
givenby themotionsof thewalls and,in particular,by their curvature;theparticularshape
of thepotentialV [φ], providedit haswell separatedminima, is not crucial. If thegrowth is
influencedby an externalfield, the differencebetweenthe minima introducedby the field
will be the relevantvariable. The universalitygives the freedomto choosean appropriate
form for the potential in the free energy, and also a specialform for the thermal noise,
which makesthe analysismore tractable. Specifically, the Langevinequationis replaced
by

∂φ(x, t)

∂t
= ∇2φ − V ′

0[φ] + η(x, t)V ′
1[φ] (16)

whereη(x, t) is the Gaussianwhite noisewith zeromeanandcorrelator:

〈η(x, t)η(x′, t ′)〉 = 2T δ(x − x′)δ(t − t ′) . (17)

The field φ(x, t) is parametrizedby an auxiliary field m(x, t), through

φ[m] = φ0

(

2

π

)1/2 ∫ m

0
dx exp−(x2/2) = φ0 erf[m/

√
2] . (18)

With the following choiceof the two potentials:

V0[φ] =
φ2

0

π
exp

(

−2

[

erf−1

[

φ

φ0

]]2)

V1[φ] =
φ2

0√
π

exp

(√
2erf−1

[

φ

φ0

])

(19)
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the field m satisfiesa very simpleequation:
∂m

∂t
= ∇2m + (1 − (∇m)2)m + η . (20)

With thewall profile function(18), thefield m(x, t) measuresthedistanceof thepointx
from the interface:at infinite distancefrom the wall, the field φ saturatesto its equilibrium
value. Moreover,the potentialV0 hasthe requiredtwo-wells shapeat the two equilibrium
values. The choiceof the potentialV1 doesnot alter this shapeand,as can be seenfrom
(16) andfrom the fact thatV ′

1[φ] = φ′, it correspondsto a thermalnoiseactingonly on the
interface.This is anapproximationwhich is not able,for instance,to reproducetheprocess
of nucleationof a bubble. In otherwords,thevalueof qEA in this caseremainsfixed at the
T = 0 value,qEA = φ2

0. However,we expectthat this approximationwill not affect our
main conclusionsconcerningthe variouslarge-timelimits of the overlap.

The physical situationof a rapid quenchwill be representedby taking the boundary
conditionfor m(x, t) to be Gaussianwith zeromeanandcorrelator:

〈m(x, 0)m(x′, 0)〉 = δ(x − x′) . (21)

Equation(20) can be solvedby neglectingthe non-linearterm or, more correctly, by
taking into accountits meanvalue. Let us neglectit in a first approach.equation(20) can
thenbe solved,giving

m(x, t) =
∫

|k|<e−1

ddk

2πd
eikx

[

e(1−k2)tm(k, 0) +
∫ t

0
dt ′ e(1−k2)(t−t ′)η(k, t ′)

]

(22)

wheree is a cut-off given by the width of the interface.The linearity of the equationand
the independenceof the boundaryconditionandthe noisepreservethe Gaussiancharacter
of the probability distribution for the field m. Meanvaluesof functionsof the field φ can
be computedin termsof the evolution of the first and secondmomentsfor the Gaussian
distributionof m. To computethecorrelationfunctionC(τ + tw, tw) we introducetwo fields
m1 = m(x, τ + tw) andm2 = m(x, tw). WhencomputingtheoverlapQ(τ + tw, τ + tw) the
fields m1 andm2 denote,respectively,m(1)(x, τ + tw) andm(2)(x, τ + tw). In both cases
the joint distributionof m1 andm2 is a GaussianP(x1, x2), which we parametrizeas

P(x1, x2) =
γ

2π
√

σ1σ2
exp

[

−
γ 2

2

(

x2
1

σ1
+

x2
2

σ2
−

2f x1x2√
σ1σ2

)]

(23)

with σi = 〈m2
i 〉, c12 = 〈m1m2〉 and f = c12/

√
σ1σ2, γ = 1/

√

1 − f 2. In terms of this
distributionthe correlation(or overlap)is given by

〈φ[m1]φ[m2]〉 =
∫ +∞

−∞
dx1 dx2 φ(x1)φ(x2)P (x1, x2) = φ2

0
2

π
arcsinf (24)

wherethe function (18) hasbeenreplacedby φ[m] = φ2
0 sign[m], a goodapproximationin

thelarge-timeregime.Thecalculationthereforereducesto thecomputationof theparameter
f in thecovariancematrix of theprobabilitydistributionP(x1, x2), which is easilyobtained
from (22). Defining

F(a, b) =
∫ a

0
dσe−σ

(

1 −
σ

b

)−d/2
(

erf

(
√

b − σ

e

))d

(25)

we obtain,for tw � 1:

C(τ + tw, tw) = φ2
0

2

π
arcsin

{

(

4(τ + tw)tw

(τ + 2tw)2

)d/4

×
1 + T F(2tw, τ + 2tw)

[1 + T F(2(τ + tw), 2(τ + tw))]1/2[1 + T F(2tw, 2tw)]1/2

}

(26)
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and

Q(τ + tw, τ + tw) = φ2
0

2

π
arcsin

{

1 + T F(2tw, 2(τ + tw))

1 + T F(2(τ + tw), 2(τ + tw))

}

. (27)

The asymptoticbehavioursof Q andC are very similar to thosestudiedabovein the
domaingrowth of an n → ∞ componentorderparameter(or p = 2 sphericalmodel): the
asymptoticrelationbetweenQ andC at tw → ∞ with τ finite is satisfiedand,for fixed tw
andτ large,C hasthe limiting behaviour

C(τ + tw, tw) ∼
(

tw

τ

)d/4

(28)

while Q doesnot go to zero and the limiting value S(tw) is a continuousfunction of tw,
approachingtheequilibriumvalueqEA astw grows: S∞ = qEA. Sowithin thisapproximation
this coarseningproblemfalls into the type I classification.

Note that whenone includesthe effect of the gradientsquaredterm in (22), treatedas
anaverageterm(asin [10]), the resultis similar exceptfor a changein thenumericalvalue
of the function F in (25), wherea term cσ−2 is present,insteadof exp(−σ).

In order to check this approximateanalytic treatment,we have performednumerical
simulationsof domaingrowthin two dimensions,for a scalarfield evolvingwith a Langevin
equation, and also for Ising spins on a regular two-dimensionallattice, with Glauber
dynamics[27].

3.3. Scalarorder parameter:numericalstudies

We havesimulatedthe evolution of a scalarfield φ on a two-dimensionalsquarelattice,
accordingto theLangevinequation(12), with a quarticV0 anda bold discretizationscheme:

φ(i, j, t + 1) = φ(i, j, t) + (φ(i + 1, j, t) + φ(i − 1, j, t) + φ(i, j + 1, t) + φ(i, j − 1, t)

−4φ(i, j, t) + φ(i, j, t) − φ(i, j, t)3)h + η(i, j, t) (29)

whereη is a Gaussiannoisewith zeromeanandvariance2T h, h beingthe time stepused.
We proceedby parallelupdatingof thefield, andvary the time steph. At t = 0, φ(i, j) are
takenasindependentrandomvariablesuniformly distributedbetween−1 and1. We let the
systemevolveduring tw accordingto (29), makea copyof it, andlet the two copiesevolve
independently,i.e. with independentthermalnoises. We recordthe correlationof eachof
the copieswith the systemat time tw andthe overlapbetweenthe replicas.

We presentsimulationsat fixed temperature:we recordthe overlapandthe correlation
function for differentvaluesof tw, The linear sizeof the systemwasof 200 sites,andone
run was madewith a 400× 400 lattice. Each simulation was madewith three different
valuesof h (h = 0.02, 0.04 and0.08), to checkthat the resultsdid not dependon the time
stepused.We alsocheckedthat the t/tw scalingis well obeyedfor thecorrelationfunction
for large enoughtw; for the overlap,no suchscalingis found. We plot the overlapat time
tw + t versusthe correlationbetweentimes tw and tw + t .

The Q versusC curvesshow quite clearly that the overlap, after a transientregime
whereit decaysfasterthan the correlation,hasa finite limit asC goesto zero. This limit
growswith β andwith tw.

This result agreeswith the previousanalyticstudy,as far as the asymptoticbehaviour
of the overlap and correlation are concerned. We have also performedsimulationsof
a two-dimensionalIsing spin system(with nearest-neighbourferromagneticinteractions),
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with Metropolisdynamicswith randomupdating†: at eachsweepthroughthe lattice,spins
areupdatedin randomorder,but this order is the samefor both replicas.The results(see
figure 3) agreewith thoseobtainedby Langevindynamics.

Figure 2. Overlap Q(tw + t, tw + t) versuscorrelation
C(tw + t, tw) for the scalarfield in two dimensions,for
β = 6 and different waiting times (from bottom to top,
10, 20, 50 and180 MC steps).

Figure 3. Left: overlapQ(tw + t, tw + t) versuscorrelationC(tw + t, tw) for the Ising modelin
two dimensions,for β = 2, tw = 23 (bottom)and tw = 24 (top); Right: correlationandoverlap
for the Ising model in two dimensions,for different valuesof tw and t : tw = 23, 24, . . . , 29,
and t = 2, . . . , 210.

Note that we also made computer simulations for a model introduced in [25],
consistingof an Ising ferromagneton a cubic lattice, with weak next-nearest-neighbour
antiferromagneticcouplings; in this model, the growth is slowed from a power law to a
logarithmic behaviour;nevertheless,we find for the correlationand overlap functions a
similar behaviourasfor the simpleferromagnet.

3.4. TheXY-modelin onedimension

A simpleandsolublemodelwheredomaingrowth canbe studiedwithout approximations
on thepotentialis theXY modelin d = 1 [26]. Namely,thesystemhasno phasetransition
for T > 0, but at very low temperaturethe correlationlength Leq is very large. Then at
time scaleswherethe sizeof the domainsis small comparedto the correlationlength, the
systempresentsthe typical non-equilibriumfeaturesof a multiple phasesystem.

† Notice that the choiceof dynamicsis important: as soonas the chosenalgorithm is not deterministicat zero
temperature(as is the case,for example,if we takeGlauberdynamics),the overlapwill decreaseto zeroevenat
T = 0.
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In this simple model, the order parameteris a two-dimensionalvector field φ(x, t) of
fixed lengthφ2 = 1 andthe coarse-grainedfree energy is

F =
∫

dx
1

2

(

∂φ

∂x

)2

. (30)

Using the non-linear mapping φ(x, t) = (cosθ(x, t), sinθ(x, t)), the Langevin
evolutionequationfor the field θ(x, t) canbe written easily andsolvedexplicitly without
approximation. The physical situation of a rapid quenchfrom a disorderedphaseto a
very low temperaturecan be includedin the formalism by taking the boundarycondition
θ(x, 0) to be Gaussianwith zeromeanandcorrelatedat distanceξ . As for the scalarorder
parametermodel,the linearity of theLangevinequationpreservestheGaussiancharacterof
the probability distributionfor the field θ andthe problemcanbe solvedby computingthe
time evolutionof the moments.Let us now considera quenchto a very low temperature,
i.e. a situation where the equilibrium correlation length Leq is very large, and the time
neededfor the domainsto reachthis size, teq, is alsovery large: in fact, Leq ' T −1/2, and
teq ' T −2. In a time regimewhereτ + tw, tw � 1 but Leq is very largecomparedto thesize
of the domainswe havea very simpleexpressionfor the correlationfunctionC(τ + tw, tw)

andfor the overlapQ(τ + tw, τ + tw) of two replicasseparatedat time tw:

C(τ + tw, tw) = exp−
1

√
πξ

[

2(τ + 2tw)1/2 − [2(τ + tw)]1/2 − (2tw)1/2

−
T ξ

2
{2[(τ + 2tw)1/2 − (τ )1/2] − (2(τ + tw))1/2 − (2tw)1/2}

]

(31)

and

Q(τ + tw, τ + tw) = exp−
1

√
π

T (2τ)1/2 . (32)

Sincethe sizeof the domainevolvesasL(t) ' t1/4, it is clear that thereexistsat very
low temperaturesa regime with 1 � tw � τ � teq, where the correlationhas already
decayedto zerowhile the overlapstill hasa finite value. Indeed,C decaysto zerowith a
term in the exponentialthat doesnot dependon the temperature,but the argumentof the
exponentialfor Q(τ + tw, τ + tw) is L(τ)2/L2

eq.

3.5. Conclusion

Thepreviousstudyshowsthat thedomaingrowthprocessesconsideredhereareessentially
deterministicin nature,and that their phasespaceis very simple: we indeedexhibit a
time regime 1 � tw � t � teq (teq being the equilibration time, which is infinite in
the true ageingproblems,but remainsfinite in the one-dimensionalXY model)wherethe
systemat time tw + t has already drifted away from its position in phasespaceat tw
(C(tw + t, tw) is very small), while two copiesseparatedat tw are still evolving together
(Q(tw + t, tw + t) is finite). Thesetype I systemsare characterizedby the existenceof a
finite limit S∞ = limtw→∞ limt→∞ Q(tw + t, tw + t) (with S(tw) = limt→∞ Q(tw + t, tw + t)

growingcontinuouslytowardsqEA astw grows). Thesystemcanthereforebe thoughtof as
moving alonga gutter in phasespace.It is reasonableto expectthat, in thesesystems,the
influenceof the thermalnoisewill be limited in time, andtherewill be no anomalyin the
responsefunction (this hasbeenshownso far only for theO(n) with n → ∞ model[15]).



Ageingclassificationin glassydynamics 1321

4. Type II models

4.1. A particle in a randompotential

We now turn to the studyof a well known disorderedmean-fieldmodel,wherewe expect
a differentkind of behaviourfor the overlap: the toy modeldescribedby the Hamiltonian
[22, 5]:

H = 1
2µ
∑

α

φ2
α + V (φ1, . . . , φN ) (33)

whereV is a Gaussianrandompotentialwith correlations:

V (φ)V (φ′) = −Nf

(

(φ − φ′)2

N

)

(34)

with

f (b) =
(θ + b)1−γ

2(1 − γ )
. (35)

This modeldescribesa particle in a randompotential,in N dimensions,but it canalsobe
interpretedasa spin-glassmodel: theφα arethensoft spins,in a quadraticwell 1

2µ
∑

α φ2
α,

andthey interactvia V ; thestaticshasa low-temperaturespin-glassphase,with continuous
replica-symmetrybreakingfor γ < 1 (long-rangecorrelationsof the disorder)or one-step
replica-symmetrybreakingfor γ > 1 (short-rangecorrelations).Slightly differentformsfor
f also allow us to deal with the dynamicalequationsof the sphericalp-spin [29, 4, 32]
model. This systemis describedby the Hamiltonian[33, 4]

N
∑

i1<···<ip

Ji1...ipsi1 . . . sip (36)

with the constraint
∑N

i=1 s2
i = 1, and Gaussiandistributedrandomp-spin interactions. It

canbe describedby a toy model,with

f (b) = −
1

2

(

1 −
b

2

)p

(37)

and a small modification of the dynamicalequations(A1) and (A2), which amountsto
implementingthe sphericalconstraintby a time-dependentLagrangemultiplier µ(t).

To computethe overlap function, we introduce two replicas φ(1) and φ(2), with a
Langevindynamics:

∂φ(i)
α (t)

∂t
= −

∂H

∂φ
(i)
α (t)

+ η(i)
α (t) (38)

where η(1) and η(2) are two white noises with 〈η(i)
α (t)η

(i)
α′ (t ′)〉 = 2T δαα′δ(t − t ′) and

η(1)
α (t) = η(2)

α (t) if t 6 tw. For t > tw, η(1) andη(2) areuncorrelated.
Using standardfield-theoretic techniques[13, 30], it is now possible to derive the

evolutionequationsfor the correlationandresponsefunctionsof eachreplica,C(1)(t, t ′) =
C(2)(t, t ′) = C(t, t ′) and r (1)(t, t ′) = r (2)(t, t ′) = r(t, t ′), and for the overlapQtw (t, t ′), in
the large-N limit. Thesequantitiesaredefinedby (3)–(5) andthe correspondingequations
arewritten in appendixA.
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The large-timelimiting valuesof the correlationdefineq̃, q0 andq1 (see[32]):

lim
t→∞

C(t, t) = q̃

lim
t→∞

C(t, t ′) = q0 (39)

lim
τ→∞

lim
t→∞

C(t + τ, t) = q1 .

We will now studythe behaviourof the overlapfunction in different time regimes.
We first studythe regimeof asymptoticdynamicswhich correspondsto taking the limit

t, t ′ → ∞, with τ = t − t ′ finite. We thusobtainthe functions

ras(τ ) = lim
t ′→∞

r(t ′ + τ, t ′) Cas(τ ) = lim
t ′→∞

C(t ′ + τ, t ′) (40)

Qas(τ, τ
′) = lim

tw→∞
Qtw (tw + τ, tw + τ ′) . (41)

In this regime,time-translationalinvarianceand the fluctuationdissipationtheorem(FDT)
areobeyed:Tras(τ ) = − ∂

∂τ
Cas(τ ). It is well known that this asymptoticregimeis identical

to equilibrium dynamicsfor systemswith long-rangecorrelationsof the disorder[30, 5, 6],
but it is different for short-rangecorrelations[29, 30, 4]. In both caseswe have found,
as expectedfrom the generaldiscussionof section2, that Qas(τ, τ

′) = Cas(τ + τ ′). In
particular,limτ→∞ Qas(τ, τ

′) = limτ ′→∞ Qas(τ, τ
′) = q1.

Let us now consider the ageing regime. This regime correspondsto having time
differences,like t − tw, divergewhentw → ∞. Herewe shall considertheoverlapfunction
Qtw (t, t ′) in the ‘double ageing’ regimewheret ′ − tw alsodiverges.

Figure 4. (t, t ′) ∈ Du, with hu(t
′)/hu(t) = e−τ .

There is no full solution of the ageingregime in spin-glasssystems.What hasbeen
proposedso far, in all cases,is an ansatzabout the behaviour of the correlation or
response. The first such proposal,by Cugliandoloand Kurchan [4], concernsthe case
of the p-spin model. They showedthat the dynamicalequationscan be solved in the
long-time regime (where one can neglect the time derivatives in (A1)) by the ansatz:
C(t, t ′) = C(t ′/t), r(t, t ′) = (x/T )C ′(t ′/t), or actually by any solution obtainedfrom
this througha reparametrizationof time t → h(t), with h an arbitrary increasingfunction.
This solutionwassubsequentlyextendedto morecomplicatedproblemsin which the static
solutioninvolvesa full RSB, like the toy modelwith long-rangecorrelationsof thenoise[5]
andthe SK model[6]. The caseof the toy modelwith short-rangecorrelationsof the noise
has also beenstudiedrecently [32]. The formalismsdevelopedin [5] (non-overlapping
time domains)and in [6] (triangular relations)representthe sameansatzbut look rather
different. Herewe shall presenttheansatzusingmainly the formerapproach,togetherwith
thenecessaryingredientsfor understandingthecorrespondencebetweenthetwo formalisms.

Consideringfirst two time quantities like the correlation or response,the ageing
regimecorrespondsto sendingt and t ′ both to infinity, the differencet − t ′ being itself
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divergent in this limit. The dynamicalequationscan be solvedin this limit (up to a time
reparametrization),neglectingthe time derivatives.We considernon-overlappingdomains
in the (t, t ′) plane: two times t and t ′, with t ′ < t , belong to the samedomain Du if
we take the limits t → ∞, t ′ → ∞, with the ratio hu(t

′)/hu(t) finite and fixed to e−τ

(0 < τ < ∞). The hu are a family of increasingfunctions indexedby a parameteru,
such that, if w < u < v and the times t, t ′ belong to Du, then hv(t

′)/hv(t) = 0 and
hw(t ′)/hw(t) = 1 (a possiblechoice is hu(t) = exp(tu), in which caseDu is such that
t ′ = t − (t1−u/u)τ ). Thedomainu = 1, with h1(t) = exp(t), correspondsto theasymptotic
regimewhereFDT andTTI hold. We find it convenientto expressthe fact that (t, t ′) ∈ Du

by thefollowing diagram:it is theneasyto showthat, if we considerthreetimest ′ < s < t ,
with (s, t) ∈ Du and (t ′, s) ∈ Dv, then (t ′, t) belongto Dmin(u,v) (seefigure 5) which is
an ultrametric inequality. If, for example,v > u, we have indeedhu(t

′)/hu(s) = 1, so
hu(t

′)/hu(t) = hu(s)/hu(t).

Figure 5. Ultrametricorganizationsof times.

In eachdomainDu, we assumethe correlationandresponseto behaveas

C(t, t ′) = Cu(τ ) r(t, t ′) =
dln(hu(t

′))

dt ′
ru(τ ) (42)

with a continuity condition: if Du and Dv are neighbouringdomains,with u < v, then
Cu(0) = Cv(∞). Then it is possibleto rewrite the equations(A1) (seeappendixB for
details),andto show[31] that theypossesssolutionsobeyinga generalizedform of theFDT
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relationcalled ‘quasi-FDT’:

xu

dCu

dτ
= −Tru(τ ) . (43)

If we now considerthreetimes, t ′ < s < t (seefigure 5) the ansatzimplies a simple
relationbetweencorrelationsat times t, t ′, t, s and t ′, s. When (t ′, s) and (s, t) belongto
two differentdomainswe have

C(t, t ′) = min(C(t, s), C(s, t ′)) (44)

andif they are in the samedomainDu, with

hu(t
′)

hu(s)
= e−τ ′ hu(s)

hu(t)
= e−τ then

hu(t
′)

hu(t)
= e−τ ′−τ (45)

so that

C(t, t ′) = Cu(τ
′ + τ) = j−1

u (ju(C(t, s))ju(C(s, t ′))) (46)

whereC(t, s) = Cu(τ ), C(s, t ′) = Cu(τ
′) and ju(z) = exp(C−1

u (z)). Equations(44) and
(46) form the basisof the formalism of triangularrelationsintroducedin [6], and applied
to the toy model in [32]. In appendixC we provide the solution for the overlapfunction
usingthis formalism.

Since the overlap function Qtw (t, t ′) involves three times, we are now looking for
a function dependingon the domainsDu and Du′ , Qu,u′(τ, τ ′), where (tw, t) ∈ Du and
(tw, t ′) ∈ Du′ (hu(tw)/hu(t) = e−τ , hu′(tw)/hu′(t ′) = e−τ ′

).
In appendixB we rewrite the equations(A2) in this frame, and show that they are

solvedby the following ansatz:

if u 6= u′ (for exampleu < u′): Qtw (t, t ′) = Cu(τ ) = min(C(t, tw), C(t ′, tw)) (47)

if u = u′: Qtw (t, t ′) = Cu(τ
′ + τ) = j−1

u (ju(C(t, tw))ju(C(t ′, tw))) . (48)

This ansatzcanbe easilyunderstoodin termsof the previouslyintroduceddiagrams:at tw
two ‘time-sheets’separate(seefigure 6) and two ultrametricsystemsappear,one for each
replica. We stressthat this solutionexistsindependentlyof theactualchoiceof thedisorder
correlation,and thereforeit is independentof the precisesolutionof the ageingdynamics:
whateverthe numberof non-overlappingdomainsappearingin this solution,whateverthe
actualsolutionsCu(τ ), thereexistsa solutionfor the overlapfunction in the ageingregime
which is relatedto the correlationby (48).

Figure 6. Two-sheetsultrametricstructurefor timeslarger than tw .
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Dependingon the model, the variable u can be a priori continuous,or discrete. It
wasshownin [5], using the resultsfrom [31], that for the long-rangemodelu becomesa
continuousvariable. In contrast,for short-rangemodelswhich exhibit staticallya one-step
replica-symmetrybreaking,it hasbeenshown[6, 32] that the ageingdynamicsis solved
by usinga singletime domainDu∗ (besidethe FDT domainD1).

To summarize,we haveshownthat, in the ageingregime:

• for the long-rangemodel:

Qtw (t, t ′) = min(C(t, tw), C(t ′, tw)) . (49)

In particular,it is thenclear that the long-timelimit of Qtw (t, t ′) is q0;
• for the short-rangemodel,thereexistsa function j suchthat

Qtw (t, t ′) = j−1(j (C(t, tw))j (C(t ′, tw))) . (50)

Sincej (q0) = 0, and since limt→∞ C(t, tw) = limt ′→∞ C(t ′, tw) = q0, we also have
limt→∞ Qtw (t, t ′) = limt ′→∞ Qtw (t, t ′) = q0.

In both cases,limtw→∞ limt→∞ Qtw (t, t) is q0, different from limt→∞ limtw→∞ Qtw (t, t).
Besides,nofinite waitingtimeis sufficient to giveahigherlimit thanq0 for limt→∞ Qtw (t, t):
an increasein the waiting time only slows down the dynamics,but hasno effect on the
limiting values.No continuousapproachto equilibrium canthusbe seenin this way.

Note thatsincetheequations(A1), (A2) arecausal,a numericalintegrationis available,
asin [5]. Nevertheless,theintegro-differentialcharacterof theseequationsmakesit difficult
to reachvery long times (a hugeamountof computermemoryis needed).Therefore,the
numericalintegrationswe wereableto realize,althoughfully compatiblewith the previous
study,werenot conclusiveenoughto confirm it.

For the caseof the p-spin spherical spin-glassmodel, an analytic solution of the
equationsis also available: they are solved by the ansatzcorrespondingto the short-
range model, equation (50). Indeed, we propose for the ageing regime the ansatz
Qtw (t, t ′) = Q(tw/t, tw/t ′), andwe find that the equationgiving Qtw (t, t ′) canbe rewritten
so that the threetimes tw, t and t ′ appearonly throughthe ratios tw/t and tw/t ′, and that
Qtw (t, t ′) = 1

q
C(t, tw)C(t ′, tw) is the solutionof this equation.

We havethus shownthat the overlap in the p-spin (p > 3) sphericalmodel exhibits
ageingin a similar fashionas the correlationfunction, and decaysto zero for any finite
tw (q0 = 0 for this model). This behaviouris thus very different from the p = 2 or the
domain-growthcase.

4.2. Ageingin traps

A trap model was introducedin [16] and developedin [17] to reproduceoff-equilibrium
dynamicsin glassysystems,andageing.The modelconsistsof N trapswith exponentially
distributedenergy barriers.This distribution leadsto trappingtime with infinite mean,and
thusto ageing.

In the simplestversion,[16] the basicobject is 51(t, tw), probability that the system
hasnot jumpedout of his trap betweentw and tw + t . The overlapbetweentwo different
statesis zero,andthe self-overlapis qEA. The correlationfunction is thenqEA51(t, tw).

We now dealwith two systemsafter tw: we introduce5
(2)

1 (t, t ′, tw), probability that the
first replicahasnot jumpedbetweentw and tw + t , andthat the secondonehasnot jumped
betweentw and tw + t ′. The overlapQtw (tw + t, tw + t ′) is thensimply qEA5

(2)

1 (t, t ′, tw).
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If thesystemis in trapβ (of lifetime τβ) at time tw, this probability is e−t/τβ e−t ′/τβ , and
thuswe get 5(2)

1 (t, t ′, tw) = 51(t + t ′, tw). The overlapbetweenthe replicasis therefore

Qtw (tw + t, tw + t ′) = C(tw + t + t ′, tw) . (51)

If we introducea multilayer tree, the only differenceis that we now have a set of
5j (t, tw) (j = 1, . . . , M), probabilitythatthesystemhasnot jumpedbeyondthej th levelof
thetreebetweentw andtw +t . It is thenclearthattheequation(51) is not changed,although
the analyticexpressionfor the correlationfunction dependson the parametersof the tree.

For this particularmodel, the equilibrium relation is, in fact, satisfiedevenfor out-of-
equilibrium dynamics,becauseof the propertiesof the chosenexponentialdecayfrom the
traps. It is then clear that the overlapfunction goesto zero for large times, for any finite
tw, sincelimt→∞ C(tw + t, tw) = 0: S(tw) = 0. We havethusthe samescenarioasfor the
toy model: for any finite tw, the overlapdecaysto its minimum allowed value, while an
infinite tw givesqEA asa limit.

5. Conclusions

In this paper,we haveshownthat the overlapbetweentwo copiesof a system,identical
until a waiting time tw, and then totally independent,is a quantity of interestregarding
the geometryof phasespace. We have indeedstudiedthis quantity for severalmodels,
and shown that its decay is intimately related to the complexity of the landscapeand
to the type of ageing. For simple systems,the long-time limit of the overlap can be
put closer and closer to the equilibrium limit qEA by changing the time the replicas
spend together. In contrast, for systemsexhibiting a complex phasespace, the limit
of the overlap is always the minimum value, i.e. the two replicas are able to separate
from each other, no matter how long the waiting time is (if it stays finite). This
differenceof behaviourcan be quantitativelyseenby a study of the various long time
limits of the overlap: for any system,limt→∞ limtw→∞ Qtw (tw + t, tw + t) is qEA, but the
inverseorder of limits, S∞ = limtw→∞ limt→∞ Qtw (tw + t, tw + t) (and the behaviourof
S(tw) = limt→∞ Qtw (tw + t, tw + t)), distinguishesbetweenageingin a ‘simple’ phasespace,
andtype II (spin-glass)systems.

Acknowledgments

We thankJ P Bouchaud,L Cugliandolo,J Kurchan,L Laloux, P Le Doussal,R Monasson
andE Vincent for manyinterestingandhelpful discussionson relatedtopics.

Appendix A. Dynamical equationsfor the toy model

In thelimit of infinite N , thedynamicalequationsfor thetwo-timescorrelationandresponse
functions(with t > t ′) read[5]
∂r(t, t ′)

∂t
= −µr(t, t ′) +

∫ t

0
ds m(t, s)(r(t, t ′) − r(s, t ′))

∂C(t, t ′)

∂t
= −µC(t, t ′) + 2

∫ t ′

0
ds w(t, s) r(t ′, s) +

∫ t

0
ds m(t, s)(C(t, t ′) − C(s, t ′))

1

2

dC(t, t)

dt
= −µC(t, t) + 2

∫ t

0
ds w(t, s)r(t, s)

+
∫ t

0
ds m(t, s)(C(t, t) − C(s, t)) + T

(A1)
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andthe equationswe obtainfor Qtw are

∂Qtw (t, t ′)

∂t
= −µQtw (t, t ′) + 2

∫ t ′

0
ds Wtw (t, s)r(t ′, s)

+
∫ t

0
ds m(t, s)(Qtw (t, t ′) − Qtw (s, t ′))

1

2

dQtw (t, t)

dt
= −µQtw (t, t) + 2

∫ t

0
ds Wtw (t, s)r(t, s)

+
∫ t

0
ds m(t, s)(Qtw (t, t) − Qtw (s, t)) + T θ(tw − t)

(A2)

with the samenotationas[5]:

w(t, t ′) = f ′(b(t, t ′)), m(t, t ′) = 4f ′′(b(t, t ′))r(t, t ′)

b(t, t ′) = C(t, t) + C(t ′, t ′) − 2C(t, t ′)
(A3)

and

Wtw (t, t ′) = f ′(Btw (t, t ′))

Btw (t, t ′) = C(t, t) + C(t ′, t ′) − 2Qtw (t, t ′) .
(A4)

Appendix B. Non-overlapping time domains

We showhow to computeoneof the integralsof equations(A1), (A2) in the frameof the
ansatzdescribedin [5], usingthediagramsintroducedin figure4. We apply this methodto
the overlapequationandshowthat a similar ansatzis a solution.

For (t ′, t) ∈ Du, we parametrize

b(t, t ′) = bu(τ ) r(t, t ′) =
dln(hu(t

′))

dt ′
ru(τ )

m(t, t ′) =
dln(hu(t

′))

dt ′
mu(τ ) w(t, t ′) = wu(τ ) .

(B1)

The integral
∫ t

t ′ ds m(t, s)r(s, t ′), appearingin (A1), has then threecontributions(see
figure B1):

• (t ′, s) ∈ Dv (v > u), wherem(t, s) = mu(τ )dln hu(s)/ds,
• t ′, t, s in the samedomainDu,
• (s, t) ∈ Dv (v > u), wherer(s, t ′) = ru(τ ).

Figure B1. For t ′ < s < t , threeregimescanbe separated.
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∫ t

t ′
ds m(t, s)r(s, t ′) =

dln hu(t
′)

dt ′

(

mu(τ )
∑

v>u

∫ ∞

0
dσ rv(σ ) +

∫ τ

0
dσ mu(σ )ru(τ − σ)

+ ru(τ )
∑

v>u

∫ ∞

0
dσ mv(σ )

)

. (B2)

Separatingin thiswayall differentcontributionsin theintegrals,weobtainthefollowing
equationfor bu(τ ):

0 = bu(τ )

[

−µ +
∑

v6u

∫ ∞

0
ds mv(s)

]

+ 2T −
∫ τ

0
ds mu(s) bu(τ − s)

−4wu(τ )
∑

v>u

∫ ∞

0
ds rv(s) −

∫ ∞

0
ds [mu(τ + s) bu(s) + 4wu(τ + s)ru(s)]

+
∑

v>u

∫ ∞

0
ds [mv(s) bv(s) + 4wv(s) rv(s)] . (B3)

The samemethodcan be appliedto the equationfor the overlapfunction Btw (t, t ′) =
Bu,u′(τ, τ ′). For u, u′ < 1 (with u 6= u′) it reads:

0 = Bu,u′(τ, τ ′)

[

−µ +
∑

v6u

∫ ∞

0
ds mv(s)

]

+ 2T −
∫ τ

0
ds mu(s)Bu,u′(τ − s, τ ′)

−4wu(τ )
∑

u′>v>u

∫ ∞

0
ds rv(s) − 4Wu,u‘ (τ, τ

′)
∑

v>u′

∫ ∞

0
ds rv(s)

−4wu(τ )

∫ ∞

τ ′
ds ru′(s) − 4

∫ τ ′

0
ds Wu,u‘ (τ, τ

′ − s)ru′(s)

−
∫ ∞

0
ds [mu(τ + s)bu(s) + 4wu(τ + s)ru(s) − mu(s)bu(s) − 4wu(s)ru(s)]

+
∑

v>u

∫ ∞

0
ds [mv(s)bv(s) + 4wv(s)rv(s)] . (B4)

If we insert in this equationthe ansatz

Bu,u′(τ, τ ′) = bu(τ ) (if u < u′) (B5)

we reobtainequation(B3). For u = u′, the equationis slightly different,andthe ansatz

Bu,u(τ, τ
′) = bu(τ + τ ′) (B6)

togetherwith the quasi-FDT, againgivesbackequation(B3), evaluatedat τ + τ ′.

Appendix C. Triangular relations

We derive the solution for the overlapfunction using the formalismof triangularrelations
[6, 32]. Neglectingtime derivatives,and distinguishingageingand FDT regimesin (A1)
and (A2), the final equation for the slow varying part (i.e. non-FDT) of Btw (t, t ′) =
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C(t, t) + C(t ′, t ′) − 2Qtw (t, t ′) reads(with q = 2(q̃ − q1)):

0 = Btw (t, t ′)

[

−µ +
∫ t

0
ds m(t, s)

]

+ 2T −
2q

T
[Wtw (t, t ′) − f ′(q)]

+4
∫ t

0
ds w(t, s)r(t, s) − 4

∫ tw

0
ds w(t, s)r(t ′, s) − 4

∫ t ′

tw

ds Wtw (t, s) r(t ′, s)

+
∫ t

0
ds m(t, s)b(t, s) −

∫ tw

0
ds m(t, s)b(t ′, s) −

∫ t

tw

ds m(t, s) Btw (t ′, s)

(C1)

wherenow all the timesin the equationsbelongto the ageingregime.
Theapproachof triangularrelationsmeasuresthevarioustime domainsdirectly in terms

of the distanceb(t, t ′). Indeed,there is a one-to-onecorrespondencebetweenb(t, t ′) (at
large times)andthe functionsbu(τ ). More precisely,if t, t ′ → ∞ with b(t, t ′) fixed to B,
then t, t ′ belongto Du, with hu(t

′)/hu(t) = e−τ , whereu and τ are fixed by bu(τ ) = B.
Then,the quasi-FDT canbe expressedas

r(t, t ′) = X[b(t, t ′)]
∂b(t, t ′)

∂t ′
(C2)

whereX[b(t, t ′)] = xu/(2T ). Similarly, theultrametricstructureof time domainsdescribed
in (44), (46) canbe written in a compactform asa triangularrelation[6, 32]:

b(t, t ′) = g(b(t, s), b(s, t ′)) (C3)

with g(b, b′) = max(b, b′) when b and b′ belong to different domains (also named
‘blobs’ [6]), andg(b, b′) = j−1(j (b)j (b′)) within the samedomain.

The ansatzconcerningthe function Btw reads

Btw (t, t ′) = γ [b(t, tw), b(t ′, tw)] (C4)

whereγ is a function to be determined.Settingb(t, tw) = bw, b(t ′, tw) = b′
w, b(t, t ′) = b,

b0 = 2(q̃ − q0) and

F(b) = −
∫ q

b

ds X(s) (C5)

we obtain:

0 = γ (bw, b′
w)

[

−µ + 4
∫ q

b0

ds f ′′(s)X(s)

]

+ 2T −
2q

T
[f ′[γ (bw, b′

w)] − f ′(q)]

+4f ′(b0) F (b0) + 4
∫ q

b0

ds f ′′(s)X(s) s + 4
∫ q

b0

ds f ′(s)X(s)

+4
∫ bw

b0

ds f ′′(s)F [ḡ(b, s)] − 4
∫ bw

b0

ds f ′′(s)X(s)ḡ(b, s)

+4
∫ b

bw

ds F [ḡ(b, s)]f ′′[γ (bw, ḡ(s, bw))]γ ′(bw, ḡ(s, bw))ḡ′(s, bw)

−4
∫ q

bw

ds f ′′(s)X(s)γ [ḡ(s, bw), b′
w] (C6)

where ḡ is the reciprocal function of g: given three times t ′ < s < t , in the limit
t ′, s, t → ∞,

b(t, t ′) = g(b(t, s), b(s, t ′)), b(s, t ′) = ḡ(b(t, s), b(t, t ′)) . (C7)
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Equation(C6) is a functionalequationthat givesγ in termsof f , X and ḡ.
Using the g-function describedabove,one can check from (C6) that the solution is

γ (x, y) = g(x, y) (this meansthat the relationbetweenthe overlapfunction Btw (t, t ′) and
thecorrelationfunctionsb(t, tw) andb(t ′, tw) is thesameasthe triangularrelationbetween
the correlationfunctions).This way, onegetsbackthe result for the overlapgiven in (49),
(50).
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