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Abstract. We studythe out-of-equilibriumdynamicsof severalmodelsexhibiting ageing. We
attemptto identify varioustypesof ageingsystemsusing a phasespacepoint of view. We
introducea trial classification,basedon the overlap betweentwo replicasof a system,which
evolve togetheruntil a certainwaiting time, and are then totally decoupled. In this way we
investigatetwo typesof systemsdomaingrowth problemsand spin glassesand we show that
they behavedifferently.

1. Intr oduction

The dynamicsof spin glassesand other disorderedsystemsexhibits a very much studied
phenomenorknown as ‘ageing’: the behaviourof the systemdependson its history, and
experimentshowa typical out-of-equilibriumregimeon all (accessiblejime scaleq1]. In
the simplestcaseonequencheshe systeminto its low-temperaturghaseattime r = 0, and
the dynamicsof the systemdependon its age,i.e. the time elapsedsincethe quench. This
type of behaviourcanbe studied for example by looking atthe correlationfunctionof some
local observableO (r), C(t,t") = (O(t)O(t')), or at the responseof suchan observablgo
a changein a conjugatedexternalfield h(¢'): r(¢,t") = (30 (t)/0h(¢')). While in the usual
equilibrium behaviourthesetwo-times quantitiesobey time-translationalinvariance (TT1)
(C@,t)y =C@ —1), r@t,t') = r(t — t')) and the fluctuation—dissipatiortheorem(FDT)
relating correlationand response pne frequently observesin off-equilibrium dynamicsa
dependencen C(,¢') >~ t~*C(¢'/t), which is referredto as ageingbehaviour,and a
violation of FDT.

This kind of ageingbehaviouris not restrictedto spin glasses:the persistencef out-
of-equilibrium effectsevenafter very long timeshasbeenobservedn manyothersystems,
eitherexperimentabystemgq?2], or in computersimulationg[3]. In somecasesageingcould
be studiedanalytically [4-9].

The kind of loosedefinition of ageingthat we haveusedso far seemgo be ubiquitous
andto hide a variety of very distinct physicalsituations.While the mean-fieldspin glassis
knownto beacomplicatedsystenwith aroughfree-enegy landscapevith manymetastable
statesageingalsooccursin muchsimplerproblemdike therandomwalk [ 7], the coarsening
of domainwalls in a ferromagnetquenchedbelow its critical temperaturg10], or some
problemswith purelyentropicbarriers[8, 9], all problemsn whichthefree-enegy landscape
seemdo be very simple.
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It is interestingto find a way to distinguishbetweerthesedifferenttypesof ageing,and
this papertakessomestepstowardssucha classification. A first classificationof ageing
hasalreadybeenproposedn the literature[5]. In the mean-fielddynamicsof spin glasses,
it hasbeenshownthat the responsefunction exhibits an anomalyin the low-temperature
phase[13, 14]. While it looks mysteriousin the frameworkof equilibrium dynamics,this
anomalyis well understoodf one studiesoff-equilibrium dynamics[5]. The anomalyis
definedthereas

t o0
¥ = lim / dt’r(t,t’)—/ lim r(t, + 7, t,)dr. Q)
t—o0 Jq 0 w00

It measureghe differencebetweenthe susceptibilityof the systemat large times and the
susceptibilityof a hypotheticalsystemwhich would be at equilibrium. A non-zeroanomaly
showsthe existenceof a long-termmemoryof the systemto someperturbationsoccurring
at any time. Systemswith suchan anomalycertainly exhibit strongageingeffects.

In spiteof its nice mathematicatructure the anomalyis, in generalnot easyto control
and compute(analytically or numerically). In this paperwe wantto proposeanothertool
for the classificationof ageing. We shall use an overlap Q,, (1, + ¢, t, + t) between
two identical copiesof the system,which are constrainedo evolve from the sameinitial
configurationand with the samethermal noise betweenthe initial quenchand a time t,,,
andthenevolvewith differentrealizationsof the thermalnoisebetweery,, andz,, +¢. This
guantitywasintroducedin [12], andin a studyof the ageingdynamicsof the sphericalspin
glassby Cugliandoloand Dean[15] (slightly differentobjectsinvolving two copiesof the
systemevolving with the samenoise have also beenstudiedbefore[11]). We amue that
the asymptoticvalue of this overlapin the doublelimit lim,, _, oolim,_Q,, (t,, + ¢, 1, + 1)
distinguishedbetweendifferenttypesof ageing.In afirst classof systemghe limit is finite
(equalto the Edwards—Andersoparametegea in the caseswe havestudiedso far). This
class,which we call type |, includesthe modelswith coarseningf domainwalls: we show
it explicitly hereafteiin the caseof the O (n) modelwith n — oo, andwithin somewidely
usedassumptiongor the domaingrowth in the non-conservedcalarorder parameteccase.
The secondclass, ageing systemsof type Il, containsthe spin-glass-likeproblemswith
complicatedfree enegy landscapesand we study explicitly the p-spin sphericalmodels
or the zero-dimensionabersionof the manifoldsin a randompotential. For this class,the
limit lim,, _.lim,_.~ of the overlapis equalto the minimum possibleoverlap(i.e. zerofor
the p-spin sphericalmodel (with p > 2) andg for the zero-dimensionamanifolds).

Besidessuggestinga first (rough) classification, this overlapfunction may turn out to
give someintuitive ideasaboutthe enegy landscapén which the systemevolves,andits
complexity. For example,if we think of a systemfalling down a ‘gutter’, it is clearthat
it will continuouslygo away from its positionat ¢, (the correlationfunction decrease$o
zero),buttwo copiesseparate@tr, will notbeableto separaténdefinitely,andthe overlap
will havea limit atlongtimeswhich candependon,: ast, grows,the systemgetscloser
andcloserto equilibrium. Type | systemsseemto havesucha behaviour.

In contrast,a ruggedlandscapevith many bifurcations,and many different paths,will
allow two copiesto really move away from one another,so the overlapwill decayto its
minimum possiblevalue, for any finite ¢,,: the distancebetweenthe two replicasbecomes
the largestpossibleone.

For one-timequantities,like the enegy for example,type | andtype Il systemsseem
to havea similar kind of freezing. The ageingbehaviour(the study of two-time quantities)
showsthat this freezingis not full. Besidesthe study of the overlapbetweentwo copies
showsthatthe freezingin type | systemds in somesensemore ‘robust’ thanin typelll.
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Theclassificatiorinducedby theasymptoticvalueof the overlapfunctionmight coincide
with the one quotedabove,usingthe anomalyof the responselndeed,all type Il systems
that we study are known to possessa non-vanishinganomaly. In type | systems,the
anomalyhasbeencomputedso far only in the O(r) modelwith n — oo, whereit does
vanish (or equivalentlyfor the p = 2 sphericalmodel [15]). The existenceof a general
relation betweenthesetwo criteriaremainsto be studied. At an intuitive level it may look
plausible:if onethinksof atypel systemasevolvingin a phasespacegutter,it shouldnot
havea long term memoryof a perturbation.On the otherhand,a type Il systemevolving
in a ruggedlandscapewill be continuouslybifurcating and a changeof direction will be
rememberedat long times. As we are awarethat such intuitive amgumentscan be very
misleading,we just mentionthem here as a motivation to further studiesof the response
anomalyin variousageingsystems.

The paperis organizedas follows. In section2, we definethe dynamicsand various
guantitieswe study,and presenthe generalfeaturesof equilibrium dynamics.Section3 is
devotedto the study of variousproblemsof domaingrowth, with analyticaland numerical
results. Type Il systemsare studied in section 4, where we analyse,in particular,
the behaviourof the zero-dimensionalersion of the random manifold problem and of
Bouchaud’smodelof phasespacetraps[16, 17]. The lastsectioncontainsour conclusions.

2. Definitions, equilibrium dynamics

We considersystemsdescribedby a field ¢ (x) in a d-dimensionalspace(we shall also
considerspinsystemswith obviousgeneralizationsf the definitions). Givena Hamiltonian
H[¢] = [ d‘x H(¢(z)), we assumea Langevindynamicsat temperature:
A (x, 1) OH
=— t 2

a7 a¢(w,r)+n($ ) (2
where n is a white noise, with (n(x, t)n(z’, ")) = 2T8%(x — z')8(t — t') (() meansan
averageover this thermalnoise).

The quantitieswe are mostly interestedn are the following:

e the two-time autocorrelationfunction C(z, ¢'): this is the meanoverlap betweenthe
configurationsof the field at timess andv’,

1
ca.t)= [drp@no@) ®
e theresponsdunction
N o i d 3¢)(x7t)
r(t,t") = V/d x<6n(x,t’)> 4)

e theoverlapfunction Q,, (¢, t'): the systemevolvesduringa certaintime r,,; at,, acopy
is made,and the two systemsobtained,labelledby @ and @, evolve independently;
0,,(t, 1) is thenthe overlapbetweenthe configurationof one copy at time ¢ andthe
otherattime ¢':

0, 1) = % f d'x (9D (z, )p@ (x, 1)) . (5)

Of coursefor r <1, ort' < t,, Q,, (1, 1) = C(t,1t)).
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Before turning to out-of-equilibrium dynamics, let us first show that the overlap
0., (, 1) is simply relatedto the correlationin the caseof equilibrium dynamics.

If a systemis evolving amonga set of states,accordingto a masterequation,with
transitionratesobeyingdetailedbalancej.e.

p,<t> ZT”p,(r) T;ip;t = Ty p; (6)

where p; () is the probability of beingin statei at time ¢, the formal solutionis

pi(t) =Y (ile""|j)p;(0) @

J

where (i|e’’|j) arethe matrix elementsof the evolutionoperatore’’ ((i|7T|j) = Ti;). The
detailedbalanceimplies that

(1€ i) P = tile™ 1) py”. ®)

If we expressthis propertyin termsof the overlap betweentwo replicasevolving in
equilibrium dynamics,we obtain (seefigure 1):

Qas(s, 1) = Cas(s +1) 9)

wherewe havedefinedQag(s, 1) = lim,, .o Oy, (tw+s, ty+1) andCas(t) = lim,, oo C(t,+
t, ty).

C(t 1
p M=@ R ®

>

Q(ts)

*n

C(ts) @

1 !
4 T

— :
+——t t
tt ot s " t 4t
w w

Figure 1. The equilibriumvalueof the overlap,whent, — oo betweerthefirst replicaat time
ty + s (point B) andthe secondat time #,, + ¢ (point C) is the sameasthe overlapbetweenD
(time t,, — s, beforethe separationand C, or betweenE (time ¢, — t) andB.

There exist other interestinglarge-time limits in the problem which exhibit ageing.
In particular, the interesting property of weak-egodicity breaking [16], defined by
lim, . C(t, +t, t,) = 0, expresseshe fact that suchsystemaseverreachequilibrium. In
the following we will thereforebe interestedn the function

S(ty) = ,'L”Qo O, (tw + 1,1, +1) (10)

and,in particular,in its large+,, limit So = lim,, oo liM;_oc O, (ty + 1, 1, + ). We shall
showthatthis limit depend$nthetype of systemoneconsidersandallowsfor a distinction
of variousageingtypes.
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3. Domain-growth processes

A phenomenorwhich is often consideredas a typical exampleof an out-of-equilibrium
dynamicalevolutionis the phase-orderingginetics[10, 19]. It is the domaingrowth process
for an infinite systemwith different low-temperatureorderedphasessuddenlyquenched
from a disorderechigh-temperatur@egioninto an unstablestateat low temperature Here
we shall keepto the dynamicalevolutionof systemswith a non-conservedrder parameter
[10, 19].

The systemwe studyis describedoy an n-componentvectorfield ¢ (x, t) representing
the densityof magnetizatiorat the point « of a d-dimensionakpaceasa function of time.
The systemis preparedat high temperaturewhere (¢) = 0 andthenrapidly quenchedat
t = 0 in a low-temperaturegegion, wherethereis more than one enegetically favourable
statewith (¢) # 0. This situationis well describedoy a typical coarse-grainefree enepgy:

F= f d'z[5(V)? + V(9)] (11)

wherethe first term representshe enegy costof aninterfacebetweentwo differentphases
and V[¢] is a potentialwith minima at different valuesof ¢. The statewith (¢) = 0 is
unstableat low temperatureso the systemevolvesby forming larger and larger domains
of a single phase;at a late stageof growth, the typical patternof domainsis self-similar
andthe characteristisize of a domainis L(¢r). This evolutioncanbe studied,for instance,
througha Langevindynamicswith thermalnoisen:

%‘f =V -V'@$) +1. (12)
Equilibrium is not achieveduntil L(z) reacheghe size of the sample.In aninfinite sample
one thus observesan ageingbehaviourin the correlationfunction. Roughly speakingthe
systemremembersts ager, throughthe value of its typical domainsize L(¢).

3.1. The O (n) model

Interestinglyenough,one of the few exactly solvedmodelsof coarsenind10], namelythe
caseof the O (n) modelwith n large anda constraint¢? = n, is alsorelatedto a problem
which lookslike a spin-glassystem.Indeedconsiderthe following spin-glasdHamiltonian:

H = _Z‘Iijsisj (13)
ij

wheres; arerealspinswith a sphericalconstraint)_, sl.2 = n, andJ;; arerandomcouplings.
This modelis usually calledthe (p = 2) sphericalspin glass[20]. Its Langevindynamics,
dS,'

5 = 2 iSO = 2@si0) + (o) (14)
J

wherez(¢) is a Lagrangeparameterenforcingthe sphericalconstraint,can also be written
in the basiswherethe J;; matrix is diagonal:

ds

5 = 0= 2O)m 0 +m). (15)
Thenthe dynamicalequationreducesto the one of the O (n) modelin Fourier spacewith
A = —k?. The only importantpieceof informationon the J matrix is the behaviourof its
spectrumnearits largesteigenvaluer*. The caseof a squareroot singularity, suchas for
instancethe Wignerlaw, is equivalentto ad = 3 coarseningproblem. Clearly the spherical
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spin glassdoesnot really havea spin-glass-likebehaviour(this hasbeenknown for a long

time in statics[20]); however it exhibitsanageingdynamicswhich is relatedto the growth

of the correlationlengthin the O(n) model. Recently,Cugliandoloand Dean[15] have
performeda detailedcomputationof the dynamicsof this problem,in which they computed
all therelevantquantitiesof interestfor our discussion.Theyfoundageingin the correlation
function, but the anomalyof the responses definedin (1) vanisheswhich showsthatthe

memory effects are weak. besidesthe overlaplimit S(z,) = lim; . O, + ¢, t, + 1) iS

a continuousfunction of ¢, taking valuesbetweenqéA and gea, with S, = gea, and, of

courselim,, oo Q(ty, + 1,1, + 1) = Caslt +1').

Physically,the systemevolvesin time throughtwo processesa thermal noise which
affects evenly all the componentss;, superimposeadnto a deterministicevolution which
amountsto reinforcing the eigenmodescloser to the A*, and this deterministicpart is
dominantover the thermalnoise.

The fact that this systemhasthe property S, = gea togetherwith the weak ergodicity
breakingpropertylim,, _, oolim,_, o C (t,,+1, t,,) = 0 suggestsheexistenceof akind of gutter
in phasespace:two replicas,evendecoupled rememberforeverthat they are evolving in
the samecanal.

3.2. Scalarorder parameter;analytic study

We now turn to the domaingrowth problemin the caseof a scalarorder parameter.This
problem cannotbe solved exactly but we shall use a well known approximation[18§],
recentlydevelopedby Bray and Humayun[21]. We refer the readerto Bray’s review [10]
for a detailedpresentatiorof the method. The ideais to take advantageof the universality
of domaingrowth in the scalingregime: after an initial regime of fast growth, the order
parametesaturatesit the equilibriumvalueinsidea domainandthe only way for the system
to further decreasé¢he free enepy is the reductionof the surfaceof walls betweerdifferent
domains. Therefore,the dynamicalpropertiesof the systemat a late stageof growth are
given by the motionsof the walls and,in particular,by their curvature;the particularshape
of the potential V[¢], providedit haswell separatedninima, is not crucial. If the growthis
influencedby an externalfield, the differencebetweenthe minima introducedby the field
will be the relevantvariable. The universalitygivesthe freedomto choosean appropriate
form for the potentialin the free enegy, and also a specialform for the thermal noise,
which makesthe analysismore tractable. Specifically, the Langevinequationis replaced
by

0 (x, 1)
ot

wheren(zx, t) is the Gaussiarwhite noisewith zero meanand correlator:

= V% — V[l + n(z, 1)Vy[¢] (16)

(n(x, Hnx', 1)) = 2T8(x — x' )8t —1'). (17)
Thefield ¢ (x, t) is parametrizedy an auxiliary field m(x, r), through
2 1/2 ,m
ot =00 (2) " [ drexp-22) = poertn/ V2. (18)

With the following choiceof the two potentials:

Volo] = fexp(—z [erf‘l[;}T) Vilg] = j?z? exp(ﬁ erf! [(Z)D (19)
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the field m satisfiesa very simple equation:
%’;” =VZm + (1 — (Vm)®>)m + 1. (20)

With thewall profile function (18), thefield m(x, r) measureshedistanceof the point
from the interface: at infinite distancefrom the wall, the field ¢ saturatego its equilibrium
value. Moreover,the potential V hasthe requiredtwo-wells shapeat the two equilibrium
values. The choiceof the potential V; doesnot alter this shapeand, as can be seenfrom
(16) andfrom the fact that V;[¢] = ¢/, it correspondso a thermalnoiseactingonly on the
interface. This is an approximationwhich is not able,for instanceto reproducehe process
of nucleationof a bubble. In otherwords,the valueof gga in this caseremainsfixed at the
T = 0 value,gep = ¢g. However,we expectthat this approximationwill not affect our
main conclusionsconcerningthe variouslarge-timelimits of the overlap.

The physical situation of a rapid quenchwill be representedy taking the boundary
conditionfor m(x, t) to be Gaussiarwith zeromeanandcorrelator:

(m(z, O)m(xz',0) =8(x —x). (21)
Equation(20) can be solvedby neglectingthe non-linearterm or, more correctly, by

taking into accountits meanvalue. Let us neglectit in a first approach.equation(20) can
thenbe solved,giving

dE 2 ! 2y
m(z,t) = f = gk |:e(lk )’m(k, 0) +/ di’ etk )(tft)n(k’ t/)] (22)
Ik

|<e1 27Td 0

wheree is a cut-off given by the width of the interface. The linearity of the equationand

the independencef the boundarycondition andthe noisepreservethe Gaussiarcharacter
of the probability distribution for the field m. Meanvaluesof functionsof the field ¢ can

be computedin termsof the evolution of the first and secondmomentsfor the Gaussian
distributionof m. To computethe correlationfunction C (r +t,,, t,,) we introducetwo fields

mi1 = m(x, T +1t,) andm, = m(x, t,,). Whencomputingthe overlapQ(z +1,, T +1,) the

fields m, andm, denote respectivelyn® (x, t +1,) andm®@ (xz, t +1,). In both cases
the joint distribution of m, andm, is a GaussianP (x1, x2), which we parametrizeas

2 2 2 2
Y e <xl L2 fwz) 23)
21 /0102 2 \oy1 o2 /0102
with o0, = (miz), c12 = (mimy) and f = ¢/ /0102, ¥ = 1/v/1— f2. In termsof this
distributionthe correlation(or overlap)is given by

+00

2 .
(plmi]gp[m2]) = dxq dxo @ (x1)@ (x2) P(x1, x2) = ¢(2); arcsinf (24)

—00

P(x1,x2) =

wherethe function (18) hasbeenreplacedby ¢[m] = ¢ sigrim], a good approximationin
thelarge-timeregime. The calculationthereforereducego the computatiorof the parameter
f in the covariancematrix of the probability distribution P (x1, x2), which is easilyobtained
from (22). Defining

Fla,b) = /o doe® (1 . %)_d/z <erf< vb-o ))d (25)

e

we obtain,for £, > 1:
At + 1)1\
(t +2t,)2 )
8 1+ TFQ2t,, T+ 2t,) }
(14 TFQ + ty), 2(t + tu)]Y?[1 + T F(2ty, 2t,)]%?

22
C(t+ty,t,) = ¢o; arcsin

(26)
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and

14+ TF(2t,, 2(t + 1))
1+ TFQR(t + ty), 2(t + ty))

The asymptoticbehavioursof Q and C arevery similar to thosestudiedabovein the
domaingrowth of ann — oo componenbrder parametefor p = 2 sphericalmodel): the
asymptoticrelationbetweenQ andC atz,, — oo with 7 finite is satisfiedand,for fixed z,,
andt large, C hasthe limiting behaviour

O(T +1y, T+1y) = ¢§; arcsin{ } . @7

tu) d/4
C(t + ty, ty) ~ ? (28)

while Q doesnot go to zero andthe limiting value S(z,,) is a continuousfunction of ¢,,,
approachingheequilibriumvaluegga ast,, grows: S,, = gea. Sowithin thisapproximation
this coarseningoroblemfalls into the type | classification.

Note that when one includesthe effect of the gradientsquaredermin (22), treatedas
anaveragderm (asin [10]), theresultis similar exceptfor a changen the numericalvalue
of the function F in (25), wherea term co —2 is presentjnsteadof exp(—o).

In orderto checkthis approximateanalytic treatment,we have performednumerical
simulationsof domaingrowthin two dimensionsfor a scalarfield evolvingwith aLangevin
equation, and also for Ising spins on a regular two-dimensionallattice, with Glauber
dynamics[27].

3.3. Scalarorder parameter: numericalstudies

We have simulatedthe evolution of a scalarfield ¢ on a two-dimensionalsquarelattice,
accordingto the Langevinequation(12), with a quartic Vo anda bold discretizationrscheme:

oG jt+D =¢G00+ @0E+1 0+ -1 j0+¢Gj+LD)+¢0 j—11)
—4p G, j, 1) + ¢, j, 1) — pG, j, DR+ 03, j, 1) (29)

wheren is a Gaussiamoisewith zeromeanandvariance2T h, h beingthe time stepused.
We proceedby parallelupdatingof thefield, andvary thetime steph. Att =0, ¢ (i, j) are
takenasindependentandomvariablesuniformly distributedbetween—1 and1. We let the
systemevolveduring ¢,, accordingto (29), makea copy of it, andlet the two copiesevolve
independentlyj.e. with independenthermalnoises. We recordthe correlationof eachof
the copieswith the systemat time z,, andthe overlapbetweernthe replicas.

We presentsimulationsat fixed temperature we recordthe overlapandthe correlation
function for differentvaluesof t,,, The linear size of the systemwas of 200 sites,andone
run was madewith a 400 x 400 lattice. Each simulationwas madewith three different
valuesof & (h = 0.02,0.04 and0.08), to checkthat the resultsdid not dependon the time
stepused.We alsocheckedhatthet/z,, scalingis well obeyedfor the correlationfunction
for large enought,,; for the overlap,no suchscalingis found. We plot the overlapat time
t, + t versusthe correlationbetweentimest, andr, + ¢.

The Q versusC curvesshow quite clearly that the overlap, after a transientregime
whereit decaysfasterthanthe correlation,hasa finite limit as C goesto zero. This limit
growswith g andwith z,,.

This resultagreeswith the previousanalytic study, asfar asthe asymptoticbehaviour
of the overlap and correlation are concerned. We have also performedsimulations of
a two-dimensionallsing spin system(with nearest-neighbouierromagneticinteractions),
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with Metropolisdynamicswith randomupdating: at eachsweepthroughthe lattice, spins
are updatedin randomorder, but this orderis the samefor both replicas. The results(see
figure 3) agreewith thoseobtainedby Langevindynamics.
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Figure 2. Overlap Q(t, + ¢, t, + t) versuscorrelation
C(ty + t, 1,) for the scalarfield in two dimensions for
B = 6 and different waiting times (from bottom to top,
10, 20, 50 and 180 mc steps).
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Figure 3. Left: overlapQ(z, +1, t,, + 1) versuscorrelationC (t,, + 1, t,,) for thelsing modelin
two dimensionsfor g = 2, 1, = 23 (bottom)andr,, = 2* (top); Right: correlationand overlap
for the Ising modelin two dimensionsfor differentvaluesof ¢, andz: £, = 2824 ...,29,

andr =2, ..., 210

Note that we also made computer simulations for a model introduced in [25],
consistingof an Ising ferromagneton a cubic lattice, with weak next-nearest-neighbour
antiferromagneticouplings;in this model, the growth is slowedfrom a power law to a
logarithmic behaviour; neverthelesswe find for the correlationand overlap functions a
similar behaviourasfor the simple ferromagnet.

3.4. TheXY-modeln onedimension

A simple and soluble modelwheredomaingrowth can be studiedwithout approximations
on the potentialis the XY modelin d = 1[26]. Namely,the systemhasno phasetransition

for T > 0, but at very low temperaturethe correlationlength Leq is very large. Then at

time scaleswherethe size of the domainsis small comparedo the correlationlength, the

systempresentghe typical non-equilibriumfeaturesof a multiple phasesystem.

T Notice that the choice of dynamicsis important: as soonas the chosenalgorithmis not deterministicat zero
temperaturgasis the case for example,if we take Glauberdynamics).the overlapwill decreaseo zeroevenat

T=0.



1320 A Barrat etal

In this simple model, the order parameteiis a two-dimensionalectorfield ¢(x, ¢) of
fixed length ¢? = 1 andthe coarse-grainedree enepy is

1/0¢\°
F_/dx2(8x>. (30)
Using the non-linear mapping ¢(x,t) = (cosf(x,1t),sind(x,t)), the Langevin
evolution equationfor the field 6(x, t) canbe written easily and solvedexplicitly without
approximation. The physical situation of a rapid quenchfrom a disorderedphaseto a
very low temperaturecan be includedin the formalism by taking the boundarycondition
0(x, 0) to be Gaussiarwith zeromeanandcorrelatedat distances. As for the scalarorder
parametemodel,thelinearity of the Langevinequationpreserveshe Gaussiarcharacteof
the probability distributionfor the field & andthe problemcanbe solvedby computingthe
time evolution of the moments.Let us now considera quenchto a very low temperature,
i.e. a situation where the equilibrium correlationlength L is very large, and the time
neededor the domainsto reachthis size, teq, is alsovery large: in fact, Leq >~ T-/2, and
feq = T72. In atime regimewheret +1,, t,, > 1 but Leq is very large comparedo the size
of the domainswe havea very simple expressiorfor the correlationfunction C(t + ¢, t,,)
andfor the overlap Q(t + t,,, T + 1,,) Of two replicasseparateat time z,,:

C(t + ty, ty) = exp—\/% [2@ +26,)Y2 — [2(7 + 1)]Y2 — (21,)Y?

—T;{zw +2t,)"2 — (O] — 2(x + 1) Y? - <2rw>1/2}} (31)
and

QT +ty, T+ 1ty) = eXp—jET(Zr)l/z. (32)

Sincethe size of the domainevolvesas L(r) ~ /4, it is clearthat thereexistsat very
low temperaturesx regimewith 1 « 1, < t < teq, Where the correlationhas already
decayedo zerowhile the overlapstill hasa finite value. Indeed,C decaysto zerowith a
term in the exponentialthat doesnot dependon the temperatureput the agumentof the
exponentiafor Q(t +t,, T +t,) is L(r)z/qu.

3.5. Conclusion

The previousstudy showsthat the domaingrowth processesonsiderechereare essentially
deterministicin nature,and that their phasespaceis very simple: we indeed exhibit a
time regime 1 « t, K< t K teq (feq being the equilibration time, which is infinite in
the true ageingproblems,but remainsfinite in the one-dimensionaXY model) wherethe
systemat time t,, + ¢ has already drifted away from its position in phasespaceat ¢,
(C(ty + t, t,) is very small), while two copiesseparatedat 7, are still evolving together
(Q(t, +t, 1, + 1) is finite). Thesetype | systemsare characterizedy the existenceof a
finite limit Seo = liM,, o0 liM; 00 Oty + ¢, 1, + 1) (With S(z,) = liM, o0 Q1 +1, 1, + 1)
growing continuouslytowardsgea ast, grows). The systemcanthereforebe thoughtof as
moving alonga gutterin phasespace.lt is reasonabléo expectthat, in thesesystemsthe
influenceof the thermalnoisewill be limited in time, andtherewill be no anomalyin the
responsdunction (this hasbeenshownso far only for the O (n) with n — oo model[15]).
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4. Type Il models

4.1. A particle in a randompotential

We now turn to the study of a well known disorderedmean-fieldmodel, wherewe expect
a differentkind of behaviourfor the overlap: the toy model describedoy the Hamiltonian
[22 5]:

H=3uY ¢2+Vr....on) (33)
whereV is a Gaussiarrandompotentialwith correlations:

- — )2

V(@)V(¢)=—Nf (W) (34)
with

6 + b7
b)y=—"-—. 35
16 =20 (35)

This modeldescribesa particlein a randompotential,in N dimensionsput it canalsobe
interpretedasa spin-glassmodel: the ¢, arethensoft spins,in a quadraticwell %M >, 92,

andtheyinteractvia V; the staticshasa low-temperaturespin-glasphasewith continuous
replica-symmetnbreakingfor y < 1 (long-rangecorrelationsof the disorder)or one-step
replica-symmetrjpreakingfor y > 1 (short-rangecorrelations).Slightly differentformsfor

f alsoallow us to dealwith the dynamicalequationsof the spherical p-spin [29, 4, 32]

model. This systemis describedby the Hamiltonian[33, 4]

N

Z Jiy..iySiy -+ - i, (36)

i1<--<ip

with the constrainty_" , s> = 1, and Gaussiandistributedrandom p-spin interactions. It
canbe describedby a toy model, with

1 b\’
ror=-3(1-3) @)

and a small modification of the dynamicalequations(Al) and (A2), which amountsto
implementingthe sphericalconstraintby a time-dependenttagrangemultiplier 1(z).

To computethe overlap function, we introduce two replicas ¥ and ¢, with a
Langevindynamics:

I () 9H
T )

+ 08 @) (38)

where n® and @ are two white noiseswith (n® (1)l (1)) = 2T8.,8(r — t') and
nO@) =n@ @) if t <t,. Fort > t,, n'® andn® areuncorrelated.

Using standardfield-theoretictechniques[13, 30], it is now possibleto derive the
evolutionequationgfor the correlationand responsdunctionsof eachreplica, CV (¢, t') =
CO(t,t") = C(t,t") andrD(t, t") = r@(t,t') = r(t,t'), andfor the overlap Q,, (¢, ), in
the large-N limit. Thesequantitiesare definedby (3)—(5) andthe correspondingequations
arewritten in appendixA.
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The large-timelimiting valuesof the correlationdefineg, go andq, (see[32)):
lim C(,1) =g
=00
lim C(t,t") = qo (39)
—>00
im lim Ct+rt,1)=q1.

T—>00 [—>00
We will now studythe behaviourof the overlapfunctionin differenttime regimes.
We first studythe regimeof asymptoticdynamicswhich correspondso taking the limit

t,t' — oo, with T = r — ¢’ finite. We thusobtainthe functions

ras(t) = lim r(t' + 1, ¢) Cas(t) = lim C(t' +1,1) (40)
t'—00 t'—o00
QaS(Ta T/) = tlinoo Qrw (tw + T, tw + T/) . (41)

In this regime, time-translationainvarianceand the fluctuation dissipationtheorem(FDT)
areobeyed: Tra(t) = —%Cas(r). It is well known that this asymptoticregimeis identical
to equilibrium dynamicsfor systemswith long-rangecorrelationsof the disorder[30, 5, 6],
but it is differentfor short-rangecorrelations[29, 30, 4]. In both caseswe have found,
as expectedfrom the generaldiscussionof section2, that Q,«(7, ') = Cas(r + 7). In
particular,lim;_, o Qad(t, T/) = liMy_ o Qad(t, T') = q1.

Let us now considerthe ageing regime. This regime correspondso having time
differencesl|ike 7 — 1, divergewhent, — oo. Herewe shall considerthe overlapfunction
0,,(, 1) in the ‘double ageing’'regimewherer’ — t,, alsodiverges.

r t time Figure 4. (t,t") € D,, with 1, (t")/h, (1) =€ 7.

Thereis no full solution of the ageingregimein spin-glasssystems. What hasbeen
proposedso far, in all cases,is an ansatzabout the behaviourof the correlation or
response. The first such proposal,by Cugliandoloand Kurchan [4], concernsthe case
of the p-spin model. They showedthat the dynamical equationscan be solved in the
long-time regime (where one can neglectthe time derivativesin (Al)) by the ansatz:
C@,t') = C(t'/t), r(t,t') = (x/T)C'(¢'/t), or actually by any solution obtainedfrom
this througha reparametrizatiomf time + — h(¢), with & an arbitraryincreasingfunction.
This solutionwas subsequentlgxtendedo more complicatedproblemsin which the static
solutioninvolvesa full rsB, like the toy modelwith long-rangecorrelationsof the noise[5]
andthe sk model[6]. The caseof the toy modelwith short-rangecorrelationsof the noise
has also beenstudiedrecently [32]. The formalismsdevelopedin [5] (non-overlapping
time domains)andin [6] (triangularrelations)representhe sameansatzbut look rather
different. Herewe shall presenthe ansatzusingmainly the former approachtogethemwith
thenecessaryngredientdor understandinghe correspondencleetweerthe two formalisms.

Consideringfirst two time quantities like the correlation or response,the ageing
regime correspondgo sending: and ¢’ both to infinity, the differencer — ¢’ being itself
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divergentin this limit. The dynamicalequationscan be solvedin this limit (up to a time
reparametrization)neglectingthe time derivatives. We considernon-overlappingdomains
in the (¢, ') plane: two timest and ¢, with # < ¢, belongto the samedomain D, if
we take the limits t — oo, ' — oo, with the ratio &, (¢")/h,(¢) finite and fixed to e *
(0 < t < 00). The h, are a family of increasingfunctionsindexedby a parameteru,
suchthat, if w < u < v andthe timest,t belongto D,, thenh,(¢')/h,() = 0 and
hy(t")/hy(t) = 1 (a possiblechoiceis h,(t) = exp(t"), in which caseD, is suchthat
t'=1t— (@' /u)t). Thedomainu = 1, with h1(t) = exp(t), correspondso the asymptotic
regimewhererDT and TTI hold. We find it convenientto expresshe fact that (¢, ') € D,
by thefollowing diagram:it is theneasyto showthat, if we considerthreetimest’ < s < ¢,
with (s,7) € D, and (¢, s) € D, then (¢, r) belongto D, (seefigure 5) which is
an ultrametricinequality. If, for example,v > u, we haveindeedh,(t')/h,(s) = 1, so

hu(t/)/hu(t) - hu(s)/hu(t)-
v
/l;\ :
{ {
‘/I\A

§ 8
V=i
( U
1
v T+t
]

' »

! $ ! { {

Figure 5. Ultrametricorganizationsof times.

In eachdomain D,,, we assumehe correlationand responsdo behaveas

_ din( (@)

Ct,t)=Cu(r)  r(t1) ar

(1) (42)

with a continuity condition: if D, and D, are neighbouringdomains,with ¥ < v, then
C,.(0) = C,(c0). Thenit is possibleto rewrite the equations(Al) (seeappendixB for
details),andto show[31] thatthey possessolutionsobeyinga generalizedorm of the FDT
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relationcalled‘quasi+DT"
dc,

u dr

If we now considerthreetimes, ' < s < r (seefigure 5) the ansatzimplies a simple

relation betweencorrelationsat timesz¢, ¢/, ¢, s and¢’, s. When (¢/, s) and (s, t) belongto
two differentdomainswe have

= —Tr,(7). (43)

C(t,t) =min(C(z, s), C(s, 1)) (44)
andif they arein the samedomainD,,, with
hy (1) e hy(s) R then hy (1) e (45)
hy (s) hy (2) h,(8)
sothat
Ct.1) = Cu(t' + 1) = j,  (ju(C(t, )) ju(C(s. 1)) (46)

whereC(t,s) = C,(1), C(s,t") = C,(r") and j,(z) = exp(C,1(z)). Equations(44) and
(46) form the basisof the formalism of triangularrelationsintroducedin [6], and applied
to the toy modelin [32]. In appendixC we provide the solutionfor the overlapfunction
usingthis formalism.

Since the overlap function Q,, (z,t') involves three times, we are now looking for
a function dependingon the domainsD, and D,,, Q,.. (t, t"), where (z,,t) € D, and
(tus 1) € Dy (hu(t)/ 1 (8) = €77, b (1) b (1) = €77).

In appendixB we rewrite the equations(A2) in this frame, and show that they are
solvedby the following ansatz:

if u#u’ (for examplex < u'): Q,,(t,¢) = C,(v) = min(C(z, t,), C(t', 1)) (47)
if u=u' 0, 1)=Cu(t +7) = j  (u(Ct, 1)) ju(C{', 1)) . (48)

This ansatzcanbe easilyunderstoodn termsof the previouslyintroduceddiagrams:at ¢,
two ‘time-sheets’'separatgseefigure 6) andtwo ultrametricsystemsappear,one for each
replica. We stresghatthis solutionexistsindependenthyof the actualchoiceof the disorder
correlation,andthereforeit is independendf the precisesolution of the ageingdynamics:
whateverthe numberof non-overlappingdlomainsappearingn this solution, whateverthe
actualsolutionsC, (1), thereexistsa solutionfor the overlapfunctionin the ageingregime
which is relatedto the correlationby (48).

Figure 6. Two-sheetaultrametricstructurefor timeslarger thanz,,.
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Dependingon the model, the variable u can be a priori continuous,or discrete. It
was shownin [5], usingthe resultsfrom [31], that for the long-rangemodeluz becomesa
continuousvariable. In contrast,for short-rangenodelswhich exhibit staticallya one-step
replica-symmetnybreaking,it hasbeenshown[6, 32] that the ageingdynamicsis solved
by usinga singletime domainD,- (besidethe FDT domain D;).

To summarizewe haveshownthat, in the ageingregime:

e for the long-rangemodel:
Q,,(t, 1)y =min(C(t, t,), C(t', ty)) . (49)

In particular,it is thenclearthat the long-timelimit of Q,, (z,t) is qo;
e for the short-rangemodel, thereexistsa function j suchthat

0, t, 1) = jHG(C, t,)j(C{H, 1)) . (50)

Since j(q0) = 0, andsincelim,_,, C(¢, t,) = lim,_ . C(¢, t,) = qo, We also have
Iimf—>oc Qlw(ta t,) = Iimt’—»oo Qtw (t, t,) = qo-

In both cases,lim,, . lim,_,o Q,, (¢, 1) IS qo, different from lim,_, lim, . O, (¢, ).
Besidesnofinite waitingtime is sufficientto give ahigherlimit thang, for lim,_, o Q,, (¢, t):
an increasein the waiting time only slows down the dynamics,but hasno effect on the
limiting values.No continuousapproachto equilibrium canthusbe seenin this way.

Notethatsincethe equationgAl), (A2) arecausala numericalintegrationis available,
asin [5]. Neverthelessheintegro-diferentialcharactenf theseequationsmakesit difficult
to reachvery long times (a hugeamountof computermemoryis needed).Therefore,the
numericalintegrationswe wereableto realize,althoughfully compatiblewith the previous
study, were not conclusiveenoughto confirmit.

For the caseof the p-spin spherical spin-glassmodel, an analytic solution of the
equationsis also available: they are solved by the ansatzcorrespondingto the short-
range model, equation (50). Indeed, we proposefor the ageing regime the ansatz
0., (@, 1) = 0(,/t, t,/t'), andwe find thatthe equationgiving Q,, (z, t') canbe rewritten
so that the threetimesr,,, t and+’ appearonly throughthe ratiost, /¢t andz,/t’, andthat
0, @ 1t)= %C(l, tw)C (¢, t,) is the solution of this equation.

We havethus shownthat the overlapin the p-spin (p > 3) sphericalmodel exhibits
ageingin a similar fashion as the correlationfunction, and decaysto zero for any finite
ty (9o = 0 for this model). This behaviouris thus very differentfrom the p = 2 or the
domain-growthcase.

4.2. Ageingin traps

A trap model was introducedin [16] and developedin [17] to reproduceoff-equilibrium
dynamicsin glassysystemsandageing. The modelconsistsof N trapswith exponentially
distributedenengy barriers. This distributionleadsto trappingtime with infinite mean,and
thusto ageing.

In the simplestversion,[16] the basicobjectis I1(z, t,,), probability that the system
hasnot jumpedout of his trap betweeny,, and¢, + ¢. The overlapbetweentwo different
statesis zero,andthe self-overlapis gea. The correlationfunctionis thengeallsi(z, t,).

We now dealwith two systemsafterr,: we introducell{” (s, ', #,,), probability thatthe
first replicahasnot jumpedbetweery,, andt, + ¢, andthat the secondone hasnot jumped
betweerv,, andt,, + . TheoverlapQ,, (t, +t, t,, + ') is thensimply geall1? (¢, ', 1,,).
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If the systemis in trap g (of lifetime ;) attime 1,,, this probability is e/ e~"/%, and
thuswe getl'l(lz)(t, t', t,) = I1(t + ¢, 1,,). The overlapbetweenthe replicasis therefore
O,y + 1,1, +1)=Clty +1+1,1,). (51)
If we introducea multilayer tree, the only differenceis that we now have a set of
(¢, 1) (j =1, ..., M), probabilitythatthe systemhasnot jumpedbeyondthe jth level of
thetreebetween,, andz,, +¢. It is thenclearthatthe equation(51) is not changedalthough
the analyticexpressiorfor the correlationfunction dependsn the parameter®f the tree.
For this particularmodel, the equilibrium relationis, in fact, satisfiedevenfor out-of-
equilibrium dynamics,becausef the propertiesof the chosenexponentialdecayfrom the
traps. It is then clearthat the overlapfunction goesto zerofor large times, for any finite
tw, Sincelim,_, o, C(t, + 1, t,) = 0: S(z,,) = 0. We havethusthe samescenarioas for the
toy model: for any finite ¢,, the overlapdecaysto its minimum allowed value, while an
infinite ¢,, givesgea asa limit.

5. Conclusions

In this paper,we have shownthat the overlap betweentwo copiesof a system,identical
until a waiting time r,,, and then totally independentjs a quantity of interestregarding
the geometryof phasespace. We have indeed studiedthis quantity for severalmodels,
and shown that its decayis intimately relatedto the complexity of the landscapeand
to the type of ageing. For simple systems,the long-time limit of the overlap can be
put closer and closer to the equilibrium limit gea by changingthe time the replicas
spendtogether. In contrast, for systemsexhibiting a complex phasespace, the limit
of the overlapis always the minimum value, i.e. the two replicasare able to separate
from each other, no matter how long the waiting time is (if it stays finite). This
differenceof behaviourcan be quantitatively seenby a study of the various long time
limits of the overlap: for any system,lim,_, « lim,, .o Q;, (tw, + 1, t, + 1) iS gea, but the
inverseorder of limits, Soo = lim,, oo lim, 00 Oy, (t, + ¢, 1, + 1) (and the behaviourof
Sty) =1im, . Oy, (t,+1, 1, +1)), distinguishebetweerageingin a ‘simple’ phasespace,
andtypell (spin-glasskystems.
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Appendix A. Dynamical equationsfor the toy model

In thelimit of infinite N, the dynamicalequationdor thetwo-timescorrelationandresponse
functions(with ¢ > ¢') read[5]

ar(t,t) , ! , ,
oD - —ur(t,t)+/0 dsm(t, $)(r(t, ) — (5, 1))
M =—uC(t,t)+ 2] dsw(t,s)r{,s) + / dsm(t, s)(C(t, ') — C(s, 1))
ot 0 0 (Al)
1dC(, 1) !
= = —uC(t,t)+2/ ds w(t, s)r(t, s)
2 d 0

+[ dsm(t,s)(C(t,t) —C(s, )+ T
0
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andthe equationswe obtainfor Q,, are

90, 1) _ Q. (1. 1)+ 2/ ds W, (1, $)r(r', s)
ot 0
+/ dsm(t, s)(Qy, (2, 1) — Oy, (s, 1))
14 0 ) (A2)
,M =—uQ, (t,t) + 2/ ds W, (t,9)r(t,s)
2 d v 0 v
+/ dsm(t, s)(Q,, (t, 1) — Oy, (5, 1) + TO(t, — 1)
0
with the samenotationas|[5]:
w(t, 1) = f/(b(t, 1), m, 1)y =4f" (b, 1")r(t, 1) A3)
b(t,t)=C(t,t)+C(', t)—2C(,1)
and
W, (¢, 1) = f (B, (t,1)) (A4)

B, (1,1)=C(t, 1)+ C{t',1") = 20,,(1,1').

Appendix B. Non-overlapping time domains

We show how to computeone of the integralsof equationgAl), (A2) in the frame of the
ansatzdescribedn [5], usingthe diagramsintroducedin figure 4. We apply this methodto
the overlapequationand showthat a similar ansatzs a solution.

For (¢,t) € D,, we parametrize

dln(hu(t/))r

b(t,t) = b, (1) rt,t) = (1)
, dinth, (")) ,
m(t,t) = Tmu(t) w(t, t') = w,(t).

The integral fff ds m(¢, s)r(s,t'), appearingin (Al), hasthen three contributions(see
figure B1):

e (t',s) € D, (v>u), wherem(t,s) = m,(r)dInh,(s)/ds,

e ', t,s in thesamedomainD,,
e (s,1) € D, (v > u), wherer(s,t’) = r,(t).

t § t t s toyp s t

Figure B1. Fort’ < s < t, threeregimescan be separated.
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dinh, (t) (

/ dsm(t, $)r(s,t') = mM(I)Z/ do rv(o)—i—/ do m,(o)r,(t — o)
t 0 0

v>u

dr’

] /0 T do m(a)) : (82)

v>u

Separatingn this way all differentcontributionsn theintegrals,we obtainthefollowing
equationfor b, (t):

0=b,(7) |:—pL + Z/OOO ds mv(s):| + 2T — /OT ds m,(s) b,(t — )

v<u

—411),,(7)2/(;00 ds ry(s) — /OOO ds [mu(T +5) by(s) + 4w, (t +S)ru(s)]

v>u

+> fo ds [m,(s) by(s) + 4w, (s) ro(s)] - (B3)

v=u

The samemethodcan be appliedto the equationfor the overlapfunction B, (¢,t') =
By (t, 7). Foru,u’ <1 (with u # u’) it reads:

v<u

—4w, (1) Z /000 dsr,(s) — AW, . (z, ") Z /000 ds 7, (s)

u'>v>u v>u

0=B,,(t,7) |:—/L + Z/ ds mu(s):| + 2T — / ds m, (s)B, . (t —s, 1)
0 0

_4wu(f)f ds ru’(s) - 4/T ds Wu,u‘ (‘L’, T — S)ru’(s)

T 0

- / dS [mu(T + s)bu(s) + 4wu(T + s)ru(s) - mu(s)bu(s) - 4wu(s)ru(s)]
0

+3 [ s oo + 4w, 0] (B4)

v>u

If we insertin this equationthe ansatz
By (1, 7)) = by(7) (if u <u’) (BS)
we reobtainequation(B3). For u = ', the equationis slightly different,andthe ansatz
B, u(7,T) = b, (v + 1) (B6)

togetherwith the quasiFDT, againgivesbackequation(B3), evaluatedat t + 7’'.

Appendix C. Triangular relations

We derive the solutionfor the overlapfunction using the formalism of triangularrelations
[6, 32]. Neglectingtime derivatives,and distinguishingageingand FDT regimesin (Al)
and (A2), the final equationfor the slow varying part (i.e. non¥DT) of B, (¢,¢) =
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Ci,ty+C', t)—20,, (@, 1) reads(with g = 2(g — q1)):

! 2
0= B, (t,1) [—u +/ ds m(z, s)] + 2T — ?q[W,w(t, Y — ()]
0
—|—4/ ds w(t, s)r(t,s) — 4/ ' dsw(t, s)r(t',s) — 4/ ds W, (¢,s) r(t',s)
0 0 tw

—i—/ dsm(t,s)b(t,s)—/m dsm(t,s)b(t’,s)—/ dsm(t,s) B, (f,s)
0 0 tw

(C1)

wherenow all the timesin the equationsbelongto the ageingregime.

The approacthof triangularrelationsmeasureshe varioustime domainsdirectly in terms
of the distanceb(z, t’). Indeed,thereis a one-to-onecorrespondenceetweenb(t, t') (at
large times) andthe functionsb, (t). More precisely,if ¢, " — oo with b(z, t') fixed to B,
thent, t’ belongto D,, with h,(t")/h,(t) = €7, whereu andt arefixed by b,(t) = B.
Then,the quasiFDT canbe expresse@s

ab(t, t)
at’
whereX[b(t, t")] = x,/(2T). Similarly, the ultrametricstructureof time domainsdescribed

in (44), (46) canbe written in a compactform asa triangularrelation[6, 32:
b(t,t") = g(b(t, ), b(s, 1)) (C3)

with g(b,b’) = max(b,b’) when b and b’ belong to different domains (also named
‘blobs’ [6]), and g (b, b') = j~1(j(b)j(b")) within the samedomain.
The ansatzconcerningthe function B,, reads
Btw (ta t,) = )/[b(f, tw)a b(t,7 [w)] (C4)

wherey is afunction to be determined.Settingb(z, t,,) = by, b(¢', t,) = b, b(t,t') = b,
bo = 2(4 — q0) and

r(t,t") = X[b(t, )] (C2)

F) = —/q ds X (s) (C5)
b

we obtain:

2q

q
0=y (by, b)) [—u +4 [ ds f”(s)X(s)] +2T — 7[f’[y(bw, b1 = f(@)]

bo

q q
+41'(bg) F(bo) +4 | ds f"(5)X(s) s+4 | ds f'(s)X(s)
bo bO

b by
ds f"()X ()8 (b, 5)

+4 [ ds £ Flg(b, )] — 4

bo bo

b
+4/b ds F[g(b, )] f"[y (bw, &(s, bu)]y'(bu, &(s, b)) (s, bu)

q
—4 ds f//(S)X(S)]/[g(S,bw),b:U] (CG)

by,
where g is the reciprocal function of g: given threetimest < s < ¢, in the limit
t',s,t — 00,

b(t,t) = g(b(t,s),b(s, 1), b(s, 1) = gb(t,s), b, 1t)). (C7)
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Equation(C6) is a functional equationthat gives y in termsof f, X andg.

Using the g-function describedabove, one can check from (C6) that the solution is

y(x,y) = g(x, y) (this meansthat the relation betweenthe overlapfunction B, (¢, t') and
the correlationfunctionsb (s, r,,) andb(t', t,,) is the sameasthe triangularrelationbetween
the correlationfunctions). This way, one getsbackthe resultfor the overlapgivenin (49),

(50).
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