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Abstract. We studythe basinsof attractionof metastablestatesin the sphericalp-spin spin-
glassmodel, startingthe relaxationdynamicsat a given distancefrom a thermalizedcondition.
Weightingtheinitial conditionwith the Boltzmanndistributionwe find afinite sizefor thebasins.
In contrast,a white weightingof theinitial conditionimplies vanishingbasinsof attraction. We
corresponaur resultsto thoseof a recentlyconstructeceffective potential.

The so-calledspherical p-spin spin-glassmodel has beenthe subject of many studies:
indeed,being mean-field,it allows for a detailedanalytic study, while still displayingvery

rich static and dynamicalbehaviours.In particularin recentpapers[1, 2, 3], it hasbeen
shownthatthe structureof its metastablestateswhich dominatethe Gibbsmeasurédetween
two temperaturesioted 7, and 7, (where the static and dynamic transitionsrespectively
occur[4]), is very rich and complex. The existenceof thesestatesis revealedusing the

approaclof Thoulesset al [5] andtheyarethereforeoften called‘TAP states’[6, 7]. These
recentworks make use of the real replicasmethod: copiesof the systemare considered,
at variousdistancedrom eachother, and the free enegy cost (called ‘effective potential’

function)to keepthemat givendistancess computed.The minimaof the potentialcanthen

be associatedvith the fact thatthe replicaslie in metastablestatesthusgiving information

on the distancedetweenstates.

This methodis thereforepurely static; indeed, the dynamicsafter a quenchdo not
seeall the metastablestates,insteadgiving rise to the phenomenorknown as ageing[8]:
guenchedbelow 7,, the systemremainsout of equilibrium for all times with an enegy
higher than the thermodynamicone. On the other hand, it was shownin [1, 9, 10] that
particularinitial conditionsfor the dynamics(namely, taking the systemthermalizedat a
certaintemperaturebetween”; and 7,;, andthenletting it evolve to anothertemperature)
could allow a dynamicalexplorationof the metastablestatesfinding resultsconsistentith
the picture comingfrom the two-replicapotential.

In this letter we addresghe problemof determiningthe size of the basinsof attraction
of the TAP states. This will be done by studying the Langevin relaxationof a system
startingat aninitial time at a givenfixed overlap(g12 in thefollowing) from an equilibrium
configuration. This, of course, does not specify completely the initial conditions. In
the following we will considertwo families of them (for fixed ¢12), weighting the initial
conditionswith the Boltzmanndistribution and with the uniform one.
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As we will see,the caseof Boltzmannweighting can be relatedto the resultsfound
for a three-replicapotential[2] recentlyintroduced. Therefore,for future use,we briefly
recall the resultsof the two-andthree-replicagpotentials,V, and Vs, for the p-spin model:
indeed,the resultsof the studyof V, will be usedto determinethe initial conditionsof the
dynamics,andthoseof the studyof V3 will be comparedwith the outcomeof the dynamics.

Thetwo-replicagpotentialV; is defined[1] asthefreeenepgy costto keepa configuration
T at a fixed overlap g12 with an equilibrium configurationo. While in generalthe two
replicascan be at differenttemperaturesywe will herelimit ourselvego the caseof equal
temperaturer for replicasl (o) and 2 (r). The overlapbetweenthe replicasis denoted
q12, While the use of the replicatrick leadsto a descriptionof the secondreplica by a
one-stepreplica-symmetnpreaking(RSB) matrix Q22 of parametersry, ro, x), determined
variationally. The absoluteminimum of the potentialis alwaysfor g1, = 0: thenthe second
replicais at equilibrium, with no constraint,so the free-enegy costis zero.ForT < Ty, o
liesin oneof the metastablatateghatdominatethe statics(of Edwards—Andersoparameter
gea) andarelative minimum appeardor a non-zerovalue of ¢1,: it corresponds$o having
the secondreplicain the sameTAP stateasthe first.

In order to study the organizationof the metastablestatesin the phasespace,the
constructionwas generalizedto threereplicasin [2]. There, a first replica p is free to
thermalizeat T'; a secondreplicao is constrainedo thermalizeat 7 with a fixed overlap
q12 With p, andthe potential V3 is definedasthe free-enegy costto keepathird replicar (at
the sametemperaturd’) atoverlapsg;s from p andg,s from o. Wewill takeT, < T < Ty:
thenthefirst replicais in a certainTAP stateof equilibriumat 7.

Sincethetwo first replicasareindependensf thethird, the overlapmatriceshatdescribe
them are identicalto thoseusedfor V,. The third replicais describedby a one-stepRSB
matrix. In the minima of the potential, this matrix is in fact replica symmetric,with only
one parameteyss.

The analysisof [2] showedthat, dependingon the value of ¢15, the potentialcan have
one or two nontrivial minima (apartfrom the minimum at g13 = g3 = 0 correspondingo
the third replicain an unspecifiedequilibrium stateat 7', differentfrom thoseof replicasl
and 2). The first minimum, called M;, existsfor any value of g1, andhasg;3 = gea and
q23 ~ q12. Its interpretationis thatthe third replicalies in the samestateasthefirst one. It
thereforeexistsindependenthyof the value of ¢;,. The secondmoreinterestingminimum,
called M, in [2], correspondgo the third replica close to the secondone (g23 ~ gga,
q13 ~ q12 < qea)- Its interpretationis that the secondreplicalies in the basinof attracion
of a metastablestateat nonzerooverlapg;, from the first replica, while the third replicais
at equilibriumin this state. This solution existsonly for valuesof g, lower thana certain
g (which dependson the temperature)with g < gea (seefigure 1). This g givestherefore
the minimum distance(or maximumoverlap),from an equilibrium stateat 7', at which can
be found anothermetastablestate.

In orderto studythe basinsof attractionof the metastabletateswe studythe relaxation
of a systemwith the following initial condition. We considera referenceconfigurationat
equilibrium at temperaturel’. Thenthe systemevolvesfrom a configurationthermalizedat
temperaturel’, but with the constraintthat its overlapwith the referenceconfigurationis
equalto g1». At positive time the spinsevolve accordingto an (unconstrained).angevin
dynamicsat temperaturef':

doj(t)  9H

dr d0;

— (o (1) + ;i (1) 1)

1 We will not recall the detailsof the computationswhich canbe foundin [2].
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Existence of M4

Figure 1. Domainsof existenceof the minima M1 and M» of the potential V3.

wherethe n; are Gaussiarthermalnoiseswith (n; (t)n; () = 2T6;;6(t —¢'), andu(z) is a
multiplier thatimplementsthe sphericalconstraint}_, 02 = N at all times.

The aim will beto seehow the systemevolvesdynamically,dependingon the value of
the initial overlapwith an equilibrium configuration.

In orderto implementtheinitial conditions,we haveto usethereplicatrick to describe
the systems:the first will be describedby p¢ with a = 1, ..., n; theinitial conditionsare
o% a=1,...,m andonly o! is evolving with time, sowe useo (¢) insteadof (1), with
0(0) = 0%(0). Thelimits m — 0, n — 0 are taken,with a one-stepreplica symmetric
breakingAnsatz. In theinfinite N limit, we canobtain,in thesamewayasin [11, 12, 1, 9], a
setof coupledself-consistentlynamicalequationdor thefollowing quantities(the equations
arewritten in the appendix):

=z

N AN e RS SN LION
C, 1" = N;(O,(t)m(t)) R@t, 1) = NXij(am(ﬂ))
1o ———
Cult) = 3 Y For() @ > L casea = 1: Ca(r) = C(1,0)) (2)

i=1

=z

1 -
Qu(t) = D {ai(0p)).

i=1

While C(¢,t") and R(z,t") arethe usualcorrelationand responsdunctionsof the system,
the evolutionof the C, and Q, will give informationson how the systemdepartsfrom its
initial conditionsand how closeit goesto the equilibrium stateof the first real replica p.

Theinitial conditionscanbe obtainedfrom the study of the two-replicaspotential: we
firstimposeQ,(0) = Qizl = 8,4.1912- Sincethe structureof the equationgespecthereplica
symmetriccharacteror the breakingof replica symmetryof the C, and Q,, at all times
Q4(t) = 8,10(), with Q(r) = % Zf"zl pioi(t). Then,from the value of ¢35, we usethe
two-replicaspotentialto deductthe valuesfor C,(0). Accordingto the valueof ¢;», it can
be replica symmetricor have one step of replica symmetrybreaking. Sincethe replica-
symmetriccasecan be recoveredin a simple way from the equationsof the RSB case,
we will consideronly the one-stepcase. Thenthe initial conditionsfor C, hasparameters
(r1, ro, x); thereforeat all timesthe C, (¢) will havethe form

Ca(1) = (C(1,0), C1(1), Co(1)) 3
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with the samebreakingparameter t, andC1(0) = r1, Co(0) = roi. We definethefollowing
limiting values:

lim Q(t) = qo lim C(t,0) = p

1—00 1—>00 (4)
lim C1(¢) = 1 lim Co(t) = co lim wu(t) = u.

1—00 1—00 11— 00

A simple check is to look at what happensin two extremecases: (i) g1 = 1:
the system starts at equilibrium at T; thenr; = ro = 1, and obviously we obtain
C@,0) = Q@) = C1(t) = Co(t), go = p = c1 = co = gea: the systemthermalizesn the
particularequilibrium stateat T chosenby p; (ii) g12 = 0: the systemis not constrained,
so clearly we obtain Q(z) = C1(¢t) = Co(t) = 0, C(¢,t') = C(t — t') = C(r): the system
thermalizesn an unspecifiedTAP stateof equilibriumat 7' [1, 9].

For other valuesof ¢1,, the numericalintegrationof the dynamicalequationsshows
that the system, after a transient,reachesa certain equilibrium behaviour;to study the
systemat long times, we therefore make the ansatz: C(t,t') = C(t — t') = C(7),
R(t,t) =Rt —1t)=R(r) = —%‘é—f with lim,_, ., C(r) = ¢. This ansatzallows, with
usualmethods o obtain coupledequationdor the limiting valuesof the variousone-time
guantities,and moreoverwe havefor the evolutionof the asymptoticcorrelationfunction:

T
de = —Lq(C(‘L') —q) — ﬂ/o du(f'(C(t —u)) — f'(g)C'(w). (5)

dr 1-

The equationsfor the valuesof ¢, go, p, c1, co are equivalentto the equationsfor
the parametersyss, g13, g23, w23, z23 Of the three-replicagpotentiaf. This correspondence
pushesforward the one notedin [1, 9] betweenthe potential with two replicasand the
dynamicswith thermalizednitial conditions.Here,theinterpretationis thatthe first replica
p liesin anequilibriumstateattemperaturd’, thereplicanumber2 of the potentialgivesthe
initial conditionsof the dynamicswhile the dynamicalsystemgoestowardsa minimum of
the potential(givenin the potentialapproactby thethird replica)whereit relaxesaccording
to (5), which is exactly the equationof the relaxationin a TAP stateof self-overlapg, as
givenin [9].

An important differencebetweenthe two approachess that, while the potential can
be exploredfor all valuesof g1, g13, g23 (i.€. all positionsof both replicas2 and 3), the
only parameterf the studieddynamicsis ¢i1»: the initial conditionsof the dynamicscan
be comparedwith the secondreplicaof the potential,andall possiblevaluesof ¢;, canbe
studied,but the valuesof gq, p are outcomes of the dynamicsand are not chosen. From
the equivalencebetweenpotential and dynamics,it follows for the dynamicsthat, while
for gq12 > g only the solution M; exists,for g;o < ¢ thereare the two solutionsM; and
M. However,asthe dynamicalequationsadmit (within the one-stepRSB ansatzwe use)
a uniquesolutionfor any finite time, only oneof the two canbe reacheddynamically. The
sizeof the basinof attractionof the equilibrium statess relatedto the smallestvalue of g1,
for which the solution M, is reached.

In orderto settlethis questionwe integratenumericallythe dynamicalequationgAl).
For simplicity we limit our analysisto the casep = 3 for which most of the analysisof
[2] wasperfomed.ThenT; ~ 0.586, T, ~ 0.61237 andwe will showresultsfor T = 0.6:
thengea = 0.6, ¢ ~ 0.342. The numericalintegrationis carriedout usinga simpleiteration
algorithm, discretizingthe dynamicalequationswith a finite time stepi. We proceedwith

t ThismeanghatC, (¢) is equalto C (¢, 0) for « = 1,to C1(¢) fora = 2, ..., x, andto Co(z) fora = x+1, ..., n.
1 To recoverthe replicasymmetriccase we taker; = ro: then,atall times, C1(z) = Co(z).
§ In the replicasymmetriccase the equivalences ¢33 = ¢, go = q13, ¢1 = co = P = ¢23-
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Figure 2. Evolutionof C(z, 0), Q(¢t) andC1(¢) = Co(r) with time for g1 = 0.155702 (left) and
q12 = 0.55 (right). Thesecurvescorrespondo the extrapolationat 7 — 0 of the resultsof the
numericalintegrationwith 2 = 0.05, 0.1, 0.2; we seethatthey go quite quickly to their limiting
valuesp, qo andci = ¢o (given by the horizontallines) with p = ¢1 = ¢ for g12 = 0.55.

threevaluesh, 2k, 4h andthendo the interpolationat » — 0 to comparethe numerical
valueswith the valuesobtainedfrom the study of the potential V1.

For ‘small’ values of ¢1», the dynamics convege rapidly towards an equilibrium
behaviour with time tranlsation invariance and fluctuation-dissipationrelation. The
numerical integration yields limits in excellent accordancewith the resolution of the
aforementionedequationsfor ¢, qo, p, c1, co, and coincide with the values of the
various parametersn the minimum M, of the three-replicagotential. (e.g. seefigure 2,
q12 = 0.155702, thenr; = ro = 0.02715, g0 = 0.116338, ¢c; = ¢ = 0.0205437,
g = 0.608423, p = 0.609467. Thesevaluescoincidewith the valuesrespectivelyof g3,
W23 = 223, ¢33, g23 IN theminimum M,.) This meanghatthe systemo (7) staysin the state
found by the replica o (0), with finite overlapwith p. We are thereforein the minimum
M, and out of the attractionbasinof the equilibrium statewherep lies.

For ¢12 ‘large’, converselywe expectthatthe systemwhich startscloseto p, remainsin
thesamestate. Thisis indeedwhatwe find (e.g.for g1, = 0.817272,thenr; = ro = 0.7859;
we obtaingg = g = gea, c1 = co = p = 0.633625; the integrationof two-timesequations
coincidewell with the integrationsof the equationon C(r) and with thesevalues). For
a somewhatsmallervalue of g1, (e.g.seefigure 2, g1o = 0.55, r; = rg = 0.556345) the
samebehaviouris obtained:the two-timesequationsyield the sameresultsasthe equations
usingthe equilibrium ansatzwith go = ¢ = gga, ¢c1 = co = p = 0.571534).

For thesevaluesof ¢;,, the systemthermalizeghereforein the TAP statefound by p.
The long-time dynamicsis the relaxationdynamicsin a TAP stateof equlibriumat 7', and
thereforedoesnot dependon the initial conditions.

The outcomeof the dynamicsfor small and large valuesof g1, showthat both minima
M, and M, canbe dynamicallyreached.We canthennaturallyaskif a minimumis always
reached,and what the limiting valueis of g1» for which the systemgoestowardsp. We
thereforestudythe behaviourof the systemfor valuesof ¢1, decreasingowardsg, andalso
for valueslower than,but closeto g. We observethat, while for large valuesof ¢;, (or also
for valuesof g1, lower thang) the one-timequantitiesgo directly to their limiting values,
upondecreasing;:2 a plateauappearsat an intermediatevalue betweenthe initial andthe

t After checkingthat the interpolationat » — 0 coincideswell with the valuesobtainedvia the potential, we
useda uniquevalue of the time stepfor somerunsthat involved larger timescalesat valuesof g3, closeto the
limit of the attractionbasin.
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Figure 3. Left: evolution with time of the one-time quantities C(¢,0), C1(z), Co(?),
Q(1), for g1 = 0.353. We observethe presenceof a plateauuntil t* ~ 500 before
the guantitiesreachtheir final valuescorrespondingto M;. Right: evolution with time of
Q(r) for various valuesof gi2. From bottom to top, ¢12 = 0.32,0.33,0.34 (< ¢g), and
q12 = 0.344 0.345 0.346 0.347, 0.348 0.35, 0.36, 0.37,0.38,0.39,0.55 (> g): we seethe
growth of the timescalegiven by the length of the plateauas g1, decreasesowardsg. For
q12 > ¢, we seethatall the curvesgo to the samelimit correspondindo M1, while the limiting
valuedependson g1 for g12 < ¢. In bothfigures,the time stepusedis 7 = 0.2.
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Figure 4. Timescaler* asa function of ¢g12 (g ~ 0.342).

limiting values. This plateaugives a timescaler* that grows and divergeswhengi, — ¢.
We showthe variousone-timequantitiesfor a particularvalue of ¢;,, andthe evolution of
the plateauand of the timescalewith g1, in figures3 and 4. For g1, lower than g, we
observethat the dynamicsconvegestowardsthe valuesof the parametersn the minimum
M, of the potential,andno morereachMj.

The situationis thereforethat, for any g1, > g, the systemreacheghe statewherethe
first replica, o, lies, but after a transientwhich length divergesasg;, goesto g. For initial
conditionsfartherfrom p thang, i.e. assoonasthe minimum M, of the potential exists,
the systemrelaxesin the statecorrespondingo M,, which is a metastablestateat finite
overlapwith p, andis no more ableto ‘reach’ p. We can thereforeunderstand; asthe
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limit of the attractionbasinof the statewherep lies. It is worth notingthatg is quite small
(g ~ 0.342for T = 0.6) which meansthatit is possibleto find configurationsthat will
dynamicallyevolve towardsa TAP state,andthermalizein it within a finite time, evenat
quite large distancedrom typical configurationof this state.

This is the situationthat we find if we weightthe initial conditionwith the Boltzmann
probability. Let us turn now briefly to the caseof initial conditionswith overlapgi, with
o, but otherwiseuniformly distributed. In this casethe basinsof attractionare vanishing.
Indeedfor any value of g3, we find that the asymptoticvalue of the enepy is larger than
the equilibrium value E¢q (the enegy of p). As far asthe correlationswith the initial state
are concernedve havefoundtwo differentregimes,separatedy a (ratherlarge) threshold
value g* of ¢g12 (e.9.¢* ~ 0.99for p = 3, T = 0.6). For g > ¢* the systemreachesa
time translationinvariantsituation,with final enegy that dependsontinuouslyon ¢, (see
figure 5). The overlapwith the initial conditiontendsto a nonzerovaluein this case,and
therelationbetweernthe asymptoticenegy andthe Edwards—Andersoparameteis the one
verified in the TAP states,indicating equilibrationwithin a metastablestate. For ¢ < ¢*
instead the systemlosesthe correlationwith theinitial state(andwith p) andirrespectively
of g1, falls into an ageingstatewith asymptoticenegy equalto Eqyn(7) analogoudo the
onediscussedn [8], wherethe dynamicsstartsfrom a completelyrandominitial condition.
The situation can be understoodanalysingthe enegy of the initial state. For eachvalue
of g1, this enegy takeswith probability one a fixed value E(g1,), which is a decreasing
function of g1, andequalsEe(T) for g1» = 1. It is temptingat this point to interpretthe
initial statesastypical stateswith thatenegy, i.e. asequilibrium statesat a corresponding
temperaturel (g12). If thisis true thenfor T (g12) < T, the typical initial configurationis
in the basinsof metastablestatesthat survive at temperaturer [1, 9, 10], althoughthey
are slightly deformed. The dynamicsat temperaturel’ leadsthento equilibriumin these
states.For T'(q12) > T,, the typical initial configurationbelongsto the paramagnetistate,
and ageinghasto be expectedthis meansthat 7 (¢*) = T,. We havecheckedthat this is
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Figure 5. Evolution of the enegy of the system starting at overlap ¢12 =

1,0.999 0.998 0.995, 0.99 (symbols,from bottom to top) from an equilibrium configuration
p atT = 0.6 (p = 3), but otherwiserandomly; the curves give the equilibrium enegy
Eeq~ —0.83333 and Egyn ~ —0.82467.
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indeedthe right scenario,using the techniquesof [1, 9, 10], finding the interestingresult
that, arbitrarily closeto an equlibrium stateat temperaturel’, thereare stateswhich are of
equilibrium at someothertemperature.

In this letter, we have studied, by a dynamical approach,the attractionbasin of an
equilibrium stateat temperatureTy, < T < T, (and establishedhe correpondenceavith
the static three-replicagotential). If we weight with the Boltzmanndistribution we find
wide basinsof attraction. Almost all initial conditionswith overlaplarger thana threshold
value g, arein the basinof attractionof the referencestate. Converselyif we performa
white averagewe find zerosize basinsof attraction. Startingcloseenoughto the reference
configuration the systemequilibratesn a TAP statecloseto the startingpoint, while if the
initial overlapis larger thanthis thresholdthe systemendsup ageing. This combinationof
factsindicatesa highly nontrivial structureof the variousstatesandbasinsof attractionin
configurationspace.

We thank A Cavagna,l Giardinaand M Virasoro for useful discussionsand comments;
also, we are most gratefulto A Cavagnaand| Giardinafor providing us with the values
of the various parametersn the minima of the three-replicagotential, thus allowing the
guantitativecomparisorbetweeneffective potentialand dynamicsperformedin this letter.

Appendix A. Dynamical equations

Denoting f(¢) = 1/2¢”, and using the methodsof [1, 9, 11, 12] one can show that the
following dynamicalequationsare obeyed:

(1) :/o ds (f'(C(t, ) + f"(Ct, sHCt, )R, 5) + Bf Q1) Q1)

+8 i;f’(ca(t))ca(t)

aRgt, 0 _ —(OR(, 1) +fﬂt ds f(C(t, $)R(t, s)R(s, 1)

ac;tt, ) _ —pn(@C(t,1) +/Ol/ ds f/(C(t, ))R(', 5) +/Ot ds f/(C(t, s))R(t,5)C(, 5)
+Bf Q) Q") + B Xni;f/(Ca(t))Ca(t’) (A1)

dCO( ! /7 /
P —M(I)Ca(t)+/o ds f7(C(t, ))R(, 5)Cals) + Bf (Q(1))q12

+BY | f(Cp(1) 0%
=1
dQlJ ! " ’
o= HO00) + /0 ds £7(C(t, )R, $)Qu(s) + Bf (Qu(1))
+B) f(Ca) QP
a=1

where 012 and Q?? are the matricesusedin the two-replicaspotential[1]. Usingthe one-
step RSB ansatz,i.e. C,(t) = (C(t,0), C1(t), Co(t)) with breakingpoint x, with initial



Letter to the Editor L127

conditionsC1(0) = r1; Co(0) = ro, Q(0) = q12, we can obtainthe equationsfor C(z, t'),
R(,1"), C1(r), Co(t), QO(t) by expandingthe sumsin the previousequationsfor example:

Z F(Ca()Co(t) = f/(C(t,0)C({', 0) + (x — 1) f'(Cr(t))Ce(t) — xf'(Co()) Co(t).
a=1

(A2)
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