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Abstract. We study the basinsof attractionof metastablestatesin the sphericalp-spin spin-
glassmodel,startingthe relaxationdynamicsat a given distancefrom a thermalizedcondition.
Weightingtheinitial conditionwith theBoltzmanndistributionwefind afinite sizefor thebasins.
In contrast,a white weightingof the initial conditionimplies vanishingbasinsof attraction.We
correspondour resultsto thoseof a recentlyconstructedeffective potential.

The so-calledsphericalp-spin spin-glassmodel has been the subject of many studies:
indeed,beingmean-field,it allows for a detailedanalyticstudy,while still displayingvery
rich static and dynamicalbehaviours.In particular in recentpapers[1, 2, 3], it hasbeen
shownthatthestructureof its metastablestates,which dominatetheGibbsmeasurebetween
two temperaturesnotedTs and Td (where the static and dynamic transitionsrespectively
occur [4]), is very rich and complex. The existenceof thesestatesis revealedusing the
approachof Thoulesset al [5] andtheyarethereforeoftencalled‘TAP states’[6, 7]. These
recentworks makeuseof the real replicasmethod: copiesof the systemare considered,
at variousdistancesfrom eachother,and the free energy cost (called ‘effective potential’
function)to keepthemat givendistancesis computed.Theminimaof thepotentialcanthen
be associatedwith the fact that the replicaslie in metastablestates,thusgiving information
on the distancesbetweenstates.

This method is thereforepurely static; indeed, the dynamicsafter a quenchdo not
seeall the metastablestates,insteadgiving rise to the phenomenonknown as ageing[8]:
quenchedbelow Td , the systemremainsout of equilibrium for all times with an energy
higher than the thermodynamicone. On the other hand, it was shown in [1, 9, 10] that
particular initial conditionsfor the dynamics(namely, taking the systemthermalizedat a
certaintemperaturebetweenTs and Td , and then letting it evolve to anothertemperature)
could allow a dynamicalexplorationof the metastablestatesfinding resultsconsistentwith
the picturecomingfrom the two-replicapotential.

In this letter we addressthe problemof determiningthe sizeof the basinsof attraction
of the TAP states. This will be done by studying the Langevin relaxationof a system
startingat an initial time at a givenfixed overlap(q12 in the following) from anequilibrium
configuration. This, of course,does not specify completely the initial conditions. In
the following we will considertwo families of them (for fixed q12), weighting the initial
conditionswith the Boltzmanndistributionandwith the uniform one.
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As we will see,the caseof Boltzmannweighting can be relatedto the resultsfound
for a three-replicapotential [2] recently introduced. Therefore,for future use,we briefly
recall the resultsof the two-andthree-replicaspotentials,V2 andV3, for thep-spinmodel†:
indeed,the resultsof the studyof V2 will be usedto determinethe initial conditionsof the
dynamics,andthoseof thestudyof V3 will becomparedwith theoutcomeof thedynamics.

Thetwo-replicaspotentialV2 is defined[1] asthefreeenergy costto keepaconfiguration
τ at a fixed overlapq12 with an equilibrium configurationσ . While in generalthe two
replicascanbe at different temperatures,we will herelimit ourselvesto the caseof equal
temperatureT for replicas1 (σ ) and 2 (τ ). The overlapbetweenthe replicasis denoted
q12, while the use of the replica trick leadsto a descriptionof the secondreplica by a
one-stepreplica-symmetrybreaking(RSB)matrix Q22 of parameters(r1, r0, x), determined
variationally. Theabsoluteminimumof thepotentialis alwaysfor q12 = 0: thenthesecond
replicais at equilibrium,with no constraint,so the free-energy cost is zero. For T < Td , σ

lies in oneof themetastablestatesthatdominatethestatics(of Edwards–Andersonparameter
qEA) anda relativeminimum appearsfor a non-zerovalueof q12: it correspondsto having
the secondreplica in the sameTAP stateasthe first.

In order to study the organizationof the metastablestatesin the phasespace,the
constructionwas generalizedto three replicas in [2]. There, a first replica ρ is free to
thermalizeat T ; a secondreplicaσ is constrainedto thermalizeat T with a fixed overlap
q12 with ρ, andthepotentialV3 is definedasthefree-energy costto keepa third replicaτ (at
thesametemperatureT ) at overlapsq13 from ρ andq23 from σ . We will takeTs < T < Td :
thenthe first replica is in a certainTAP stateof equilibrium at T .

Sincethetwo first replicasareindependentof thethird, theoverlapmatricesthatdescribe
them are identical to thoseusedfor V2. The third replica is describedby a one-stepRSB
matrix. In the minima of the potential,this matrix is in fact replica symmetric,with only
oneparameterq33.

The analysisof [2] showedthat, dependingon the valueof q12, the potentialcanhave
oneor two nontrivial minima (apartfrom the minimum at q13 = q23 = 0 correspondingto
the third replica in an unspecifiedequilibrium stateat T , different from thoseof replicas1
and2). The first minimum, calledM1, existsfor any valueof q12, andhasq13 = qEA and
q23 ≈ q12. Its interpretationis that the third replicalies in the samestateasthe first one. It
thereforeexistsindependentlyof the valueof q12. The second,moreinterestingminimum,
called M2 in [2], correspondsto the third replica close to the secondone (q23 ≈ qEA,
q13 ≈ q12 < qEA). Its interpretationis that the secondreplica lies in the basinof attracion
of a metastablestateat nonzerooverlapq12 from the first replica,while the third replicais
at equilibrium in this state.This solutionexistsonly for valuesof q12 lower thana certain
q̄ (which dependson the temperature),with q̄ < qEA (seefigure 1). This q̄ givestherefore
the minimum distance(or maximumoverlap),from an equilibrium stateat T , at which can
be found anothermetastablestate.

In orderto studythebasinsof attractionof themetastablestates,we studytherelaxation
of a systemwith the following initial condition. We considera referenceconfigurationat
equilibriumat temperatureT . Thenthesystemevolvesfrom a configurationthermalizedat
temperatureT , but with the constraintthat its overlapwith the referenceconfigurationis
equal to q12. At positive time the spinsevolve accordingto an (unconstrained)Langevin
dynamicsat temperatureT :

dσi(t)

dt
= −

∂H

∂σi

− µ(t)σi(t) + ηi(t) (1)

† We will not recall the detailsof the computations,which canbe found in [2].
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Figure 1. Domainsof existenceof the minima M1 andM2 of the potentialV3.

wherethe ηi areGaussianthermalnoiseswith 〈ηi(t)ηj (t
′)〉 = 2T δijδ(t − t ′), andµ(t) is a

multiplier that implementsthe sphericalconstraint
∑

i σ
2
i = N at all times.

The aim will be to seehow the systemevolvesdynamically,dependingon the valueof
the initial overlapwith an equilibrium configuration.

In orderto implementthe initial conditions,we haveto usethe replicatrick to describe
the systems:the first will be describedby ρa with a = 1, . . . , n; the initial conditionsare
σ α, α = 1, . . . , m andonly σ 1 is evolving with time, so we useσ(t) insteadof σ 1(t), with
σ(0) = σ 1(0). The limits m → 0, n → 0 are taken,with a one-stepreplica symmetric
breakingAnsatz. In theinfinite N limit, wecanobtain,in thesamewayasin [11, 12, 1, 9], a
setof coupledself-consistentdynamicalequationsfor thefollowing quantities(theequations
arewritten in the appendix):

C(t, t ′) =
1

N

N∑
i=1

〈σi(t)σi(t ′)〉 R(t, t ′) =
1

N

∑
i

〈
∂σi(t)

∂ηi(t ′)
〉

Cα(t) =
1

N

N∑
i=1

〈σ α
i σi(t)〉(α > 1; caseα = 1 : C1(t) = C(t, 0))

Qa(t) =
1

N

N∑
i=1

〈σi(t)ρ
a
i 〉.

(2)

While C(t, t ′) andR(t, t ′) are the usualcorrelationand responsefunctionsof the system,
the evolutionof the Cα andQa will give informationson how the systemdepartsfrom its
initial conditionsandhow closeit goesto the equilibrium stateof the first real replicaρ.

The initial conditionscanbe obtainedfrom the studyof the two-replicaspotential: we
first imposeQa(0) = Q12

a,1 = δa,1q12. Sincethestructureof theequationsrespectthereplica
symmetriccharacteror the breakingof replica symmetryof the Cα and Qa, at all times
Qa(t) = δa,1Q(t), with Q(t) = 1

N

∑N
i=1 ρiσi(t). Then, from the value of q12, we usethe

two-replicaspotentialto deductthe valuesfor Cα(0). Accordingto the valueof q12, it can
be replica symmetricor have one step of replica symmetrybreaking. Since the replica-
symmetriccasecan be recoveredin a simple way from the equationsof the RSB case,
we will consideronly the one-stepcase.Thenthe initial conditionsfor Cα hasparameters
(r1, r0, x); thereforeat all timesthe Cα(t) will havethe form

Cα(t) = (C(t, 0), C1(t), C0(t)) (3)
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with thesamebreakingparameterx†, andC1(0) = r1, C0(0) = r0‡. We definethefollowing
limiting values:

lim
t→∞

Q(t) = q0 lim
t→∞

C(t, 0) = p̃

lim
t→∞

C1(t) = c1 lim
t→∞

C0(t) = c0 lim
t→∞

µ(t) = µ.
(4)

A simple check is to look at what happensin two extreme cases: (i) q12 = 1:
the system starts at equilibrium at T ; then r1 = r0 = 1, and obviously we obtain
C(t, 0) = Q(t) = C1(t) = C0(t), q0 = p̃ = c1 = c0 = qEA: the systemthermalizesin the
particularequilibrium stateat T chosenby ρ; (ii) q12 = 0: the systemis not constrained,
so clearly we obtainQ(t) = C1(t) = C0(t) = 0, C(t, t ′) = C(t − t ′) = C(τ): the system
thermalizesin an unspecifiedTAP stateof equilibrium at T [1, 9].

For other valuesof q12, the numerical integrationof the dynamicalequationsshows
that the system,after a transient,reachesa certain equilibrium behaviour; to study the
system at long times, we therefore make the ansatz: C(t, t ′) = C(t − t ′) = C(τ),
R(t, t ′) = R(t − t ′) = R(τ) = − 1

T
dC
dτ

, with limτ→∞ C(τ) = q. This ansatzallows, with
usualmethods,to obtaincoupledequationsfor the limiting valuesof the variousone-time
quantities,andmoreoverwe havefor the evolutionof the asymptoticcorrelationfunction:

dC

dτ
= −

T

1 − q
(C(τ) − q) − β

∫ τ

0
du(f ′(C(τ − u)) − f ′(q))C ′(u). (5)

The equationsfor the valuesof q, q0, p̃, c1, c0 are equivalentto the equationsfor
the parametersq33, q13, q23, w23, z23 of the three-replicaspotential§. This correspondence
pushesforward the one noted in [1, 9] betweenthe potential with two replicasand the
dynamicswith thermalizedinitial conditions.Here,the interpretationis that thefirst replica
ρ lies in anequilibriumstateat temperatureT , thereplicanumber2 of thepotentialgivesthe
initial conditionsof the dynamics,while the dynamicalsystemgoestowardsa minimum of
thepotential(givenin thepotentialapproachby thethird replica)whereit relaxesaccording
to (5), which is exactly the equationof the relaxationin a TAP stateof self-overlapq, as
given in [9].

An important differencebetweenthe two approachesis that, while the potential can
be exploredfor all valuesof q12, q13, q23 (i.e. all positionsof both replicas2 and 3), the
only parameterof the studieddynamicsis q12: the initial conditionsof the dynamicscan
be comparedwith the secondreplicaof the potential,andall possiblevaluesof q12 canbe
studied,but the valuesof q0, p̃ are outcomes of the dynamicsand are not chosen.From
the equivalencebetweenpotential and dynamics,it follows for the dynamicsthat, while
for q12 > q̄ only the solution M1 exists, for q12 < q̄ thereare the two solutionsM1 and
M2. However,as the dynamicalequationsadmit (within the one-stepRSB ansatzwe use)
a uniquesolutionfor any finite time, only oneof the two canbe reacheddynamically.The
sizeof thebasinof attractionof theequilibriumstatesis relatedto thesmallestvalueof q12

for which the solutionM1 is reached.
In order to settlethis questionwe integratenumericallythe dynamicalequations(A1).

For simplicity we limit our analysisto the casep = 3 for which most of the analysisof
[2] wasperfomed.ThenTs ≈ 0.586,Td ≈ 0.61237 andwe will showresultsfor T = 0.6:
thenqEA = 0.6, q̄ ≈ 0.342. Thenumericalintegrationis carriedout usinga simpleiteration
algorithm,discretizingthe dynamicalequationswith a finite time steph. We proceedwith

† This meansthatCα(t) is equalto C(t, 0) for α = 1, to C1(t) for α = 2, . . . , x, andto C0(t) for α = x+1, . . . , n.
‡ To recoverthe replicasymmetriccase,we taker1 = r0: then,at all times,C1(t) = C0(t).
§ In the replicasymmetriccase,the equivalenceis q33 = q, q0 = q13, c1 = c0 = p̃ = q23.
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Figure 2. Evolutionof C(t, 0), Q(t) andC1(t) = C0(t) with time for q12 = 0.155702(left) and
q12 = 0.55 (right). Thesecurvescorrespondto the extrapolationat h → 0 of the resultsof the
numericalintegrationwith h = 0.05, 0.1, 0.2; we seethat theygo quitequickly to their limiting
valuesp̃, q0 andc1 = c0 (given by the horizontallines) with p̃ = c1 = c0 for q12 = 0.55.

threevaluesh, 2h, 4h and then do the interpolationat h → 0 to comparethe numerical
valueswith the valuesobtainedfrom the studyof the potentialV3†.

For ‘small’ values of q12, the dynamics converge rapidly towards an equilibrium
behaviour with time tranlsation invariance and fluctuation-dissipationrelation. The
numerical integration yields limits in excellent accordancewith the resolution of the
aforementionedequationsfor q, q0, p̃, c1, c0, and coincide with the values of the
variousparametersin the minimum M2 of the three-replicaspotential. (e.g. seefigure 2,
q12 = 0.155702, then r1 = r0 = 0.02715, q0 = 0.116338, c1 = c0 = 0.0205437,
q = 0.608423, p̃ = 0.609467. Thesevaluescoincidewith the valuesrespectivelyof q13,
w23 = z23, q33, q23 in theminimumM2.) This meansthat thesystemσ(t) staysin thestate
found by the replica σ(0), with finite overlapwith ρ. We are thereforein the minimum
M2, andout of the attractionbasinof the equilibrium statewhereρ lies.

Forq12 ‘large’, conversely,weexpectthatthesystem,whichstartscloseto ρ, remainsin
thesamestate.This is indeedwhatwefind (e.g.for q12 = 0.817272,thenr1 = r0 = 0.7859;
we obtainq0 = q = qEA, c1 = c0 = p̃ = 0.633625; the integrationof two-timesequations
coincidewell with the integrationsof the equationon C(τ) and with thesevalues). For
a somewhatsmallervalue of q12 (e.g. seefigure 2, q12 = 0.55, r1 = r0 = 0.556345) the
samebehaviouris obtained:the two-timesequationsyield thesameresultsastheequations
usingthe equilibrium ansatz,with q0 = q = qEA, c1 = c0 = p̃ = 0.571534).

For thesevaluesof q12, the systemthermalizesthereforein the TAP statefound by ρ.
The long-timedynamicsis the relaxationdynamicsin a TAP stateof equlibriumat T , and
thereforedoesnot dependon the initial conditions.

The outcomeof the dynamicsfor small andlarge valuesof q12 showthat both minima
M1 andM2 canbedynamicallyreached.We canthennaturallyaskif a minimumis always
reached,and what the limiting value is of q12 for which the systemgoestowardsρ. We
thereforestudythebehaviourof thesystemfor valuesof q12 decreasingtowardsq̄, andalso
for valueslower than,but closeto q̄. We observethat,while for largevaluesof q12 (or also
for valuesof q12 lower than q̄) the one-timequantitiesgo directly to their limiting values,
upondecreasingq12 a plateauappearsat an intermediatevaluebetweenthe initial and the

† After checkingthat the interpolationat h → 0 coincideswell with the valuesobtainedvia the potential,we
useda uniquevalue of the time stepfor someruns that involved larger timescales,at valuesof q12 closeto the
limit of the attractionbasin.
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Figure 3. Left: evolution with time of the one-time quantities C(t, 0), C1(t), C0(t),
Q(t), for q12 = 0.353. We observe the presenceof a plateau until t∗ ≈ 500 before
the quantitiesreach their final valuescorrespondingto M1. Right: evolution with time of
Q(t) for various values of q12. From bottom to top, q12 = 0.32, 0.33, 0.34 (< q̄), and
q12 = 0.344, 0.345, 0.346, 0.347, 0.348, 0.35, 0.36, 0.37, 0.38, 0.39, 0.55 (> q̄): we see the
growth of the timescalegiven by the length of the plateauas q12 decreasestowards q̄. For
q12 > q̄, we seethatall thecurvesgo to thesamelimit correspondingto M1, while the limiting
valuedependson q12 for q12 < q̄. In both figures,the time stepusedis h = 0.2.

0

200

400

600

800

1000

1200

1400

1600

1800

q-- 0.345 0.35 0.355 0.36 0.365 0.37 0.375 0.38

Figure 4. Timescalet∗ asa function of q12 (q̄ ≈ 0.342).

limiting values.This plateaugivesa timescalet∗ that growsanddivergeswhenq12 → q̄.
We showthe variousone-timequantitiesfor a particularvalueof q12, andthe evolutionof
the plateauand of the timescalewith q12, in figures3 and 4. For q12 lower than q̄, we
observethat the dynamicsconvergestowardsthe valuesof the parametersin the minimum
M2 of the potential,andno morereachM1.

The situationis thereforethat, for any q12 > q̄, the systemreachesthe statewherethe
first replica,ρ, lies, but after a transientwhich lengthdivergesasq12 goesto q̄. For initial
conditionsfarther from ρ than q̄, i.e. as soonas the minimum M2 of the potentialexists,
the systemrelaxesin the statecorrespondingto M2, which is a metastablestateat finite
overlapwith ρ, and is no more able to ‘reach’ ρ. We can thereforeunderstandq̄ as the
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limit of theattractionbasinof thestatewhereρ lies. It is worth noting that q̄ is quitesmall
(q̄ ≈ 0.342 for T = 0.6) which meansthat it is possibleto find configurationsthat will
dynamicallyevolve towardsa TAP state,and thermalizein it within a finite time, evenat
quite large distancesfrom typical configurationsof this state.

This is the situationthat we find if we weight the initial conditionwith the Boltzmann
probability. Let us turn now briefly to the caseof initial conditionswith overlapq12 with
ρ, but otherwiseuniformly distributed. In this casethe basinsof attractionare vanishing.
Indeedfor any valueof q12 we find that the asymptoticvalueof the energy is larger than
the equilibrium valueEeq (the energy of ρ). As far asthe correlationswith the initial state
areconcernedwe havefound two differentregimes,separatedby a (ratherlarge) threshold
value q∗ of q12 (e.g. q∗ ≈ 0.99 for p = 3, T = 0.6). For q > q∗ the systemreachesa
time translationinvariantsituation,with final energy that dependscontinuouslyon q12 (see
figure 5). The overlapwith the initial condition tendsto a nonzerovalue in this case,and
therelationbetweentheasymptoticenergy andtheEdwards–Andersonparameteris theone
verified in the TAP states,indicating equilibrationwithin a metastablestate. For q < q∗

instead,thesystemlosesthecorrelationwith the initial state(andwith ρ) andirrespectively
of q12, falls into an ageingstatewith asymptoticenergy equalto Edyn(T ) analogousto the
onediscussedin [8], wherethedynamicsstartsfrom a completelyrandominitial condition.
The situationcan be understoodanalysingthe energy of the initial state. For eachvalue
of q12 this energy takeswith probability one a fixed value E(q12), which is a decreasing
function of q12 andequalsEeq(T ) for q12 = 1. It is temptingat this point to interpretthe
initial statesas typical stateswith that energy, i.e. asequilibrium statesat a corresponding
temperatureT (q12). If this is true then for T (q12) < Td the typical initial configurationis
in the basinsof metastablestatesthat survive at temperatureT [1, 9, 10], althoughthey
are slightly deformed. The dynamicsat temperatureT leadsthen to equilibrium in these
states.For T (q12) > Td , the typical initial configurationbelongsto the paramagneticstate,
andageinghasto be expected;this meansthat T (q∗) = Td . We havecheckedthat this is
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Figure 5. Evolution of the energy of the system starting at overlap q12 =

1, 0.999, 0.998, 0.995, 0.99 (symbols, from bottom to top) from an equilibrium configuration
ρ at T = 0.6 (p = 3), but otherwiserandomly; the curves give the equilibrium energy
Eeq ≈ −0.83333 andEdyn ≈ −0.82467.
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indeedthe right scenario,using the techniquesof [1, 9, 10], finding the interestingresult
that, arbitrarily closeto an equlibriumstateat temperatureT , therearestateswhich areof
equilibrium at someother temperature.

In this letter, we have studied,by a dynamicalapproach,the attractionbasin of an
equilibrium stateat temperatureTs < T < Td (and establishedthe correpondencewith
the static three-replicaspotential). If we weight with the Boltzmanndistribution we find
wide basinsof attraction.Almost all initial conditionswith overlaplarger thana threshold
value q̄, are in the basinof attractionof the referencestate. Converselyif we perform a
white averagewe find zerosizebasinsof attraction.Startingcloseenoughto the reference
configuration,the systemequilibratesin a TAP statecloseto the startingpoint, while if the
initial overlapis larger thanthis thresholdthe systemendsup ageing.This combinationof
factsindicatesa highly non trivial structureof the variousstatesandbasinsof attractionin
configurationspace.

We thank A Cavagna,I Giardina and M Virasoro for useful discussionsand comments;
also, we are most grateful to A Cavagnaand I Giardinafor providing us with the values
of the variousparametersin the minima of the three-replicaspotential, thus allowing the
quantitativecomparisonbetweeneffective potentialanddynamicsperformedin this letter.

Appendix A. Dynamical equations

Denotingf (q) = 1/2qp, and using the methodsof [1, 9, 11, 12] one can show that the
following dynamicalequationsareobeyed:

µ(t) =

∫ t

0
ds (f ′(C(t, s)) + f ′′(C(t, s))C(t, s))R(t, s) + βf ′(Q(t))Q(t)

+β

m∑
α=1

f ′(Cα(t))Cα(t)

∂R(t, t ′)

∂t
= −µ(t)R(t, t ′) +

∫ t

t ′
ds f ′′(C(t, s))R(t, s)R(s, t ′)

∂C(t, t ′)

∂t
= −µ(t)C(t, t ′) +

∫ t ′

0
ds f ′(C(t, s))R(t ′, s) +

∫ t

0
ds f ′′(C(t, s))R(t, s)C(t ′, s)

+βf ′(Q(t))Q(t ′) + β

m∑
α=1

f ′(Cα(t))Cα(t ′)

dCα

dt
= −µ(t)Cα(t) +

∫ t

0
ds f ′′(C(t, s))R(t, s)Cα(s) + βf ′(Q(t))q12

+β

m∑
β=1

f ′(Cβ(t))Q22
αβ

dQa

dt
= −µ(t)Qa(t) +

∫ t

0
ds f ′′(C(t, s))R(t, s)Qa(s) + βf ′(Qa(t))

+β

m∑
α=1

f ′(Cα(t))Q12
a,α

(A1)

whereQ12 andQ22 arethe matricesusedin the two-replicaspotential[1]. Using the one-
step RSB ansatz,i.e. Cα(t) = (C(t, 0), C1(t), C0(t)) with breakingpoint x, with initial
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conditionsC1(0) = r1; C0(0) = r0, Q(0) = q12, we can obtain the equationsfor C(t, t ′),
R(t, t ′), C1(t), C0(t), Q(t) by expandingthe sumsin the previousequations;for example:
m∑

α=1

f ′(Cα(t))Cα(t ′) = f ′(C(t, 0))C(t ′, 0) + (x − 1)f ′(C1(t))C1(t
′) − xf ′(C0(t))C0(t

′).

(A2)
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