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2 Laboratoire de Spectrométrie Physique, Bâtiment 45, Avenue de la Physique, Domaine

Universitaire, BP 87, 38402 Saint Martin d’Heres, France
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Abstract
We consider the single-particle velocity distribution of a one-dimensional fluid

of inelastic particles. Both the freely evolving (cooling) system and the

non-equilibrium stationary state obtained in the presence of random forcing

are investigated, and special emphasis is paid to the small inelasticity limit.

The results are obtained from analytical arguments applied to the Boltzmann

equation along with three complementary numerical techniques (molecular

dynamics, direct Monte Carlo simulation methods and iterative solutions

of integro–differential kinetic equations). For the freely cooling fluid, we

investigate in detail the scaling properties of the bimodal velocity distribution

emerging close to elasticity and calculate the scaling function associated with

the distribution function. In the heated steady state, we find that, depending

on the inelasticity, the distribution function may display two different stretched

exponential tails at large velocities. The inelasticity dependence of the

crossover velocity is determined,and it is found that the extremely high-velocity

tail may not be observable at ‘experimentally relevant’ inelasticities.

PACS numbers: 05.70.Ln, 02.70.Ns, 02.70.Uu, 05.10.Ln

1. Introduction

1.1. Motivation

In the widely studied context of non-equilibrium stationary states, granular gases stand out as

an interesting model system, accessible to and the subject of many experimental and analytic

investigations. Their theoretical description and understanding is one of the present important

issues of the development of the out-of-equilibrium statistical mechanics.
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The main difference between molecular gases and granular gases stems from the fact

that at each collision between, e.g., steel or glass beads (in experiments), or idealized smooth

hard spheres (in analytical and numerical investigations), a fraction of the relative kinetic

energy is lost [1]. This inelasticity is responsible for many interesting phenomena, such as the

appearance of spatial heterogeneities, non-Gaussian velocity distributions, etc. Theoretically,

two opposite situations have been extensively studied in the context of smooth inelastic hard

spheres we shall consider here, namely, the free cooling case where no forcing mechanism

compensates the energy loss due to dissipative collisions (see,e.g., the review [2] and references

therein), and the uniformly heated system where an external random force acts as a heating

process on the grains, allowing a non-equilibrium stationary state to be reached [3–5].

In this paper, we will study the above two situations (i.e. with or without energy input),

and concentrate on a one-dimensional granular fluid. For the homogeneously heated gas

(section 2), the focus will be on the high-energy tail of the velocity distributionP(v). Whereas

the velocities up to the thermal scale obey a Maxwell–Boltzmann-like distribution, we will

show by combining kinetic theory arguments and numerical simulations (both molecular

dynamics (MD) and Monte Carlo) that in the limit of vanishing inelasticity, P(v) displays

an exp(−v3) large v behaviour. At finite inelasticity, this tail is asymptotically dominated by

the exp(−v3/2) law already predicted in [4]. These predictions will also be confirmed by the

results of a high-precision iterative solution of the non-linear Boltzmann equation. On the

other hand, without energy injection (section 3), we will similarly concentrate on the limit of

small inelasticity (that appears quite singular, unlike in the heated case), and shed some light on

the importance of spatial heterogeneities and velocity correlations: detailed scaling properties

of the solutions of the homogeneous Boltzmann equation will be obtained analytically and

checked numerically. Further confrontation against molecular dynamics simulations will

show that the velocity distributions of the Boltzmann homogeneous cooling state share some

common features with those obtained by integrating the exact equations of motion.

1.2. The model

We shall consider a one-dimensional gas of equal mass particles of length σ and density n,

evolving on a line of length L = N/n with periodic boundary conditions. These particles

undergo binary collisions with conservation of momentum but loss of a fraction (α2) of the

kinetic energy in the centre-of-mass frame: consequently, if v1 and v2 (respectively v′
1 and v′

2)

are the velocities of the two particles involved before (respectively after) the collision, then

v′
1 + v′

2 = v1 + v2 (1)

v′
1 − v′

2 = −α(v1 − v2) (2)

where 0 � α � 1 is the restitution coefficient. We also introduce the inelasticity parameter

ε = 1 − α (ε = 0 for elastic collisions).

We will focus on the behaviour of the velocity distribution P(v, t) in the following two

cases:

• Without energy injected, the above collision rules define a system where energy dissipation

through collisions is not balanced and the typical velocities of particles progressively

decrease. This free cooling regime has been widely studied [6–19] and in particular in

dimension 1 by molecular dynamics studies [6, 7, 9, 19]. Slight modifications of the

collision rule allow us to bypass the inelastic collapse [20] and observe an asymptotic

scaling regime for P(v, t) [19].
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• A steady state can be reached if the loss of energy through collisions is balanced by an

injection that can be achieved through a random force η(t) acting on each particle,

dv

dt
= F + η(t) 〈η(t)η(t ′)〉 = 2Dδ(t − t ′) (3)

where D is the amplitude of the injected power and F the systematic force due to inelastic

collisions. Velocities consequently execute a random walk between the collisions, and

in the collisionless case P(v, t) obeys a diffusion equation with a ‘diffusion’ coefficient

D. This model was first introduced and discussed by Williams and MacKintosh [3] in

dimension 1, and studied in higher dimensions [5]; variants have also been proposed

[21, 22].

We define the granular temperature as the average kinetic energy of the system:

T (t) =
∫

dv v2P(v, t). (4)

The function T(t) decreases for the freely cooling system, but it eventually fluctuates around

a steady-state value in the heated case.

1.3. Investigation methods

Our study relies on the following three complementary approaches:

• Molecular dynamics (MD) simulations [23] integrate the exact equations of motion in a

finite box: we consider N hard rods of length σ , on a line of linear size L, with periodic

boundary conditions and random initial velocities, and we use an event-driven algorithm

to study their dynamics.

• The Boltzmann equation describes the evolution of the one-particle distribution function

P(v, t), upon the molecular chaos factorization hypothesis [24]. This equation is therefore

a mean-field approximation of the problem, in which density becomes irrelevant. It can

be solved numerically by the direct simulation Monte Carlo (DSMC) method [25], or in

certain cases, with an even better precision, by an iterative method similar to that used

in [26].

• In the elastic limit α → 1, an analytical scaling approach can be used to study the

Boltzmann equation. It is important to note that, in the particular case of one-dimensional

hard spheres, the elastic case ε = 0 is quite peculiar. Indeed, for ε = 0, the collisions

only exchange the velocities of the particles: this system is therefore unable to thermalize

and is equivalent to one with transparent particles where P(v, t) is frozen in time.

2. Steady state of the heated fluid

The exact solution of the problem of a d = 1 inelastic gas appears inaccessible, which prompted

us to carry out MD simulations to calculate P(v, t). In order to see whether a mean-field-type

approach can give a reasonable description of the inelastic gas, we reconsider the kinetic

theory of the process. We solve the appropriate Boltzmann equation by simulations in the

general α case, and derive exact results in the ε → 0 limit.

Since the gas systematically reaches a stationary state with a temperature T that depends

on the inelasticity (see below), it is useful to introduce the rescaled velocity

c =
v

√
T

(5)
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Figure 1. Velocity distributions for MD simulations with 5000 particles, density nσ = 0.5, for

restitution coefficients 0.6, 0.9, 0.95, 0.99 and 0.999 (from top to bottom). The symbols show the
Gaussian distribution. The inset shows a typical snapshot of the space density fluctuations for 0.99

(continuous line) and 0.6 (dotted line).

and the corresponding distribution function

f (c) =
√

T (t)P (v, t). (6)

In order to compare the velocity distributions at various inelasticities, numerical data for the

rescaled velocity distributions will always be displayed in the figures.

2.1. General α case

2.1.1. Molecular dynamics simulations. The molecular dynamics simulations are carried

out with N = 5000 hard rods, using an event-driven algorithm, and submitting the rods to

random kicks at a frequency that remains much higher than the collision frequency, in order

to simulate the noise of equation (3). Note that, since the Langevin equation considered in

[21] is different from ours4, comparing the two approaches is not possible without further

investigations on either side.

Starting from an initial distribution of velocities, a steady state is reached after a transient,

and velocity distributions can be measured. Figure 1 displays such distributions for inelasticity

ranging from α = 0.6 to 0.999. Strong non-Gaussian behaviour is observed, with over- or

under-populated high-energy tails depending on α. Moreover, the inset shows that the system

remains quite homogeneous at low inelasticity, while strong density fluctuations develop at

larger inelasticity. The value of the density n of the system seems to have no influence

on the shape of the velocity distributions, and density fluctuations seem to increase roughly

proportional to 1/(nσ ) (at constant α). Detailed investigations of the spatial correlations are

left for future studies.

2.1.2. Kinetic theory. Assuming that the density of the particles is low and neglecting both

velocity and spatial correlations of colliding partners, the Boltzmann equation for the spatially

4 It contains a friction term in velocity space whose amplitude is linked to the force amplitude, whereas detailed
balance is not satisfied by our model, where the forcing is independent of the state of the system. We did not consider

the friction term in order to study a model (leading to a steady state) with a minimal number of parameters.
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averaged velocity distribution function P(v, t) can be written as [7, 15]

∂tP −D∂2
vP = −n

∫ ∞

−∞
dv′|v − v′|P(v)P (v′)

+
4n

(1 + α)2

∫ ∞

−∞
dv′|v − v′|P(v′)P

(

2v − (1 − α)v′

1 + α

)

. (7)

The right-hand side of equation (7) contains the collision terms corresponding to the

‘dissipative’ rules (2), while the Fokker–Planck term D∂2
vP on the left-hand side takes into

account the energy injected by the random forces (3).

The system described by equation (7) is expected to relax to a steady state since the power

input is independent of the velocities while the loss of energy is roughly proportional to the

energy itself. This expectation can be made more quantitative by deducing the equation for

the temperature (T = 〈v2〉) of the system

d〈v2〉
dt

= 2D −
n

4
(1 − α2)〈|v − v′|3〉 (8)

where 〈· · ·〉 denotes averaging with P(v, t) and |v− v′| represents the relative velocity of two

randomly chosen particles. There is a stationary solution to this equation that has a simple

physical meaning. Namely, the rate of input of energy (∼D) is equal to the rate of loss of

kinetic energy in the centre-of-mass frame ∼(1 − α2) (v− v′)2 (with the extra factor n|v− v′|
coming from the collision rate). One may also estimate the characteristic time of reaching the

steady state. Indeed, the quantities T 3/2 = 〈v2〉3/2 and 〈|v|3〉 are expected to have the same

leading large-time (t → ∞) dependence, and thus, up to an unknown numerical constant C,

equation (8) can be written as

dT

dt
= 2D − C n(1 − α2)T 3/2. (9)

The typical relaxation time is then τrelax ∼ [D/(n(1 − α2))]2/3. In the small inelasticity limit

(ε → 0), this relaxation time diverges as τrelax ∼ ε−2/3. We have indeed observed such a

behaviour of the approach to the steady state in both MD and DSMC simulations.

Many pieces of information on the stationary distribution function have been obtained in

[4]; in particular, the deviations from a Gaussian �(c) = e−c2/2/
√

2π have been investigated

by the Sonine expansion [27]

f (c) = �(c)



1 +

∞
∑

p=1

apSp(c
2)



 (10)

where Sp are polynomials orthogonal with the Gaussian weight �. The coefficients ap are

then obtained from the moments of f . From the definition of temperature, a1 vanishes and

the first correction a2, which is related to the kurtosis of the velocity distribution, has been

computed in any dimension neglecting non-linear contributions of O
(

a2
2

)

; in dimension 1, it

has the expression

a2 ≡ 4

(

〈v4〉
3〈v2〉2

− 1

)

=
16(1 − 2α2)

129 + 30α2
. (11)

We note a peculiarity of dimension 1: a2 does not vanish as α→ 1, unlike in space dimensions

d > 1 in which limα→1 a2 = 0. This is a hint that the quasi-elastic limit is more singular in

d = 1 than in higher dimensions.

Besides, it was shown in [4] how to determine the high-energy tail of the velocity

distribution. We briefly recall the argument. The ε-dependent gain term in the collision
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integral appearing in the Boltzmann equation (7) is a priori neglected. In the large velocity

limit the resulting equation for the steady-state distribution Ps(v) reads

D
d2Ps

dv2
= −n|v|Ps(v) (12)

which yields a high-energy tail of the form exp
(

−2
3

√
n/D|v|3/2

)

. Then one verifies that

the gain term is indeed negligible (as would be the case for any solution decaying faster

than exponentially). The 3/2 exponent is independent of the space dimension; therefore the

behaviour of the large-c tail is singular for ε → 0, with an exponent jumping abruptly from

3/2 for ε > 0 to 2 for ε = 0 (for dimensions larger than 1, the elastic system equilibrates and

thus f is a Gaussian).

2.1.3. Numerical solution of the homogeneous Boltzmann equation. We have obtained

numerically the exact solution of the Boltzmann equation, i.e. the velocity distributions, in the

homogeneous situation, for various values of the restitution coefficient. Two methods have

been used: the well known DSMC method and another powerful iterative method, recently

introduced by Biben et al [26]. Let us recall the idea of this method.

The stationary velocity distribution can be obtained numerically through a direct iteration

of equation (7). From an initial guess for the velocity distribution P(v) (a step function

for example), the time evolution can be computed from equation (7) until the steady state is

reached. Taking advantage of the v → −v symmetry of the velocity distribution, we only

need to know the values of P for positive velocities. P(v) is then discretized from v = 0

to v = (Nv − 1)dv, where typically Nv = 1000 and dv = 0.01
√

D
√
π/(n(1 − α2)). The

right-hand side of equation (7) can be estimated using the Simpson integration, combined with

a quadratic interpolation method to estimate the values of

P

(

2v − (1 − α)v′

1 + α

)

whose argument does not necessarily coincide with the velocity discretization. An implicit

method is used to solve the diffusion equation: if P t+dt
i denotes the new estimate of P(i dv)

at time t + dt, the left-hand side of equation (7) can be written in the time–velocity discretized

space:

dP

dt
−D∂2

vP →
P t+dt
i − P t

i

dt
−D

P t+dt
i+1 − 2P t+dt

i + P t+dt
i−1

dv2

which leads to the following equation for P t+dt
i :

(

1 + 2D
dt

dv2

)

P t+dt
i −D

dt

dv2

(

P t+dt
i+1 + P t+dt

i−1

)

= P t
i + dt{RHS of (7) at site i and time t}.

(13)

We recognize a band tridiagonal matrix on the left-hand side which can easily be inverted

numerically to provide the new value of the velocity distribution at time t + dt. Normalization

of the velocity distribution is enforced at each time step.

Figure 2 shows a perfect agreement between the two methods, the iterative method

allowing much higher precision to be reached (see the y-scale). The obtained distributions

show strong deviations from the Gaussian, just as in the MD case. However, the distributions

obtained by MD and DSMC agree only in the α → 1 limit, as was expected because of the

spatial inhomogeneities appearing in the MD simulations.

The measure of the fourth cumulant a2(the first correction to the Gaussian) shows excellent

agreement between the DSMC data and the kinetic theory predictions from equation (11),
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Figure 2. Velocity distributions obtained by DSMC with 25 000 particles (symbols) or by the

iteration method (lines), in a log-linear scale, for restitution coefficients 0.1, 0.6, 0.9 and 0.99

(from top to bottom). Inset: same distributions on a linear scale, for restitutions 0.6 (stars) and

0.99 (squares).
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Figure 3. Values of the second Sonine coefficient a2, obtained by measuring the fourth cumulant

of f (c) in DSMC simulations (circles), together with the kinetic theory prediction equation (11)

(line). Inset: MD values for a2 (squares) and kinetic theory prediction (line).

over the whole range of inelasticities (see figure 3). In the limit α → 1, a2 obtained in MD

coincides with the prediction of equation (11), namely, a2 → −16/159. Moreover, the full

velocity distribution function coincides with that obtained in DSMC (see figure 5 below).

However, as α decreases, the MD results significantly deviate from their molecular chaos

counterparts (see the inset to figure 3)

Moreover, plotting the velocity distribution versus either c3/2 or c3, as in figure 4,

shows that the high-energy tail obtained by the DSMC method has a shape going from

the predicted exp(−Ac3/2) at large inelasticity to an exp(−Ac3) behaviour at low inelasticity.

For intermediate values of α, a fit to a form exp(−AcB) would lead to intermediate values

of B. Since the real high-energy limit has to follow an exp(−Ac3/2) law [4], this shows that



470 A Barrat et al

0 100 200 300

c
3

10
−8

10
−6

10
−4

10
−2

10
0

f(
c)

0 10 c
3/2

10
−8

10
−6

10
−4

10
−2

10
0

f(
c)

Figure 4. Velocity distributions, obtained by DSMC with 25 000 particles, versus c3 and in the

inset versus c3/2, for restitution coefficients 0, 0.1, 0.6, 0.707, 0.9, 0.99 and 0.999 (from top to

bottom): at low restitution coefficient, f (c) shows an exp(−Ac3/2) behaviour, and an exp(−Ac3)

behaviour as α goes to 1.

for low ε, this limit is far beyond the reach of usual numerical methods, and emphasizes the

fact that the range over which the large-c limit is valid depends on the inelasticity. This is an

important point since experiments have a limited precision, and the distribution function will

have a practically vanishing weight long before this range is reached. In the next subsection

we will see that the investigation of the α → 1 limit and the use of the iterative method allow

us to understand the exp(−Ac3) form obtained for α close to 1.

2.2. Small inelasticity limit

For small values of ε ≡ 1 − α, the Boltzmann equation takes the form

∂tP(v, t) = D∂2
vP(v, t) + nε

∫ ∞

−∞
dw|v − w|P(w, t)

×
[

P(v, t) +
1

2
(v − w)∂vP(v, t)

]

+ O(ε2). (14)

The ε → 0 limit can now be taken by introducing a scaled velocity x = (nε/D)1/3v.

Using x, the Boltzmann equation yields an equation for the scaled distribution function

φ(x) = (nε/D)1/3Ps(v) (where Ps(v) is the stationary distribution limt→∞ P(v, t)):

d2φ

dx2
+

∫ ∞

−∞
dy|x − y|φ(y)

[

φ(x) +
1

2
(x − y)

dφ

dx

]

= 0 (15)

and we can integrate this equation twice to obtain

φ(x) = C exp

{

−
1

6

∫ ∞

−∞
dy|y − x|3φ(y)

}

. (16)

Here C is a constant determined from the normalization condition
∫

dx φ(x) = 1. We have

used the above equation to implement an iterative scheme to find numerically the corresponding
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Figure 5. Symbols: velocity distributions obtained numerically at α = 0.999 by MD and DSMC

simulations; the solid line is the numerical solution φ(x) of equation (16), corresponding to the

α → 1 limit, and here rescaled in order to have the same variance as the simulation data (〈c2〉= 1).

A perfect agreement between the three sets of data is observed. The dotted line is the Gaussian

distribution.

velocity distribution. Moreover, as already pointed out in [13], one can easily see that the

large |x| limit is given by

φ(x) = Ce− 1
6
|x|3 (17)

while at small x, the function can be approximated by a Gaussian

φ(x) = C̃ e− 1
2
λx2

(18)

with λ =
∫

dx |x|φ(x) ≈ 0.785 determined from the numerical solution of equation (16)

and C̃ = C exp
(

−
∫

dx|x|3φ(x)/6
)

. The full numerical solution (displayed in figure 5) can

also be investigated for locating the place where the crossover between the Gaussian and the

exp(−|x|3/6) type behaviour takes place. We find that the crossover range deduced from

comparing the asymptotics (17) and (18), xcr = 3λ � 2.36, is actually in agreement with

numerical observations of the full function. Thus returning to non-scaled velocities, we can

see that the crossover velocity v(1)cr diverges in the ε → 0 limit as

v(1)cr ≈
(

D

nε

)1/3

. (19)

The important consequence of this result is that, for small dissipation, the exp(−Av3) regime

is reached for larger and larger velocities.

At large but finite velocities, an effective exponent can be defined by

n =
d

d ln v
ln

{

−ln

[

P(v)

P (0)

]}

(20)

corresponding to an apparent exp(−Avn) behaviour. The values of n for various inelasticities,

obtained with the iterative method, are displayed in figure 6, together with the α → 1 limit.

The effective exponent, starting from 2 at small velocities, increases and reaches a maximum

at velocities that scale as ε−1/3 for small ε (as v(1)cr ). The height of the maximum, n(1)cr , scales

as 3 − n(1)cr ∼ ε1/3.
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Figure 6. Effective exponent defined by equation (20) for the solution of the Boltzmann equation

obtained by the iterative method and for the numerical solution of the α → 1 limit (upper curve,

obtained from the iterative resolution of equation (16)).

One should note that the above scaling analysis explores only the v ∼ ε−1/3 range of the

velocity space. As already mentioned, for any fixed ε, the large v limit of the distribution

function is a stretched exponential

Ps(v) ∼ exp

{

−
2

3

( n

D

)1/2

|v|3/2
}

(21)

which is indeed observed numerically at relatively low values of α (see figure 4). Comparing

the arguments of the exponents in (17) and (21), one finds a crossover scale diverging as

v(2)cr ≈
(

D

nε2

)1/3

. (22)

The effective exponent displayed in figure 6 indeed decreases at velocities larger than

v(1)cr . For large inelasticities, the n → 3/2 limit of large velocities is observed; however, since

v(2)cr ≈ v(1)cr /ε
1/3, it becomes impossible to observe the asymptotics (21) for small inelasticities,

even for almost realistic values of α, e.g. 0.95 (in experiments, α ∼ 0.8–0.9).

It has to be emphasized that this kind of behaviour is also observed in higher dimensions

(for example, simulations of a two-dimensional heated granular gas with α = 0.8 yield

an almost Gaussian velocity distribution, even if the predicted high-energy behaviour is

exp(−v3/2)); it is therefore to be kept in mind for the comparisons of models with experiments

in which the available precision often does not allow the predicted tails to be reached.

Finally, as already mentioned, it can be seen in figure 5 that, for ε → 0, there is

an excellent agreement between the single particle velocity distribution obtained in MD

simulations (including both the space and velocity correlations) and that derived either from

the asymptotic (ε → 0) distribution function φ(x) or from the Monte Carlo simulation of the

Boltzmann equation.

3. Freely cooling system

3.1. General considerations

In the freely cooling system, no energy is injected and the temperature is monotonically

decreasing with time. The first investigations of the one-dimensional freely evolving gas were
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undertaken in [6–9]; it was shown by molecular dynamics simulations that, depending on the

values of the number of particles and the restitution coefficient, different instabilities could

occur: e.g. at fixed number of particles N, ifα is lower than a threshold, strong clustering occurs

and leads to an inelastic collapse [6]. At larger α, the instability develops more slowly, and

the inelastic collapse is avoided. The temperature then decays according to the rate equation

dT/dt ∝ −T 3/2, i.e. T(t) ∼ t−2 [28], however derived for a homogeneous system, whereas

strong heterogeneities develop in both velocity and space coordinates; a wavy, oscillatory

in time, perturbation appears in a ‘phase-space’ plot (velocity versus position) [7, 8] with a

tendency to form a bimodal velocity distribution.

The choice of a suitable quasi-elastic limit (where ε → 0 and N ∝ 1/ε to avoid the

inelastic collapse) leads to a simplified Boltzmann equation [7, 9–11], which can be understood

using arguments from kinetic theory and hydrodynamics. This equation can be considered

as formally exact as it has also been derived in [12] from the exact BBGKY-like hierarchy

governing the evolution of the distribution [24]. In this quasi-elastic limit, the velocity was

observed to develop a two-hump structure reminiscent of the bimodal velocity distribution

observed in molecular dynamics [7, 9]. Moreover, exact results were derived in the context

of the above-mentioned limit, where it was shown in particular that to leading order in ε, the

velocity distribution consists of two symmetric Dirac peaks [12].

Extensive MD simulations were carried out in [19], using large sizes and probing large

times, starting from a homogeneous situation with an initial given velocity distribution. As

long as the system is homogeneous, the temperature decays according to T(t) ∼ t−2 [28]. As

time evolves, space clustering of particles occurs and a t−2/3 decay is obtained [19]. Since

the number of particles is large, inelastic collapse should then occur; this catastrophic event is

avoided by imposing that the collisions between particles with relative velocity smaller than a

given threshold are elastic (they can equally be chosen to be sticky), and it was checked that

the results do not depend on the chosen threshold. In this respect, the authors of [19] showed

that the one-dimensional inelastic fluid belongs to the ‘universality class’ of the sticky gas,

and advocated a mapping to the Burgers equation to describe the appearing heterogeneities.

Moreover, at large times the rescaled velocity distribution f (c) was found stationary and very

close to a Gaussian up to the available accuracy (see also figure 7), even if the mapping to

the Burgers equation predicts an exp(−Ac3) high-energy tail. In fact, the bimodal structure

of f (c) reported in [7, 9] can also be observed in this case during the transient homogeneous

behaviour, during which spatial heterogeneities and correlations build up, as shown in [29];

moreover, it can be clearly seen only by a convenient choice of the initial velocity distribution.

The importance of spatial heterogeneities and correlations is emphasized in figure 7, where the

rescaled velocity distribution obtained following the prescription put forward by Ben-Naim

et al [19] (that is essentially Gaussian) is compared to that obtained from the homogeneous

Boltzmann equation5. The two-hump structure displayed by the latter appears for α > 0.8 and

becomes more and more pronounced as α increases. In the next subsection, we will investigate

in detail this structure in the ε → 0 limit.

3.2. Small inelasticity limit

We have performed MD simulations using the two possibilities to avoid inelastic collapse

mentioned in section 3.1.

• In figure 8, the top panel displays the results obtained for ε = 5 × 10−4 at various stages

of the evolution: at first the system remains homogeneous but the tendency to form a

5 As expected, the temperature obeys the scaling law T ∝ t−2 in DSMC.
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Figure 7. Rescaled velocity distributions at large times (in the scaling regime) at α= 0.85 obtained

by MD with N = 25 000 (circles) and DSMC (squares) simulations. The solid line is the Gaussian

distribution. In MD simulations, the inelastic collapse has been regularized by considering the
same modified collision rule as in [19].

bimodal velocity distribution is rapidly obtained. The large time situation consists of

two well defined clusters evolving with opposite velocities and yielding a sharply peaked

bimodal velocity distribution (figure 8, bottom panel). In this case, the overall kinetic

energy decay E(t) ∼ t−2 consists in a series of plateau since most of the dissipation occurs

when the two clusters collide [7].

• On the other hand, with the regularization proposed in [19], the duration of the transient

behaviour increases with α, but the large time behaviour of the velocity distribution is

always Gaussian.

It is striking to note that the above two procedures (small number of particles or elastic

collisions at small enough velocities) lead to drastically different behaviour for the decay

of the temperature, the spatial heterogeneities and the velocity distributions. Moreover it is

remarkable that the homogeneous solution of the Boltzmann equation captures the bimodality

of f (c) (see figure 8, bottom panel) associated with a strongly heterogeneous system. In order

to gain an insight into the approach to the limit ε → 0, we devote the remainder of this paper

to the analysis of the scaling properties of the homogeneous non-linear Boltzmann equation.

We expect that for low enough inelasticity, f (c) tends towards two delta peaks at c = ±1,

as predicted in [12]. Performing DSMC simulations for smaller and smaller inelasticities

allow this regime to be approached, and figure 9 shows how the peaks become narrower as α

increases.

As the system cools, the velocity distribution P(v, t) evolves into the Dirac distribution

δ(v). The above numerical results indicate that this distribution actually consists of two

peaks located symmetrically around the velocity origin, at positions decaying as ±(εt)−1.

Moreover, it appears that the results displayed in figure 9 for the rescaled velocity c hide a

self-similar structure, with the width of the peaks scaling as ε1/3, as evidenced in figure 10

where the distributions corresponding to different inelasticities collapse onto a master curve.

The characteristic features of this master curve are investigated below and to this end, we

return to the ε expansion of the Boltzmann equation (14), omitting the Fokker–Planck term

D∂2
vP , since the fluid evolves freely in the present situation.
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Figure 8. Top: velocity–density scatter plots obtained in MD simulations with N = 1000 and
α = 0.9995. Each dot marks the location of a particle in the x–c plane, where x denotes the

position in the simulation box and c denotes the velocity rescaled by the thermal velocity. Starting

from an initial Gaussian distribution of velocities and random initial positions, the four snapshots

correspond, from left to right and top to bottom, to four instantaneous configurations observed

after respectively 4 × 103, 2 × 104, 4 × 104 and 6 × 104 collisions per particle. Bottom: velocity

statistics obtained in MD by averaging in the late time regime for the same initial situation and

parameters as above, compared to its ‘mean-field’ counterpart provided by DSMC simulations at

the same inelasticity (α = 0.9995).

From the evolution of temperature (T ∝ ε−2t−2), it appears that a convenient scaling

variable is x ≡ nεtv with a corresponding probability distribution function � related to

P(v, t) throughP(v, t) = nεt�(nεvt). To leading order in ε, the Boltzmann equation is then

brought into the simple form

d(x�)

dx
=

∫

dy|x − y|�(y)
[

�(x) +
1

2
(x − y)

d�

dx

]

(23)

the solution of which reads [12]

�(x) = 1
2
[δ(x − 1) + δ(x + 1)]. (24)
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Figure 9. Rescaled velocity distributions at α = 1 − ε with ε = 10−2, 10−3 and 10−4 obtained by
DSMC simulations.
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Figure 10. Self-similarity of the rescaled distribution functions for small inelasticities.

Looking for the self-similar structure of the peaks shown in figures 9 and 10 requires pushing

the ε-expansion one order further compared to equation (23),

d(x�)

dx
=

∫

dx ′|x − x ′|�(x ′)

[

1

(1 − ε/2)2
�

(

x +
ε

2 − ε
(x − x ′)

)

−�(x)

]

(25)
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and considering solutions for� of the form

�(x) = ε−ν
[

1

2
ψ

(

1 + b(ε)x

εν

)

+
1

2
ψ

(

1 − b(ε)x

εν

)]

. (26)

In equation (25), the positive function ψ has the interpretation of the (ε-rescaled) velocity

distribution of left (or right) movers, and b(ε) = b0 + ενb1 + ε2νb2. Substituting the scaling

assumption for � into (25) and performing the change of variables x = −1 + ενy, we obtain

a non-linear integro–differential equation for ψ(y):

a(ε)[ε1−ν(yψ)′ − ε1−2νψ ′)] =
ε

2

∫

dy ′|y − y ′|ψ(y ′)

(

ψ(y) +
1

2
(y − y ′)ψ ′(y)

)

+
ε−ν

2

∫

dy ′|2 − εν(y + y ′)|ψ(y ′)

×
[

−ε1−νψ ′ +
ε

2
(y + y ′)ψ ′ + εψ +

1

2
ε2−2νψ ′′

]

(27)

where terms of the form ψ(−2ε−ν + y) have been neglected, anticipating that they will be

exponentially small. Terms of order ε2−2ν and ε1+ν were equally neglected. Assuming again

thatψ will have a sharp decay, we write that under the integrals |2−εν(y+y ′)| = 2−εν(y+y ′).

Identifying on both sides of equation (27) terms of order ε1−2ν and ε1−ν leads, respectively, to

b0 =
∫

dy ′ψ(y ′) (28)

which is the normalization condition, and

ψ ′(y)

{

b1 +

∫

dy ′y ′ψ(y ′)

}

= 0 (29)

which relates b1 to 〈y〉 (a constant function ψ cannot be a solution). We choose to impose

b1 = −〈y〉ψ = 0, where the notation 〈· · ·〉ψ stands for an average with respect to weight

function ψ . Then one notices that the expansion is consistent only with the condition that the

ε2−3ν term can be cancelled by terms of order ε, which imposes that

ν = 1
3

(30)

and we recover the exponent 1/3 that was needed to collapse the velocity distributions at

several small inelasticities, as done empirically in figure 10. Finally we equate to zero the

terms of order ε to obtain the following integro–differential equation:

b2ψ
′(y) =

∫

dy ′ψ(y ′)

[

1

2
ψ(y)(|y − y ′| − (y + y ′))

+
1

4
ψ ′(y)(|y − y ′|(y − y ′)− (y + y ′)2) +

1

2
ψ ′′(y)

]

(31)

which we integrate once, remembering that b0 = 〈1〉ψ,

b0ψ
′(y) + 2b2ψ(y) +

1

2
ψ(y)

∫

dy ′ψ(y ′)(|y − y ′|(y − y ′)− (y + y ′)2) = 0. (32)

We know from the direct analysis of the ε → 0 limit of the scaling function that b0 = 1, which

we use from here on. At this stage we note that integrating the above equation and using

〈y〉ψ = 0 leads to

2b2 = 〈y2〉ψ . (33)
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Conversely, setting b2 = 1
2
〈y2〉ψ will automatically enforce 〈y〉ψ = 0. We rewrite the equation

for ψ in the form

lnψ(y) = lnC − 2b2y +
1

6

∫

dy ′ψ(y ′)[|y − y ′|3 − (y + y ′)3]. (34)

We now investigate the asymptotics of ψ . The left tail of the distribution at large negative

values of y reads

y → −∞ ψ(y) � C exp
[

1
3
y3 + o(1)

]

. (35)

This sharp decay at y → −∞ a posteriori justifies the approximations made in the course of

the calculation. Note that omitting the first line on the rhs of equation (27) leads to exactly

the same behaviour of the tail of the distribution. This has a physical interpretation: collisions

between particles heading in the same direction can be neglected at large velocities. Opposite-

velocity collisions are responsible for the form of the tail at large velocities. o(1) represents

contributions going exponentially fast to 0.

The right tail y → +∞ decays exponentially fast as

ψ(y) � C′ exp
{

−2〈y2〉ψy + o(1)
}

with C ′ = C exp
{

− 1
3
〈y3〉ψ

}

(36)

which again justifies the assumptions made so far. o(1) again represents contributions going

exponentially fast to 0. For completeness we mention the y → 0 behaviour of the scaling

function:

ψ(y) = C′′ exp
{

−
y

2
〈3s2 + |s|s〉ψ + y2〈|s|〉ψ ) + O(y3)

}

with

C ′′ = C exp

{

1

6
〈|y|3 − y3〉ψ

}

. (37)

As a side remark, the integro–differential equation for ψ can be cast in the form of an

ordinary fourth-order differential equation

(lnψ)(iv) = ψ. (38)

Finally, we note that numerical iteration of the integro–differential equation (32) converges

extremely rapidly. This allows us to determine the numerical constants C, 〈y2〉ψ and 〈y3〉ψ
appearing in the asymptotics. The results obtained from this numerical scheme are compared

with those of the DSMC method in figure 11, and show a quantitative agreement which

improves as ε is lowered in DSMC, as expected (see the dotted line at ε = 10−4, closer to the

asymptotic scaling form for ψ than the dashed line corresponding to ε = 10−3).

4. Conclusion

We have investigated the velocity statistics of one-dimensional granular fluids of inelastic

particles with a particular emphasis on scaling properties in the elastic limit, both in the absence

of an external forcing and in a system heated by random accelerations. For the heated system,

we showed that the expected high-energy tail ∼exp(−Ac3/2) yields the correct asymptotic

behaviour at finite inelasticity ε, but this asymptotics is masked by a tail ∼exp(−Bc3) for

ε→ 0, with the rescaled crossover velocity between the two regimes scaling as ε−1/3. This

shows that the limits of high velocity and low inelasticity do not commute: if ε → 0 is taken

before the high-energy limit, the distribution exhibits an asymptotic ∼exp(−Ac3) large-c

behaviour:

f (ε, c)
c→∞∝ exp(−Ac3/2) for any ε �= 0 (39)
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Figure 11. Comparison of the scaling functionψ(y) (see text for definition) obtained within DSMC

(ε = 10−4, dotted line and ε = 10−3, dashed line), with the solution of equaton (32) corresponding

to the quasi-elastic limit.

whereas

lim
ε→0

f (ε, c)
c→∞∝ exp(−Ac3). (40)

Thanks to a high-precision iterative scheme allowing the homogeneous non-linear Boltzmann

equation to be solved, we could obtain the velocity distribution over 30 orders of magnitude at

arbitrary ε, and thus define the apparent exponent n of the stretched exponential law for large

c [f (c) ∝ exp(−Ccn)]. However, even with such precision, the crossover between the two

behaviours (39) and (40) is difficult to investigate (see figure 6).

For the freely evolving 1D granular fluid, we have investigated in detail the structure

and scaling properties of the two-hump velocity distribution exhibited by the solution of the

homogeneous cooling state of the Boltzmann equation, both numerically and analytically.

Such a bimodal distribution captures an essential feature of the velocity distributions obtained

in molecular dynamics simulations for parameters hindering the inelastic collapse (i.e.

extremely small ε or small systems). In this respect, a perturbative Sonine expansion in

the spirit of that put forward in [4] fails at small ε, whereas such an expansion turned out

to be remarkably accurate for the heated gas (see figure 3). In both cases it would predict a

non-vanishing kurtosis correction a2 for ε → 0, which is a peculiarity of d = 1; as soon as

d > 1, a2 vanishes for small inelasticities, with or without forcing.

Given the striking features of the velocity distributions obtained in dimension 1, it would

be of interest to perform the same analysis for realistic space dimensions d> 1, and to quantify

more precisely space and velocity correlations [30], for both the heated and unforced systems,

in order to understand in particular which of these features survive.
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