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Abstract. Motivated by the empirical analysis of the air transportation system,
we define a network model that includes geographical attributes along with
topological and weight (traffic) properties. The introduction of geographical
attributes is made by constraining the network in real space. Interestingly,
the inclusion of geometrical features induces non-trivial correlations between the
weights, the connectivity pattern and the actual spatial distances of vertices. The
model also recovers the emergence of anomalous fluctuations in the betweenness-
degree correlation function as first observed by Guimerà and Amaral (2004 Eur.
Phys. J. B 38 381). The presented results suggest that the interplay between
weight dynamics and spatial constraints is a key ingredient in order to understand
the formation of real-world weighted networks.
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1. Introduction

The empirical evidence from studies on systems belonging to areas as diverse as social
sciences, biology and computer science have shown that the usual paradigm of random
graphs is often not well suited to describe real world networks [1]–[4]. In particular, in
a wide range of networks the occurrence of vertices with a very large degree (number of
links to other vertices) is very likely. The presence of these ‘hubs’ often goes along with
very large degree fluctuations. The large topological heterogeneity associated with these
features is statistically expressed by the presence of heavy-tailed degree distributions with
diverging variance that have a very strong impact on the networks’ physical properties
such as resilience and vulnerability, or the propagation of pathogen agents [5]–[8].

The purely topological definition of networks, however, misses important attributes
which are frequently encountered in real-world networks. In the first instance, networks
are far from Boolean structure and are better represented as weighted graphs with the
intensity of links that may vary over many orders of magnitude. Indeed, in many graphs
ranging from food-webs to metabolic networks, large variations of the link intensities are
empirically observed [10]–[13], [9, 14, 15]. Notably, the statistical properties of weights
indicate non-trivial correlations and association with topological quantities [14]. Finally,
the correlation between weights on different links is at the origin of the existence of
pathways which are particularly important in metabolic networks for example [15].
Another important element of many real networks is their embedding in the real space.
For instance, most people have their friends and relatives in their neighbourhood,
transportation networks depend on distance, and many communication networks devices
have short radio range [16]–[20]. A particularly important example of such a ‘spatial’
network is the Internet which is a set or routers linked by physical cables with different
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lengths and latency times [21, 4]. An analogous situation is faced in the air transportation
network with routes covering very different distances. The length of the link is a very
important quantity usually associated with an intrinsic cost in the establishment of the
connection. If the cost of a long-range link is high, most of the connections starting
from a given node will go to the closest neighbours in the embedding space. Long-
range links, on the other hand, correspond usually to connections towards already well
connected nodes (hubs). This seems natural in the case of the air transportation network
for instance: short connections go to small airports while long distance flights are directed
preferentially towards large airports (i.e. well connected nodes). It is therefore natural
to find that spatial constraints can have important consequences on the topology of the
resulting network [22]–[24].

Recently, the raising interest on the dynamics and function of complex networks has
fostered studies going beyond the simple topological structure. In particular, models
of complex networks in which the diversity of weights is taken into account have been
formulated having in mind growing networks where the dynamics is driven by the intensity
of the weights along with a reinforcement mechanism [25]–[28]. Other models have focused
on more geometrical mechanisms or somewhat different dynamical rules [29]–[32]. These
models, however, are not able to reproduce all of the features observed in real world
networks. For instance, the anomalous centrality fluctuations observed in [23] do not find
a rationalization in models based only on topology and weight properties. On the other
hand, some of these interesting and non-trivial features can result from the introduction of
spatial attributes in the models’ construction [23]. In this paper, we discuss the interplay
of the three aforementioned ingredients (heterogeneous topology, weights and spatial
constraints) in a model of a growing network combining these ingredients at once. The
proposed model is obtained as the embedding of the weighted growing network introduced
in [25] in a two-dimensional geometrical space. Spatial constraints are translated into a
preference for short links, and combined with the coupling between the evolution of the
network and the dynamical rearrangement of the weights. This mechanism naturally
leads to the appearance of many features observed in real-world networks, in particular
the nonlinear correlations between weights and topology, and the large fluctuations of the
betweenness centrality.

The paper is organized as follows. In section 2, we briefly review some important
empirical results for the North American airline network, highlighting the most salient
effects on space on different quantities. Sections 3 and 4 are devoted to the presentation
and to the study of the spatial weighted model, stressing the effect of the spatial embedding
and constraints on the properties of the resulting network. In section 5, we present a
summary of the results and conclusions about large network modelling.

2. A case study: space, topology and traffic in the North American airline network

The airline transportation infrastructure is a paramount example of a large scale network
which can be represented as a complex weighted graph: the airports are the vertices of
the graph and the links represent the presence of direct flight connections among them.
The weight on each link is the number of maximum passengers on the corresponding
connection. The characteristics of the world-wide air-transportation network using the
International Air Transportation Association (IATA) database [35] have been presented
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Figure 1. Cumulative degree distribution Pc(k) for the North American network.
The straight line indicates a power-law decay with exponent γ − 1 = 0.9.

in [14]. The network is made of N = 3880 vertices and E = 18 810 edges and shows
both small world and scale-free properties as also confirmed in different datasets and
analyses [12, 13, 33, 23]. In particular, the average shortest path length, measured as
the average number of edges separating any two nodes in the network shows the value
〈�〉 = 4.37, very small compared to the network size N . The degree distribution, takes the
form P (k) = k−γf(k/kx), where γ � 2.0 and f(k/kx) is an exponential cut-off function.
The degree distribution is therefore heavy tailed with a cut-off that finds its origin in
the physical constraints on the maximum number of connections that a single airport can
handle [33, 23, 34]. The airport connection graph is therefore a clear example of a small
world network showing a heavy-tailed degree distribution and heterogeneous topological
properties.

The world-wide airline network necessarily mixes different effects. In particular
there are clearly two different scales, global (intercontinental) and domestic. The
intercontinental scale defines two different groups of travel distances and for the statistical
consistency we eliminate this specific geographical constraint by focusing on a single
continental case. Namely, in the following we will consider the North American network
constituted of N = 935 vertices with an average degree 〈k〉 ≈ 8.4 and an average shortest
path � ≈ 4. The statistical topological properties of the North American network are
consistent with the world-wide one as we will see in the forthcoming analysis.

2.1. Topology and weights

The North American network presents a degree distribution statistically consistent with
the world-wide airline network. Indeed, we also observe (figure 1) in this case a power-
law behaviour on almost two orders of magnitude followed by a cut-off indicating the
maximum number of connections possible due to limited airport capacity and to the size
of the network considered.
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Figure 2. Weight and distance strengths versus degree for the North American
network. The dashed lines correspond to the power laws βd � 1.4 and βw � 1.7.

The existence of a broad degree distribution signals a strong heterogeneity of the
network at the topological level which exists also at the weight level. A first indication
on the weight heterogeneity is given by the study of the weight strength of a node i as
defined by [36, 14]

sw
i =

∑

j∈V(i)

wij (1)

where the sum runs over the set V(i) of neighbours of i. The strength generalizes the
degree to weighted networks and in the case of the air transportation network quantifies
the traffic of passengers handled by any given airport. This quantity obviously depends
on the degree k and increases (linearly) with k in the case of random uncorrelated weights
of average 〈w〉. A relation between the average strength sw(k) of nodes of degree k of the
form

sw = Akβw , (2)

with an exponent βw > 1, or βw = 1 but A �= 〈w〉 is then the signature of non-trivial
statistical correlations between weights and topology. This is indeed what we observe in
the North American air transportation network with βw � 1.7 (figure 2).

2.2. Spatial analysis

The spatial attributes of the North American airport network are embodied in the physical
spatial distance, measured in kilometres or miles, characterizing each connection. Figure 3
displays the histogram of the distances of the direct flights. These distances correspond
to Euclidean measures of the links and clearly show a fast decaying behaviour reasonably
fitted by an exponential. The exponential fit gives a value for a typical scale of the order
1000 km. The origin of the finite scale can be traced back to the existence of physical and
economical restrictions on airline planning in a continental setting.
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Figure 3. Distribution of distances (in km) between airports linked by a direct
connection for the North American network. The straight line indicates an
exponential decay with scale of order 1000 km.

Since space is an important parameter in this network, another interesting quantity
is the distance strength of i

sd
i =

∑

j∈V(i)

dij (3)

where dij is the Euclidean distance. This quantity gives the cumulated distances of all the
connections from (or to) the considered airport. Similarly to the usual weight strength,
uncorrelated random connections would lead to a linear behaviour of sd(k) ∝ k while we
observe in the North American network a power-law behaviour

sd(k) ∼ kβd (4)

with βd � 1.4 (figure 2). This result shows the presence of important correlations between
topology and geography. Indeed, the fact that the exponents appearing in the relations (2)
and (4) are larger than one have different meanings. While equation (2) means that larger
airports have connections with larger traffic, (4) implies that they also have farther-
reaching connections. In other terms, the traffic (and the distance) per connection is not
constant but increases with k. As intuitively expected, the airline network is an example
of a very heterogeneous network where the hubs have at the same time large connectivities,
large weight (traffic) and long-distance connections [14], related by super-linear scaling
relations.

2.3. Assortativity and clustering

A complete characterization of the network structure must take into account the level of
degree correlations and clustering present in the network. Correlations can be probed by
inspecting the average degree of the nearest neighbours of a vertex i

knn,i =
1

ki

∑

j∈V(i)

kj. (5)
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Averaging this quantity over nodes with the same degree k leads to a convenient measure
to investigate the behaviour of the degree correlation function [4, 37]

knn(k) =
1

Nk

∑

i/ki=k

knn,i, (6)

where Nk is the number of nodes of degree k. This quantity (6) is related to the correlations
between the degrees of connected vertices since on average it can be expressed as

knn(k) =
∑

k′

k′P (k′|k), (7)

where P (k′|k) is the conditional probability that a given vertex with degree k is linked to
a vertex of degree k′. If the degrees of neighbouring vertices are uncorrelated, P (k′|k) is
only a function of k′ and thus knn(k) is a constant. When correlations are present, two
main classes of possible correlations have been identified: assortative behaviour if knn(k)
increases with k, which indicates that large degree vertices are preferentially connected
with other large degree vertices; and disassortative if knn(k) decreases with k [38]. The
weighted generalization of the above quantity, the affinity, reads as [14]

kw
nn,i =

1

si

∑

j∈V(i)

wijkj . (8)

In this case, we perform a local weighted average of the nearest neighbour degree according
to the normalized weight of the connecting edges, wij/si. This definition implies that
kw

nn,i > knn,i if the edges with the larger weights are pointing to the neighbours with larger
degree and kw

nn,i < knn,i in the opposite case. The kw
nn,i thus measures the effective affinity

to connect with high or low degree neighbours according to the magnitude of the actual
interactions. As well, the behaviour of kw

nn(k), i.e. the affinity of vertices of degree k, marks
the weighted assortative or disassortative properties considering the actual interactions
among the system’s elements.

Information on the local connectedness is provided by the clustering coefficient ci

defined for any vertex i as the fraction of connected neighbours of i [39]. The average
clustering coefficient C = N−1

∑
i ci thus expresses the statistical level of cohesiveness

measuring the global density of interconnected vertices’ triples in the networks, and the
function C(k) restricted to classes of vertices with degree k allows us to gather more
detailed information. A possible weighted definition of the clustering coefficient is provided
by the expression

cw(i) =
1

si(ki − 1)

∑

j,h∈V(i)

(wij + wih)

2
ajh, (9)

where ajh is equal to unity if j and h are linked, and zero otherwise. The quantity cw(i)
takes into account the weight of the two participating edges of vertex i for each triple
formed in the neighbourhood of vertex i; it measures the relative weight of the triangles
in the neighbourhood of a vertex i with respect to the vertex’ strength [14]. Cw and Cw(k)
are defined as the average over all nodes and over nodes of degree k, respectively. It is
worth remarking that alternative definitions of the weighting scheme for clustering have
been proposed in the literature [40].

doi:10.1088/1742-5468/2005/05/P05003 7

http://dx.doi.org/10.1088/1742-5468/2005/05/P05003


J.S
tat.M

ech.
(2005)

P
05003

The effects of spatial constraints on the evolution of weighted complex networks

10
2

k nn
 , 

k nn w

knn

knn

 w

10
0

10
1

10
2

k
10

-1

C
(k

),
 C

w
(k

)

C(k)
C

w
(k)

Figure 4. Assortativity and clustering for the North American network. Circles
correspond to topological quantities while squares are for affinity and weighted
clustering.

Figure 4 displays for the North American airport network the behaviour of these
various quantities as a function of the degree. An essentially flat knn(k) is obtained and
a slight disassortative trend is observed at large k, due to the fact that large airports
have in fact many intercontinental connections to other hubs which are located outside
North America and are not considered in this ‘regional’ network. The clustering is very
large and slightly decreasing at large k. This behaviour is often observed in complex
networks and is here a direct consequence of the role of large airports that provide non-
stop connections to different regions which are not interconnected. Moreover, weighted
correlations are systematically larger than the topological ones, signalling that large
weights are concentrated on links between large airports which form well interconnected
cliques (see also [14] for more details).

2.4. Betweenness centrality

A further characterization of the network is provided by considering quantities that take
into account the global topology of the network. For instance, the degree of a vertex
is a local measure that gives a first indication of its centrality. However, a more global
approach is needed in order to characterize the real importance of various nodes. Indeed,
some particular low-degree vertices may be essential because they provide connections
between otherwise separated parts of the network. In order to take properly into account
such vertices, the betweenness centrality (BC) is commonly used [41, 43, 42, 44]. The
betweenness centrality of a node v is defined as

g(v) =
∑

s �=t

σst(v)

σst
, (10)
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where σst is the number of shortest paths going from s to t and σst(v) is the number
of shortest paths going from s to t and passing through v. This definition means that
central nodes are part of more shortest paths within the network than peripheral nodes.
Moreover, the betweenness centrality gives in transport networks an estimate of the traffic
handled by the vertices, assuming that the number of shortest paths is a zeroth order
approximation to the frequency of use of a given node. It is generally useful to represent
the average betweenness centrality for vertices of the same degree

g(k) =
1

Nk

∑

v/kv=k

g(v). (11)

For most networks, g(k) is strongly correlated with the degree k. In general, the larger
the degree the larger the centrality. For scale-free networks it has been shown that the
centrality scales with k as

g(k) ∼ kµ, (12)

where µ depends on the network [42, 44]. For some networks, however, the BC fluctuations
around the behaviour given by equation (12) can be very large and ‘anomalies’ can occur,
in the sense that the variation of the centrality versus degree is not a monotonic function.
Guimerà and Amaral [23] have shown that this is indeed the case for the air-transportation
network. This is a very relevant observation in that very central cities may have a relatively
low degree and vice versa. In figure 5 we report the average behaviour along with the
scattered plot of the betweenness versus degree of all airports of the North American
network. Also in this case we find very large fluctuations with a behaviour similar to
those observed in [23]. Interestingly, Guimerà and Amaral have put forward a network
model embedded in real space that considers geopolitical constraints. This model appears
to reproduce the betweenness centrality features observed in the real network, pointing
out the importance of space as a relevant ingredient in the structure of networks. In the
following we focus on the interplay between spatial embedding, topology and weights in
a simple general model for weighted networks in order to provide a modelling framework
considering these three aspects at once.

3. The model

Early modelling of weighted networks just considered weight and topology as uncorrelated
quantities [36]. This is not the case in real world network, where a complex interplay
between the evolution of weights and topological growth does exist. For instance,
if a new airline connection between two airports is created, it will generally provoke
a modification of the existing traffic of both airports. In general, it will increase
the traffic activity depending on the specific nature of the network and on the local
dynamics. This effect is introduced in the modelling of growing networks by the
mechanism of a strength preferential attachment together with a dynamical redistribution
of weights. Following this strategy it is possible to produce weighted networks with broad
distributions of weights, connectivities, and strengths, and correlations between weights
and topology [25, 26].

Here we consider a weighted growing network whose nodes are embedded in a two-
dimensional space. As in the weighted model of [25], it is reasonable to think that a newly
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Figure 5. Scatter-plot of the betweenness centrality versus degree for nodes of
the North American air-transportation network. The red squares correspond to
the average BC versus degree.

created node n will establish links towards pre-existing nodes with heavy traffic or strength
(hubs). Costs are however associated with distances and there is a trade-off between the
need to reach a hub in a few hops and the connection costs. The cost naturally increases
with the distance, implying that the probability of establishing a connection between the
new node n and a given vertex i decays as a function of the increasing Euclidean distance
dni. As in the case of topological preferential attachment (i.e. connecting probability
proportional to the degree [45]), this trade-off can be expressed in two different ways:
the connecting probability can decrease either as a power law of the distance [46]–[48]
or as an exponential with a finite typical scale [22] as seems more natural for networks
such as transportation networks (see figure 3) or technological networks [49]. All the
effects described in the next paragraphs are obtained in the case of an exponential decay
exp(−dni/rc) but are also present in the case of a power law d−a

ni (the effect of a decreasing
scale rc is qualitatively the same as the effect of an increasing exponent a). Eventually,
the creation of new edges will introduce new traffic which will trigger perturbations in the
network. This model therefore consists of two combined mechanisms.

(i) Growth. We start with an initial seed of N0 vertices randomly located (with uniform
distribution) on a two-dimensional disc (of radius L) and connected by links with
assigned weight w0. At each time step, a new vertex n is placed on the disc at a
randomly assigned position xn (still according to a uniform distribution). This new
site is connected to m previously existing vertices, choosing preferentially nearest
sites with the largest strength. More precisely, a node i is chosen according to the
probability

Πn→i =
sw

i e−dni/rc

∑
j sw

j e−dnj/rc
, (13)
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where rc is a typical scale and dni is the Euclidean distance between n and i. This
rule of strength driven preferential attachment with spatial selection generalizes the
preferential attachment mechanism driven by the strength to spatial networks. Here,
new vertices connect more likely to vertices which correspond to the best interplay
between Euclidean distance and strength.

(ii) Weights dynamics. The weight of each new edge (n, i) is fixed to a given value w0 (this
value sets a scale so we can take w0 = 1). The creation of this edge will perturb the
existing interactions and we consider local perturbations for which only the weights
between i and its neighbours j ∈ V(i) are modified

wij → wij + δ
wij

sw
i

. (14)

After the weights have been updated, the growth process is iterated by introducing a new
vertex, i.e. going back to step (i) until the desired size of the network is reached.

The previous rules have simple physical and realistic interpretations. Equation (13)
corresponds to the fact that new sites try to connect to existing vertices with the largest
strength, with the constraint that the connection cannot be too costly. This adaptation
of the rule ‘busy get busier’ introduced in [25, 26] allows us to take into account physical
constraints. The weights’ dynamics equation (14) expresses the perturbation created by
the addition of the new node and link. It yields a global increase of w0 +δ for the strength
of i, which will therefore become even more attractive for future nodes.

The value of δ characterizes the susceptibility of the network. If δ < w0, the new
link does not have a large influence. The case δ ≈ w0 corresponds to situations for which
the new created traffic (on the new link n − i) is transferred onto the already existing
connections in a ‘conservative’ way. Finally, δ > w0 is an extreme case in which a new edge
generates a sort of multiplicative effect that is bursting the weight or traffic on neighbours.

The model contains two relevant parameters: the ratio between the typical scale and
the size of the system η = rc/L, and the ability to redistribute weights, δ. Depending on
the value of η and δ we obtain different networks whose limiting cases are summarized in
figure 6. More precisely, we expect the following.

• For η 
 1, the effect of distance is negligible and we recover the properties of
the weighted model of [25]. In this case, one obtains power-law distributions for
connectivities and strengths with exponent γ = (4δ + 3)/(2δ + 1), as well as for the
weights (exponent α = 2 + 1/δ). The strength and degree are linearly related by
sw(k) � (2δ + 1)k. The effect of the redistribution parameter δ is to broaden the
various probability distributions, and to increase the correlations between topology
and weights. Moreover, no correlations are introduced between the topology of the
network and the underlying two-dimensional space, so that the distance strength sd

grows simply linearly with the degree.

• When η decreases, additional constraints appear and have consequences that we will
investigate numerically in the following. Unless otherwise specified, the simulations
correspond to the parameters m = 3 (i.e. an average degree 〈k〉 = 6), and δ = 1.0.
We consider networks of size up to N = 10 000, and the results are averaged over up
to 100 realizations. All the observed dependences in η are essentially the same for
other investigated values of δ.
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Figure 6. Different limiting regimes of the model depending on the value of its
parameters δ and η.

4. Numerical results

4.1. Topology and weights

At a purely topological level, the principal effect of a typical finite scale rc in the creation
of new connections is to introduce a cut-off in the scale-free degree distributions [22]. In
figure 7 we report the degree distribution for a fixed value of δ and decreasing values η. A
more pronounced cut-off appears at decreasing value of η, signalling the onset of a trade-
off between the number of connections and their cost in terms of Euclidean distance.
The small world properties of the network are also modified [22]: on the one hand, the
increasing tendency to establish connections in the geographical neighbourhood favours
the formation of cliques and leads to an increase in the clustering coefficient (see the inset
of figure 8). On the other hand, this same tendency leads to an increase in the diameter
of the graph, measured as the average shortest path distances between pairs of nodes.
The diameter however still increases logarithmically with the size of the graph, as shown
in figure 8: the constructed networks do display the small world property, even if strong
geographical constraints are present.

The correlations appearing between traffic and topology of the network are presented
in figure 9 for two extreme cases of large and small η. Strikingly, the effect of the spatial
constraint is to increase both exponents βw and βd to values larger than unity and,
although the redistribution of the weights (equation (14)) is linear, nonlinear relations
sw(k) and sd(k) as a function of k appear. For the weight strength the effect is not very
pronounced, with an exponent of order βw ≈ 1.1 for η = 0.01, while for the distance
strength the nonlinearity has an exponent of order βd ≈ 1.27 for η = 0.02 (the values of
the exponents βw and βd depend on η; see also [50] for a model yielding βd > 1). We show
in figure 9 the distance strength for two extreme situations for which spatial constraints
are non-existent (η = 10.0) or on the contrary very strong (η = 0.02).

The nonlinearity induced by the spatial structure can be explained by the following
mechanism affecting the network growth. The increase of spatial constraints affects the
trend to form global hubs, since long distance connections are less probable, and drives
the topology towards the existence of ‘regional’ hubs of smaller degree. The total traffic
however is not changed with respect to the case η = ∞, and is in fact directed towards
these ‘regional’ hubs. These medium–large degree vertices therefore carry a much larger
traffic than they would do if global ‘hubs’ were available, leading to a faster increase of
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averaged over 50 networks.

the traffic as a function of the degree, eventually resulting in a super-linear behaviour.
Moreover, as previously mentioned, the increase in distance costs implies that long range
connections can be established only towards the hubs of the system: this effect naturally
lead to a super-linear accumulation of sd(k) at larger degree values.

Spatial constraints have also a strong effect on the correlations between neighbouring
nodes (figure 10). At large η, a disassortative network is created, as is the case in most
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Figure 9. Distance strength versus k for η = 0.02 and η = 10.0 (the networks
are obtained for δ = 1, N = 104, 〈k〉 = 6, and averaged over 100 configurations).
When η is not small, space is irrelevant and there are no correlations between
degree and space. When spatial effects are important (η = 0.02 � 1), non-
linear correlations appear. We observe a crossover for k � 10–20 to a power-law
behaviour and the power-law fit over this range of values of k is shown (full lines).

growing networks [51]; as η decreases, knn decreases, and an increasing range of flat knn(k)
appears: the tendency for small nodes to connect to hubs is contrasted by the need to use
small-range links. For small enough η, a nearly neutral behaviour more similar to what
is actually observed in the airport network is reached. Moreover, the affinity of nodes
to establish strong links to large nodes, measured by kw

nn(k), goes from a flat behaviour
at large η to a slightly assortative one at small η. In all cases, the weighted correlation
kw

nn(k) remains clearly larger than the unweighted knn(k), showing that links to busier
nodes are typically stronger.

A non-trivial clustering hierarchy is already displayed by the model without spatial
constraints. As previously mentioned, the decrease of η leads to an increase of clustering.
Moreover, the weighted clustering is always significantly larger than the unweighted one,
showing that the cliques typically carry an important traffic (see figure 10). These
effects are a general signature of spatial constraints as also observed in a non weighted
network [22].

4.2. Spatial constraints and betweenness centrality

The spatial constraints act at both local and global levels of the network structure by
introducing a distance cost in the establishment of connections. It is therefore important
to look at the effect of space in global topological quantities such as the betweenness
centrality. The betweenness centrality of a vertex is determined by its ability to provide a
path between separated regions of the network. Hubs are natural crossroads for paths and
it is natural to observe a marked correlation between g and k as expressed in the general
relation g(k) ∼ kµ. The exponent µ depends on the characteristics of the network and
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averaged over 100 configurations. Empty symbols refer to topological correlations
while full symbols correspond to the weighted quantities kw

nn and Cw.

we expect this relation to be altered when spatial constraints become important. In the
present model, figure 11 clearly shows that this correlation in fact increases when spatial
constraints become large (i.e. when η decreases). This can be understood simply by the
fact that the probability of establishing far-reaching short-cuts decreases exponentially
in equation (13) and only the large traffic of hubs can compensate this decay. Far-away
geographical regions can thus only be linked by edges connected to large degree vertices,
which implies a more central role for these hubs.

In order to better understand the effect of space on the properties of betweenness
centrality, we have to explicitly consider the geometry of the network along with the
topology. In particular, we need to consider the role of the spatial position by introducing
the spatial barycentre of the network. Indeed, in the presence of a spatial structure,
the centrality of nodes is correlated with their position with respect to the barycentre
G, whose location is given by xG =

∑
i xi/N . For a spatially ordered network—the

simplest case being a lattice embedded in a one-dimensional space—the shortest path
between two nodes is simply the Euclidean geodesic. In a limited region, for two
points lying far away, the probability that the shortest path passes near the barycentre
of all nodes is very large. In other words, this implies that the barycentre (and its
neighbours) will have a large centrality. In a purely topological network with no underlying
geography, this consideration does not apply anymore and the full randomness and the
disordered small world structure are completely uncorrelated with the spatial position. It
is worth remarking that the present argument applies in the absence of periodic boundary
conditions that would destroy the geometrical ordering. This point is illustrated in
figure 12 in the simple case of a one-dimensional lattice.

The present model defines an intermediate situation in that we have a random network
with space constraints that introduces a local structure since short distance connections
are favoured. Shortcuts and long distance hops are present along with a spatial local
structure that clusters spatially neighbouring vertices. In figure 13 we plot the average
distance d(G, C) between the barycentre G and the ten most central nodes. As expected,
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spatial constraints long-range shortcuts are very rare and hubs connect regions
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Figure 12. (a) Betweenness centrality for the (one-dimensional) lattice case. The
central nodes are close to the barycentre. (b) For a general graph, the central
nodes are usually the ones with large degree.

as spatial constraints become more important, the most central nodes approach the spatial
barycentre of the network.

Another effect observed when the spatial constraints become important are the large
fluctuations of the BC. Figure 14(a) displays the relative fluctuation

δg(k) =

√
〈δg2(k)〉
〈g(k)〉 , (15)

where 〈δg2(k)〉 is the variance of the BC and 〈g(k)〉 its average (computed for each value
of k). The value of η modifies the degree cut-off, and in order to be able to compare
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Figure 13. Average Euclidean distance between the barycentre G of all nodes and
the ten most central nodes (C) versus the parameter η. (Here δ = 0, N = 5000
and the results are averaged over 50 configurations.) When space is important
(i.e. small η), the central nodes are closer to the centre of gravity. For large η,
space is irrelevant and the average distance tends to the value corresponding to
a uniform distribution 〈r〉unif = 2/3 (dotted line).

the results for different values of η we rescale the abscissa by its maximum value kmax.
This plot (figure 14(a)) clearly shows that the BC relative fluctuations increase as η
decreases and become quite large. This means that nodes with small degree may have a
relatively large BC (or the opposite), as observed in the air-transportation network (see
figure 5 and [23]). In order to quantify these ‘anomalies’ we compute the fluctuations
of the betweenness centrality ∆RN(k) for a randomized network with the same degree
distribution as the original network and constructed with the Molloy–Reed algorithm [52].
We consider a node i as being ‘anomalous’ if its betweenness centrality g(i) lies outside
the interval [〈g(k)〉−α∆RN(k), 〈g(k)〉+α∆RN(k)], where we choose α � 1.952 so that the
considered interval would represent 95% of the nodes in the case of Gaussian distributed
centralities around the average. In figure 14(b), we show the relative number of anomalies
versus k/kkmax for different values of η. This plot shows that the relative number of
anomalies Na(k)/Nk increases when the degree increases and more interestingly strongly
increases when η decreases. Note that since for increasing k the number of nodes Nk is
getting small, the results become more noisy.

The results of figures 11–14 can be summarized as follows. In a purely topological
growing network, centrality is strongly correlated with degree since hubs have a natural
ability to provide connections between otherwise separated regions or neighbourhoods [44].
As spatial constraints appear and become more important, two factors compete in
determining the most central nodes: (i) on the one hand hubs become even more important
in terms of centrality since only a large traffic can compensate for the cost of long-
range connections, which implies that the correlations between degree and centrality thus
become even stronger; (ii) on the other hand, many paths go through the neighbourhood

doi:10.1088/1742-5468/2005/05/P05003 17

http://dx.doi.org/10.1088/1742-5468/2005/05/P05003


J.S
tat.M

ech.
(2005)

P
05003

The effects of spatial constraints on the evolution of weighted complex networks

10
-1

10
0

k/kmax

0

0,2

0,4

0,6

0,8

N
 a

(k
)/

N
k η=0.1

η=10.0

0,2

0,4

0,6

0,8

1

δg

a)

b)

Figure 14. (a) Relative fluctuations of the betweenness centrality versus k/kmax

for two values of η (N = 5000 and the results are averaged over 50 configurations
and binned). The fluctuations increase when η decreases (i.e. when spatial
constraints increase). (b) Number of anomalies Na(k) rescaled by the number
of nodes Nk versus k/kmax for different values of η. The relative number of
anomalies is larger when spatial constraints are large, especially for large k.

of the barycentre, reinforcing the centrality of less connected nodes that happen to be in
the right place; this yields larger fluctuations of g and a larger number of ‘anomalies’.

We finally note that these effects are not qualitatively affected by the weight structure
and we observe the same behaviour for δ = 0 or δ �= 0.

5. Conclusions

In this paper, we have presented a model of growing weighted networks introducing the
effect of space and geometry in the establishment of new connections. When spatial
constraints appear, the effects on the network structure can be summarized as follows.

• (i) Effect of spatial embedding on topology–traffic correlations
Spatial constraints induce strong nonlinear correlations between topology and traffic.
The reason for this behaviour is that spatial constraints favour the formation of
regional hubs and locally reinforce the preferential attachment, leading for a given
degree to a larger strength than the one observed without spatial constraints.
Moreover, long distance links can connect only to hubs, which yields a value βd > 1 for
small enough η. The existence of constraints such as spatial distance selection induces
some strong correlations between topology (degree) and non-topological quantities
such as weights or distances.

• (ii) Effect of space embedding on centrality
Spatial constraints also induce large betweenness centrality fluctuations. While hubs
are usually very central, when space is important central nodes tend to get closer to the
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centre of gravity of all points. Correlations between spatial position and centrality
compete with the usual correlations between degree and centrality, leading to the
observed large fluctuations of centrality at fixed degree.

• (iii) Effect of space embedding on clustering and assortativity
Spatial constraints imply that the tendency to connect to hubs is limited by the need
to use small range links. This explains the almost flat behaviour observed for the
assortativity. Connection costs also favour the formation of cliques between spatially
close nodes and thus increase the clustering coefficient.

Including spatial effects in a simple model of weighted networks thus yields a large
variety of behaviour and interesting effects. This study sheds some light on the importance
and effect of different ingredients such as spatial embedding or diversity of interaction
weights in the structure of large complex networks and we believe that this attempt of
a network typology could be useful in the understanding and modelling of real-world
networks.
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T Petermann for interesting discussions at various stages of this work. AB and AV are
partially funded by the European Commission—Fet Open project COSIN IST-2001-33555
and contract 001907 (DELIS). We thank the International Air Transportation Association
(IATA) for making the airline commercial flight database available.

References

[1] Albert R and Barabási A-L, 2002 Rev. Mod. Phys. 74 47
[2] Dorogovtsev S N and Mendes J F F, 2002 Adv. Phys. 51 1079
[3] Dorogovtsev S N and Mendes J F F, 2003 Evolution of Networks: From Biological Nets to the Internet and

WWW (Oxford: Oxford University Press)
[4] Pastor-Satorras R and Vespignani A, 2004 Evolution and Structure of the Internet: A Statistical Physics

Approach (Cambridge: Cambridge University Press)
[5] Cohen R, Erez K, ben Avraham D and Havlin S, 2000 Phys. Rev. Lett. 85 4626
[6] Callaway D S, Newman M E J, Strogatz S H and Watts D J, 2000 Phys. Rev. Lett. 85 5468
[7] Albert R, Jeong H and Barabási A-L, 2000 Nature 406 378
[8] Pastor-Satorras R and Vespignani A, 2001 Phys. Rev. Lett. 86 3200
[9] Krause A E, Frank K A, Mason D M, Ulanowicz R E and Taylor W W, 2003 Nature 426 282

[10] Granovetter M, 1973 Am. J. Sociol. 78 1360
[11] Garlaschelli D, Battiston S, Castri M, Servedio V D P and Caldarelli G, 2005 Physica A 350 491
[12] Li W and Cai X, 2004 Phys. Rev. E 69 046106
[13] Li C and Chen G, 2003 Preprint cond-mat/0311333
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[22] Barthélemy M, 2003 Europhys. Lett. 63 915
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